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The kinetics of diffusion-controlled reactions describable by a Smoluchowski equation in a 
fractal medium is analyzed. A class of model potentials which make it possible to solve the 
time-dependent Smoluchowski equation is constructed. Corrections to the standard solution 
for the fractal geometry of the medium are discussed. 

The Smoluchowski equation can be used to advantage 
to describe the kinetics of diffusion-controlled reactions. 
Steady-state solutions of this equation can essentially always 
be found, at least in quadrature form. Time-varying solu- 
tions, in contrast, cannot be derived for arbitrary interaction 
potentials. Studies have accordingly been made1-' of the 
question of constructing model potentials which, on the one 
hand, would make it possible to find analytic solutions of the 
time-dependent Smoluchowski equation and which, on the 
other, might be regarded as "reasonable" approximations of 
real interaction potentials. The problem of seeking such po- 
tentials becomes much more complex if the reaction is oc- 
curring in an inhomogeneous medium. 

1. Fractal models of amorphous and disordered media 
have recently been adopted widely. 

Fractals differ from Euclidean structures in that they 
have a fractional spatial dimension, do not conform to a 
translation group (even locally), and are instead character- 
ized by self-similarity (i.e., a local invariance under scale 
transformations). For this reason, transport and reaction 
processes on fractals are "anomalous." For example, for a 
particle undergoing a random walk along a fractal we have a 
dependencek6 

( Ir( t )  1 ' )  at2'&, dw=2+8>2, 

where d, is the dimension of the trajectory of the random 
walk, and 0 > 0 is an anomalous diffusion exponent. The dif- 
fusion coefficient on a fractal thus cannot be regarded as 
constant and is instead characterized by a scaling behav- 
ior4-h 

K ( r )  - K 0 r e .  (1 )  

Brownian diffusion on a fractal is described by the equa- 
tion 

where $(r,t) is a distribution function (the average proba- 
bility density for finding the particle at time t at point r 
under the condition that at time t = 0 the particle was at the 
point r = 0). For simplicity, the equation has been written in 
spherical coordinates; D is the dimension of the fractal. 

A solution of Eq. (2 )  is well 

It leads to the behavior 

< lr ( t )  1 ')= (Kodur2t)21dwI'[ (D+2)ldw]lI? (Dld,) ,  

Expressions ( 3 )  and (4) agree well with the results of a nu- 
merical simulation of diffusion on fractals and also with the 
results of renormalization-group calculations for regular 
fractals (Sierpinski  gasket^)."^ 

The diffusion of interacting particles of diffusion pro- 
cesses in a potential have received much less study, although 
these processes are of particular interest from the standpoint 
of reaction kinetics in a fractal medium. To a large extent, 
the reason for this situation is that the interaction between 
diffusing particles in a real system is usually fairly complex, 
containing both a short-range part associated with excluded- 
volume effects and a long-range component due to, for ex- 
ample, a Coulomb interaction. Incorporating the effect of 
long-range forces on diffusion characteristics is a rather 
complex problem even in the Euclidean case. 

In the present paper we are interested in the effect of 
long-range potential forces on diffusion-kinetic processes 
describable by a Smoluchowski equation in a fractal medi- 
um. By analogy with the approach taken in Refs. 1-3, we 
focus on the construction of a class of model potential which 
make it possible to find analytic solutions (in quadrature 
form) of the time-dependent Smoluchowski equation. 

2. Using ( 1 ), we write a Smoluchowski equation for a 
particle executing a Brownian motion on a fractal in the field 
of another particle, which is at the origin of coordinates (for 
simplicity, we consider the case of spherical symmetry and a 
potential interaction): 

-- a a' av 
K ( r )  rD-' " -r'-D-[ ( % + P ~ + ) ]  

at  dr 

Here $(r,t) is a distribution function, P - ' = kT, and V ( r )  
is the interaction potential. 

In solving Eq. (5 ) ,  we use the very simple boundary 
conditions 

$(pt t )  =O, $(w,  t )  =I, ( 6 )  

wherep is the radius of the reaction surface. Introducing 
1 

T = K ~ ~ ,  U=PV, x = - r T  
0 , y = - + l ,  

Y 2 

and introducing the new function q , ( x , ~ )  in accordance with 

v=$eU, 

we can put Eq. (5 )  and boundary conditions (6)  in the form 

3 = q"+F (x) cp, (7 )  
d t 

cp (R ,  t )  =0, lim x-"cp (x, t )  = I, ( 8 )  
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where the primes mean partial derivatives with respect to x, 
R = ( I / y ) p Y ,  and the function F ( x )  is given by 

F ( x )  =a" ( x )  - [u' ( x )  ] 2 + 2 a x - 1 ~ '  ( x )  +a (4-a)&. 

