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Results are presented of theoretical and experimental investigations (with single-crystal FeGe, 
as the example) of the magnetization curves of tetragonal-symmetry antiferromagnets having 
easy magnetization planes with preferred antiferromagnetism axes (crystallographic magnetic- 
anisotropy constants K ,  < Oand K 4  #O) .  It is shown that the crystal magnetization is determined 
both by intradomain processes and by displacements of the interdomain walls. The regularities 
due to these processes are determined. 

Magnetization curves have been customarily investi- 
gated for magnetic single-axis antiferrornagnets having te- 
tragonal or lower crystal symmetry (see, e.g., Refs. 1-3). 
The domains into which a magnetic-uniaxial antiferromag- 
net is broken up by degeneracy have in a magnetic field equal 
energies, and the field does not lead to displacement of the 
domain walls. The magnetization processes take place as if 
the antiferromagnet were in a magnetically homogeneous 
(single-domain) state. There exist, however, antiferromag- 
nets with several equivalent antiferromagnetism axes (tetra- 
gonal-symmetry antiferromagnets having an easy plane con- 
taining antiferrornagnetism axes, cubic-symmetry 
antiferrornagnets). In this case the contiguous domains in 
which the antiferromagnetism vectors are not collinear, are 
energetically nonequivalent. As a result the field will exert a 
pressure on the domain walls and cause their displacement, 
and hence an additional change of the resultant magnetiza- 
tion. 

Magnetization processes in multiaxial antiferromag- 
nets in a magnetically homogeneous state are considered in 
Refs. 4 and 5. 

In the present communication we present, with single- 
crystal FeGe, as the example, the results of both a theoreti- 
cal and an experimental investigation of the magnetization 
curves of antiferromagnets in which domain-wall displace- 
ments are possible. 

Fa=i/4K4 cos 4~41, 
FH=-IH, 

I=xH, 
x=x,, cos2 $-I- x1 sinZ 9. 

K4 is the fourth-order crystallographic magnetic anisotropy 
constant. Account is taken here of only the anisotropy of the 
susceptibility with respect to H. In the general case it is nec- 
essary to take into account also the crystallographic anisot- 
ropy which leads to a dependence of the angle $ on p in (4)  
(see, e.g., Ref. 6). For low anisotropy in the basal plane, this 
dependence can be neglected. In addition, we consider the 
region of fields considerably weaker than the effective field 
of the exchange interaction between the magnetic sublat- 
tices. The parallel and perpendicular susceptibilities xi, and 
xL, just as K,,  are fundamental material constants charac- 
terizing the particular form of the antiferromagnet. They are 
insensitive to structure and depend only on the temperature 
T. 

The equilibrium orientation of the antiferromagnetism 
vector L and hence also the magnetization I are determined 
from the condition that the free energy F = FA + F,, be a 
minimum: 

For H = 0 we obtain solutions of two types: 
1. THEORY 

for K 4 c 0  
1. We investigate first the case of a magnetically homo- (p,=k.90°, k=0, 1, 2, 3, 

geneous (single-domain) distribution of the sublattice mag- for K,>O 
netization vectors I"' and I(,', and consequently of the anti- q1~~=45~+k.90~,  
ferromannetism L = I - I and the resultant 

u 

magnetization I = I"' + I(,' vectors. It will be shown below 
that the relations obtained in this analysis are valid for single 
crystals of real multidomain antiferromagnets magnetized 
in directions that are symmetric relative to the antiferromag- 
netism axes. 

We consider antiferromagnets having a tetragonal crys- 
tal structure, in which the second-order crystallographic 
magnetic anisotropy constant is K, < 0, i.e., the vector L lies 
in the basal plane (001 ). We confine ourselves to cases in 
which the vector H also lies in this plane. 

We introduce the angles g, andp  that determine respec- 
tively the orientations of the vectors L and H relative to the 
[ 1001 axis and the angle between the vectors L and H, with 
e, = P + $. We take into account the anisotropy energy FA 
in the basal plane and the energy F ,  in the external magnetic 
field H: 

which determine the orientations of the antiferromagnetism 
axes. In the first case the antiferromagnetism axes are of type 
[ 1001, and in the second of type [ 1101. 

We consider cases when the magnetization is along 
principal crystallographic axes: HI( [ 1001 ( f l=  0 )  and 
HI\[ 1101 ( 8  = 45"). TO be specific, we put K ,  > 0, as is the 
case in FeGe, . For a magnetic field applied along a direction 
symmetric to the antiferromagnetic axes (HI1 [ loo] )  we 
have 

20s' ~41"/2 [l-(HIHo) '1, H<Iio. 

(p=90°, 270°, H>H,. 

From (3)  and (4)  we obtain for the magnetization 

I='/z [XL+ xsf (x~-xII) (HIHo) '1 H ,  H<Ho,  I=xI-H, H >  Ho 
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and for the differential susceptibility 

where 

As seen from ( 6 ) ,  x changes jumpwise at H = H,. 
For a field applied along one of the antiferromagnetism 

axes (HI1 [ l  lo]) ,  for arbitrary H, we have 

if L l H  in the initial state H = 0. 
If, however, LIIH, the following relations hold: 

and hence 

Relations (5)-(9) describe, firstly, the para-process 
(x,, ), i.e., the changes produced in the sublattice magnetiza- 
tion vectors by the components of the magnetic-field intensi- 
ty vector along the directions of the magnetizations of the 
magnetic sublattices, secondly the bending of the magnetic- 
sublattice magnetization vectors relative to one another 
(xi ) under the influence of the magnetic-field component 
perpendicular to L, and thirdly the rotation of the vector L 
(rotation of the angle e, from H). 

In the case of magnetization in a direction symmetric 
relative to the antiferromagnetism axes (HI1 [ 1001 ) in the 
field H, , the process of rotation of the vector L is completed. 
For magnetization along one of the antiferromagnetism axes 
(HI( [ 1 101 ) at H = H,, reversal of the sublattice magnetiz- 
ations takes place if LllH in the initial state. This process 
should led to a first-order magnetic phase transition. If, 
however, L l H  in the initial state, the field H should not 
cause rotation of the vector L, so that no phase transition 
should occur. 

2. We consider now real antiferromagnets with account 
taken of their domain structure. 

We recall first some relations from the general theory 
that describes reversible domain-structure changes caused 
by external forces.' We denote the free energy ofa domain of 
species in the field of external forces by (Fc ) i. If these ener- 
gies are different in contiguous ith and k th domains, the wall 
between these domains is under a pressure that moves it a 
distance anik. The work of this pressure should supply the 
increase of the bulk free energy (Fi ) i ,  due to magnetoelastic- 
anisotropy forces, as well as compensate for the change of 
the surface free energy of the walls separating domains of 
species i and k. A change of the external forces that lead to 
the change S [ (F, ), - ( F ,  ); ] causes the wall to move a dis- 
tance 

s n i k = c i k s  [ ( F e )  k- ( F e )  i ]  (10) 

where yik is the density of the surface free energy, Sik the 
surface area of the walls between the domains of species i and 
k per unit volume, and R,, ,  are the principal curvature radii 
of the walls. 

The first term is due firstly to inhomogeneity of the 
difference of the internal energies of the contiguous walls, 
which results from the presence of external stresses, second- 
ly to the inhomogeneity of the surface-energy density, and 
thirdly to the inhomogeneity of the change produced in the 
wall surface area Sik by the change of its curvature (the La- 
place stress). The second term is due to the change of the 
wall surface area Sik, resulting from the deformation of the 
wall contour. This term must be taken into account for mag- 
netic materials that contain, for example, nonmagnetic in- 
clusions. 

Wall displacements lead to a change of the density n, of 
the magnetic phase (meaning the relative volume occupied 
by the domains of species i )  due to the change of the volume 
of the neighboring phases: 

8ni = 8niksik. (12) 
k ( + i )  

Assuming next that the domain-wall area is 

we have (see Ref. 7 )  with allowance for (12) and (13) 

exp {-Ctheth[ (F.)  (-at11 
(14) n i  = 

expi-Ckeik~ (F.)  ,-ah] 1 '  
k 

where ai are integration constants. 
We proceed now to describe the antiferromagnets con- 

sidered in Sec. 1 when they contain a domain structure. The 
degenerate states in these antiferromagnets are those in 
which the vectors L are mutually antiparallel, and also the 
states in which the vectors L are mutually perpendicular. 
Two domain types, separated by 180-degree and 90-degree 
walls, are thus possible. 

In investigations of the influence of H on ferromagnets, 
the energy (F, ) i  of a domain of species i must be taken to 
mean its energy (F, ) in the field H 

( F H )  i=-IiH, It=xiH, 

xi=xl, cos' $ i + ~ L  sin2 I${. 

If the contiguous i and k domains are separated by a 
180-degree wall, their angles are +, = $, + 180". According 
to (15) ,xi  =xk and (F,), = (FH)k.ThefieldHwillexert 
no pressure on the walls between these domains, and accord- 
ing to (10) no displacement of 180-degree walls will take 
place. These domains behave equivalently in a magnetic 
field. There will be produced in them equal magnetization 
changes due to the para process, to the bending of the mag- 
netic sublattices, and to the rotation process, as if the antifer- 
romagnet were magnetically homogeneous. We shall there- 
fore regard domains of this type as being of the same species. 

The domains of the second type, separated by 90-degree 
walls, can be divided into two species. In these domains the 
orientations of the vectors L relative to the magnetic field, 
given by the angles *, and +,, are different. The domain 
energies in a magnetic field are therefore also different. We 
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can consider accordingly to species of magnetic phases, 
characterized by magnetizations I,,, ( 15) and densities n ,,, , 
n, + n, = 1. We put n, = n, so that n, = 1 - n. The resul- 
tant change of the magnetization is determined by two terms 

describes intradomain processes, and 

describes wall-displacement processes. 
Taking ( lo), ( 15), ( 17), and ( 18) into account we ob- 

tain for the differential reversible susceptibility x of the mul- 
tidomain state the relations 

r 8% ~ X Z  xi. = ( I - n ) ~ , + n ~ .  + (i-n) - + n -1 H, (20) dH dH 

where 

a is an integration constant and determines the initial density 
no of the magnetic phases at H = 0. 

In the general case of arbitrary orientation of H the 
angles $, and $, , and hence according to ( 15) and (23 ), X, , 
x2 and H *, depend on H. This dependence is due to rotation 
of the vector L by the field H and is determined by the mini- 
mum of the free energy. 

The situation is considerably simplified when wall dis- 
placements and rotations can be disregarded. 

The former situation arises in the case of magnetization 
in crystallographic directions, in which the antiferromagne- 
tism vectors of contiguous domains are symmetrically ori- 
ented about the field H. 

The latter situation occurs for magnetization in crystal- 
lographic directions in which no rotation of the vectors L 
occurs in a certain range of fields, while X,  =x: and 
x2 = x:. The equations obtained for the second case are val- 
id, with good approximation, also for arbitrary orientation 
of H relative to the crystallographic axes if H gHo ,  i.e., if 
rotation processes can be neglected. 

We consider tetragonal-symmetry antiferromagnets 
with K, > 0. Domains of species i = 1 are taken to be do- 
mains with angles g, : = 45" + k.  180", at H = 0, and those of 
species i = 2 have g, : = - 45" = k .  180"(k = 0, 1 ). 

The first case is realized when the magnetic field is ap- 
plied in a direction symmetric relative to the antiferromag- 
netism axes (H)  1 1  [ 1001 ). In this case $, = $, = $ and ac- 
cording to (20) and (21) we have 

The relations for x,, no longer contain the densities of the 

FIG. 1. Magnetization curve of FeGe? crystal at HI/ [ 1001 and T = 77 K.  
Solid curve--calculation on the basis of Eq. ( S ) ,  circles-experiment. 

magnetic phases. They coincide with expression (4) .  The 
equilibrium orientations of the vectors L, and L, , which are 
specified by the angle $, are obtained from the condition that 
the free energy F = FA + FH be a minimum. The I ( H )  and 
x(H) dependences have the same form as for the single- 
domain state [see Eqs. (5)  and ( 6 )  and Figs. 1 and 2 (calcu- 
lated curves) 1. Evidently, a second order phase transition 
should be observed in this case at H = H,. 

Since the field H does not lift the degeneracy of either 
the first or the second type, an antiferromagnet magnetized 
in fields H >  H, remains in a single-domain state in which 
not only 180-degree but also 90-degree neighborhoods are 
preserved. 

The second case is realized when the magnetic field H is 
applied along one of the antiferromagnetism axes 
(HI1 [1 lo]) .  The orientation of the vector L, does not 
change in the course of magnetization, since L, 1H. Accord- 
ing to (9),  the direction of the vector L, does not change in a 
field H < H,. The angles $, and $, are thus equal to their 
values at H = 0: $: = 0, $: = 90" and, according to (15), 
X, = x,, , x2 = xI, n = n l ,  where n, is the density of the 
magnetic phase with LlH. From (20)-(23) we have 

FIG. 2. Dependence of the differential susceptibility on H at HI1 [ 1001, 
T = 77 K. Solid curve-calculation on the basis of Eq. ( 6 ) .  circles---ex- 
periment. 
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According to ( 131, the constant el, can be determined 
from the area S?, of the 90-degree walls between the do- 
mains in the initial magnetic state (at H = 0 )  : 

The field H *, in contrast to H,, is sensitive to the mag- 
netic and crystal structures. It is determined, according to 
(26), (27), and (1 1 ), by the initial density ny of the magnet- 
ic field, the initial area S:,  of the interdomain walls, and by 
the inhomogeneities of the crystal (internal stresses, densi- 
ties of foreign impurities and alloy components, foreign in- 
clusions etc.) which cause Fi and y,, to be inhomogeneous. 

Figure 3 (curves 1,2, and 3)  shows the dependences of 
X, x id ,  and x,, on H, plotted in accordance with (24) and 
(25). It is clearly seen from the equations and from the 
curves that the reversible displacement processes are most 
intense in the vicinity of the field H *. Their fraction in the 
resultant susceptibility decreases to zero, both as H-0 (in 
contrast to the situation for magnetically soft ferromagnets) 
and at H% H *. Intradomain processes play a substantial role 
both as H-0 (in contrast to magnetically soft ferromag- 
nets) and at H % H  *. Namely, xi, increases monotonically 
from a value (x, - xil In: + xlI at H = 0 to a value X, at 
H> H *. Although the magnetic field does not eliminate the 
domain structure completely at H> H * (domains separated 
by 180-degree walls remain), the magnetization and mag- 
netic susceptibility in fields H)H, will be the same as for the 
case of the homogeneous state x = x,. As seen from Eqs. 
(24) and (25) and from Fig. 3, t h e x ( H )  dependences are 
smooth. No phase transitions of first or second order occur 
when H is varied. The first-order phase transition at 
H = H,, which follows from (9),  does not occur at LlH 
because in fields H * < H <  H, the domains in which L is 
parallel or antiparallel to H are absorbed by the domains in 
which LlH. 

Irreversible wall displacements should occur in addi- 
tion to the reversible ones. They lead to an additional term 
x:, (irreversible susceptibility due to wall displacements) 

FIG. 3. Field dependences of the differential reversible susceptibility at 
Hll[ 1 l o ]  (curve 1 ) and of its components x,, (curve 2 )  and x,, (curve 
3 )  at T = 77 K. Solid curves--calculation based on Eqs. ( 19)-(21), cir- 
cles--experiment. 

in the expression for the differential susceptibility, and to the 
following effects: first, to hysteresis and second, to an influ- 
ence of magnetic annealing on the form of the magnetization 
curves Z(H). 

An antiferrornagnet cooled from temperatures above 
the NCel point T, to a certain T( T <  T,) breaks up into 
domains. When a field is applied along one of the antiferro- 
magnetism axes (the [ I  101 axis] its magnetization varies 
along the pristine magnetization curve up to fields (H, H * )  

in which the displacements of the 90-degree walls terminate. 
If this is followed by a decrease of the magnetic field from the 
value H, H *, multidomain states with 90-degree neighbor- 
hoods may not occur at all, or states may occur with magnet- 
ic-field distribution entirely different than those for increas- 
ing H. As a result, when H is lowered to zero the descending 
branch of the plot of I vs H, while passing through the point 
H = 0, Z = 0, will not coincide with the pristine curve (it will 
lie "lower"). This can lead to the onset of a closed loop when 
the field is cyclically varied between 0 and H. The slopes of 
the tangents to the ascending and descending branches of the 
Z(H) curve should be equal because the densities n: are 
equal in this case. 

The cause of the influence of magnetic annealing on the 
shape of the Z(H) curve is that the initial density ny of a 
sample cooled in a magnetic field differs from the initial den- 
sity of the magnetic phase of a sample cooled in a zero field. 
The I ( H )  curve of a sample cooled in a magnetic field from 
temperatures T >  T, should lie "higher" (be less concave) 
than the Z(H) curve cooled to in a zero field. 

We note finally that all the equations and their conclu- 
sions for the investigated cases are valid also for tetragonal 
antiferromagnets having an easy plane at K4 < 0. The situa- 
tion for HI[ [ 1001 and K4 < 0, turns out to be the same as for 
HI1 [ 1101 and K4 > 0. A similar picture should be observed 
also for antiferromagnets having cubic symmetry, in which 
the antiferromagnetism axes are of the type [ loo]  and the 
field H lies in a cubic face. 

2. EXPERIMENT 

We investigated iron digermanide FeGe, (space group 
Z4/mcm ). It is subject to two magnetostructural phase tran- 
sitions: of first order at T,  = 265 K and of second order at 
T, = 287 K. According to neutron-diffraction data8 the se- 
quence of the magnetic structures in FeGe, is the following: 
paramagnetism ( T >  T, )-incommensurate structure 
( TI < T < T2 )-collinear antiferromagnetic structure 
( T <  T I  ) .  The antiferromagnetism axes in the easy plane 
(001) are of the type [I101 (K, <O, K4 > 0) .  

The magnetization curves of single-crystal FeGe, in 
fields up to 18 kOe were measured with a vibrating-reed 
magnetometer. The mean squared deviation of the measure- 
ment results did not exceed 0.1 %. The specified temperature 
was maintained accurate to within 0.1 K. 

Figure 1 shows the magnetization curve Z(H) of single- 
crystal FeGe, plotted at T= 77 K with a field applied along 
a direction symmetric about the antiferromagnetism axes 
(HI1 [ 1001 ). The experimental data are marked by points, 
and the curve is plotted in accordance with Eq. (5) .  The 
value of H, was determined by least squares. 

Figure 2 shows the differential-susceptibility curve cal- 
culated from Eqs. (6 ) ;  the points mark the susceptibilities 
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FIG. 4. Temperature dependences of the perpendicular (x, , curve 1 ) and 
parallel (x , ,  , curve 2 )  susceptibilities of single-crystal FeGe, . 

FIG. 6. Temperature dependence of the crystallographic-magnetic-sus- 
ceptibility constant K, of FeGe]. 

obtained by differentiating the experimental I(H) curve. 
The I ( H )  andx(H)  curves are reversible, namely, they turn 
out to be the same for both an increasing and a decreasing 
field H, as well as after cooling in a field H from tempera- 
tures T >  T, . A second-order phase transition is observed in 
a field H = H,. Measurements at different temperatures 
have shown that higher temperatures correspond to less con- 
cave I ( H )  curves. The good agreement between the experi- 
mental data and the theoretical curves indicates that magne- 
tization in a direction symmetric relative to the 
antiferromagnetism axes (HJJ  [I001 ), is due only to intrado- 
main processes. The reason for absence of hysteresis and of 
an influence of magnetic annealing is that no wall displace- 
ments occur at the field orientation in question. 

As seen from the arguments above, it is possible to de- 
termine from the magnetization curves at Hll[ 1001 the ma- 
terial constantsx, , x,, and K4 . The value ofx, is determined 
from the value of x at H >  H,. x,, is determined from the 
value ofx  measured as H-0 and equal to x = + (x, + xil ). 
Our measurements of I ( H )  at various temperatures made it 
possible to obtain the temperature dependences of H, (T) ,  
xL ( T ) ,  xl, ( T), and also the temperature dependence of the 
anisotropy constant K4 calculated from Eq. 7. Figures 4-6 
show thex, ( T), xl, ( T), H, ( T) and K4 ( T) dependences. It 
follows from these figures that as T- T, the difference 
xL - xII does not vanish, whereas H, and K4 tend to zero. It 
can be assumed that the magnetostructural first-order phase 

FIG. 5 .  Temperature dependence of the field H,. 
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transition at T, in FeGe, is due to a reversal of the sign of the 
crystallographic magnetic anisotropy K4 . 

Let us consider the magnetization curves and the sus- 
ceptibilities following application of a field along one of the 
antiferromagnetism axes (HI1 [ 1101 ). Magnetization along 
this axis produces both reversible and irreversible wall dis- 
placements. 

Figure 3 shows plots of the reversible differential sus- 
ceptibility x and of its terms x,, and xi, against H. The 
experimental values of x(H) are shown by the points on 
curve 1 of Fig. 3. The values of x were defined as the ratios 
AZ/AH for a field decreasing from H to H - AH (AH = 30 
Oe). Before measuring x in each specified, field, the sample 
was heated to T = 300 K ( T> T2 ), kept for 0.5 h at this 
temperature, and then cooled in a zero field to the measure- 
ment temperature. The good agreement between the experi- 
mental data and the theoretical curve and the agreement 
with the theoretical deductions indicate that for magnetiza- 
tion along this axis the variations of the magnetization and 
susceptibility with the field are determined both by intrado- 
main processes (paraprocess with bending of the magnetiza- 
tion sublattices, but in the absence of rotation) and by dis- 
placements of the domain walls. 

Measurements ofx(H)  at various temperatures yielded 
plots of ny ( T) and H * ( T) (curve 1, Fig. 7) obtained from 
the relations (22), (24) and (25). As expected, n: = 0.5 for 
all temperatures T < T I  . 

Analysis ofthe form o fH  * ( T) plot, based on Eqs. (26), 
(27), and ( 11 ), suggests the following probable mechanism 
that slows down the domain-wall displacements. 

Note (see, e.g., Ref. 9) that Fi-Ao,,  
y- [ (K4 + hi )A ] The exchange interaction constant 
A- (Z,/Z, )2, where I, and I, are respectively the sublattice 
magnetizations at T and T = 0, A is the magnetostriction in 
the basal plane, and ui are the internal stresses. Ifthe stresses 
are due to the existence of 90-degree neighborhoods of do- 
mains, then ui = E l ,  where E is the elastic modulus. At 
T = 77 K, FeGe, has K4 - lo4 erg/cm3, A - 10 - 5 ,  and 
E -  loi2 dyn/cm2, whence /lai - lo2 erg/cm3, with 
K4 $/loi in a wide temperature range. 

Assume that the inhomogeneity of Fi and y is due to 
inhomogeneity of ui. Then 
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FIG. 7. Temperature dependence of H'  (curve 1 ). Calculated tempera- 
ture dependences of the terms of H ' ( T )  for wall-displacement energy is 
due to: inhomogeneity of the magnetoelastic energy ( H T ,  curve 2 ) ,  
changeof domain-wall area ( H  :, curve 3 ) ,  and inhomogeneity of y, ( H  :, 
curve 4 ) .  The initial values of H' are made to coincide at T = 77 K. 

It was recognized in the calculation of d 'y/an2 that a, is in a 
state in which y is a minimum. In this case we get, according 
to (26) and (11) 

The term H 7 - [A /(x, -.xII ) ] 'I2 is due to the inhomoge- 
neity of the magnetoelastic energy, the term H T- [AA / 
y(xL - xlI ) 1 ' I 2  to inhomogeneity of y, and the term 
H: - [y/(x1 - Xn ) ] to the variation of the wall areas. 
The temperature dependences of these terms are shown in 
Fig. 7 (curves 2-4). The A( T) was taken from Ref. 10, and 
&/Io (T) was determined using the Brillouin function. The 
starting points of the H T ( T), H : ( T) and H ( T) curves 
coincide with the experimental H * ( T) curve at T = 77 K. 
The temperature dependences of H ( T) and H 7 ( T) are 
closest to the experimental H * ( T) . The most probable cause 
of the slower motion of domain walls can be the inhomoge- 
neity of the magnetoelastic energy as well as the inhomoge- 
neity of the domain-wall area. 

The termxi,, due to irreversible wall displacements, in 
the differential magnetic susceptibility tends to zero for 
H-0 and H) H *. In a field H = H the susceptibility xi, is 
20% of the reversible differential susceptibility X. 

Figure 8 shows I(H) magnetization curves plotted at 
T = 77 K. It can be seen that in fields H <  2.5 kOe, i.e., 
H(H, (H,, = 12.5 kOe). The Z(H) dependences are non- 
linear, and go over at H )  H * into a linear dependence that 
coincides with the linear I(H) obtained for the case 
HI1 [I001 and extrapolated to a field H = 0. Curve 1 corre- 
sponds to the pristine magnetization curve. When the field 
decreases from a certain value H(H)  H *)  to zero, the de- 
scending branch of the I ( H )  curve (curve 2) lies above the 
pristine curve in the first cycle. Identical closed I ( H )  loops 
are produced in all the succeeding cycles of increasing 
(curve 3) and decreasing H (again curve 2). In accord with 
the prediction of the theory, the slopes of the tangents to the 
ascending and descending branches of the loop turned out to 
be equal. The density of the magnetic phase is in this case 

FIG. 8. Magnetization curves of single-crystal FeGe, for the case 
HI\[ 1101 at T = 77 K, I-pristine magnetization curve, 3 and 2-hyster- 
esis loop. 

n? = 0.82. Note that the density n;'" - n: plays a role simi- 
lar to that of the residual magnetization of ferromagnets. 

Reversal of the magnetization (change of the field from 
+ H to - H) produces a drawn-out hysteresis loop (I = 0 
at H =  0),  the two lobes of which in the quadrants 
H >  0, I >  0 and H < 0, I <  0, are the cyclic loops considered 
above and obtained in the field range from 0 to H. 

Note that, unlike in ferromagnets, the pristine magneti- 
zation curve (curve 1) is outside the hysteresis loop. The 
reason is that the density n, of the magnetic phase with LlH 
is higher on the hysteresis loops than the density of this 
phase on the pristine curve for identical values of H, includ- 
ing H = 0, when n y  > ny and I = 0. 

As was indeed assumed, the magnetization curve plot- 
ted after magnetic annealing (cooling in a field H = 10 kOe 
from T> T2 to T = 77 K )  lies "higher" than the pristine 
(less concave) curve. The magnetic phase with LlH at 
H = O(n: = 0.86) is higher than the density of the same 
phase of a sample cooled in a zero field. 

Note finally that it follows from the forms of x(H) 
(Fig. 3, curve 1) and I ( H )  (Fig. 8) that magnetization 
along one of the antiferromagnet axes produces neither first- 
nor second-order magnetic phase transitions. 

Magnetization in tetragonal- and cubic-symmetry anti- 
ferromagnetic crystals having several antiferromagnetism 
axes is determined in the general case by both intradomain 
processes (the paraprocess, bending of the sublatticz magne- 
tizations relative to one another, rotation of the antiferro- 
magnetism vector, characterized by susceptibilities xll and 
xL and by an anisotropy constant K4 ), as well as by displace- 
ment of the domain walls. 

Magnetization along a direction symmetric about the 
antiferromagnetism axes is determined only by intradomain 
processes. The magnetization curves I ( H )  are characterized 
by the difference (x, - xIl ) and by a structurally insensitive 
field H i  = 2K4/(x, - xII ) . When this field is increased 
with increase of H, the rotation stops, the nonlinear charac- 
ter of I(H) gives way to the linear I = x,H, and a second- 
order phase transition is produced. 

The magnetization along one of the antiferromagnetism 
axes is determined by intradomain processes (with the ex- 
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ception of rotation) as well as by displacement of the domain 
walls. The displacement is most intense in fields close to H  *. 
It makes a zero contribution to the magnetic susceptibility x 
not only in strong fields ( H )  H  * )  but also as H-0.  Intrado- 
main processes play a substantial role not only at H )  H  * but 
also as H-0,  and their contribution to x increases with in- 
crease of H. The transition from a nonlinear I ( H )  depen- 
dence to the linear I  = X ,  H at H )  H  * is smooth and neither 
first- nor second-order transitions occur. The field H  * is a 
structurally sensitive property. It is determined by the initial 
magnetic-phase density, by the initial area of the interdo- 
main walls, and also by the crystal inhomogeneities that de- 
termine the inhomogeneity of the magnetoelastic energy and 
of the surface energy of the domain walls. Owing to the irre- 
versible character of the magnetization process, hysteresis is 
possible in this case, and magnetic annealing influence sub- 
stantially the shapes of the I ( H )  and x ( H )  curves. 

The value ofx, - x,, in FeGe, decreases with increase 
of T, but does not vanish at T  = T ,  , whereas H, and K, 
vanish at T =  T,. It appears that the magnetostructural 
first-order transition at T ,  is due to the reversal of the sign of 
K, with change of T. 

It follows from analysis of the H ' ( T )  curves that the 
most probable causes of the slower displacements of the do- 
main walls are inhomogeneities of the magnetoelastic energy 
and of the domain-wall area. 
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