Assuming 

u ( x )  =a In x-ln w ,  U=-2  In x-"w ( x )  , 
we find that the function w ( x )  satisfies the equation 

w"+F ( x )  w=O. ( 9 )  

As was pointed out in Refs. 1-3, this equation can be 
used to construct model potentials for a given function F ( x ) .  
Noting that it is frequently possible to use either Laplace 
transforms or the method of separation of variables to solve 
time-dependent equation ( 7 ) ,  once an eigenvalue problem 
has been found, we conclude that the question of construct- 
ing model potentials is determined by whether it is possible 
to find an analytic solution of the equation 

yr" ( x )  + ( F  ( x )  +h)  y~ ( x )  =O. 

For il = 0 ,  the solution yo ( x )  = W ( X  must satisfy the 
boundary condition 

lim x-"yo ( x )  = 1 .  
x+ rn 

( 1 0 )  

It is not difficult to see that in contrast with the Euclid- 
ean case (with a = 1 ) condition ( 10) is "nontrivial" in the 
sense that it is not satisfied by a solution of the equation with 
F ( x )  = O .  The simplest solution of Eq. ( 9 )  which satisfies 
boundary condition ( 1 0 )  is the "null" solution w ( x )  = x", 
which corresponds to U ( x )  = 0 .  In this case the function 
F ( x )  is 

It is not difficult to seek all solutions of Eq. ( 9 )  which 
correspond to the choice of F in form ( 1 1  ): 

w ( x )  = ~ " + a ~ x ' - ~ ,  

where a, is a parameter. 
The corresponding model potentials are 

In the Euclidean case ( a  = 1 ), potential ( 12) becomes 
the very simple model potential which was studied in Ref. 1 .  

From ( 12) we find that at large r we have 

Potential ( 1 2 )  falls off at infinity more slowly than a 
Coulomb potential, so long-range effects should be more 
prominent in this model than in the Euclidean case. 

3. We turn now to a solution of Eq. ( 7 ) .  ( 8 ) .  As the 
initial condition we use a Boltzmann distribution 

$ ( r ,  0 )  =e-PV('), q ( x ,  0 )  

It is a simple matter to find a steady-state solution of Eq. ( 7 )  : 

(pm ( x )  =xa[  I -  ( x / R )  '-'°I. 

It is not difficult to verify that z  satisfies the same equa- 
tion as is satisfied by p and also the following boundary and 
initial conditions: 

z ( R ,  T) =0,  l im  x-"z (x, t )  =O, 

We are interested below in the reaction rate k ( t ) ,  which 
is determined by the following expression according to Ref. 
3: 

where SD ( p )  = S D  ( 1 )pD - ' is the area of the surface of a D- 
dimensional sphere of radius R, and S , ( l )  
= 2rD"/I'(D / 2 ) .  

In the steady state, the reaction rate is 

km=SD ( R )  KO ( 2 a - 1 )  y2"R2a-L'~(1+loR1-2a) .  

Taking Laplace-Carson transforms of Eq. ( 7 ) ,  written 
for the function z, and of conditions ( 13),  we find 

z" ( R ,  p)  =0,  l i m  xaz" ( x ,  p )  =0 ,  
z-. m 

( 1 5 )  

where Z(x,p) is the transform of the function z ( x , t ) .  
Setting 

we can rewrite Eq. ( 14) and boundary conditions ( 15) as 

zl" ( x ,  p )  + [ - p + a ( I - a ) ~ - ~ ] z ,  ( x ,  p )  =0,  ( 1 6 )  

2,  ( R ,  p ) = -  (lo+ao)RL-", lim x-"z1 ( x ,  p)=O. ( 17) 
=+ca 

Equation ( 16) is related to the Bessel equation. Its solu- 
tion can be written in the form 

zl  ( x ,  p )  =Cl ( x ) ' ~ Z , , ,  ( p t h x )  +C,x'"K,(p'"x), m=a-L/2>0 .  

Using the second of boundary conditions ( 17),  we find 
C,  = 0  and thus 

Z, ( x ,  p ) = (Zo+ao) xtWa . ( 1 8 )  

Using the notation A k ( p )  = k, ( p )  - k ,  , we find 

4. To find z ( x , t )  and k ( t ) ,  we would have to take the 
inverse transforms of ( 18) and ( 19).  Unfortunately, this 
cannot be done exactly. We can, on the other hand, discuss 
several important asymptotic cases. 

A. The large-t limit: R 2 / t ,  x2/ t  < 1 .  
We use the asymptotic expression for the function 

K , ( z )  asz--0 (Ref. 7 ) :  

We set From ( 18) we then find 

z ( x , 7 )  =q ( x ,  2) - (pm ( 2 ) .  
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We thus have 

B. The small-t limit: R '/t, x 2 / t s  1. 
In this case, using the asymptotic expression 

K, ( z )  z (77/2z) '"e-' for lzl> 1, we can write 
a-i 

z (x ,  p) K ( + a o )  x i  I - ( )  exp [-p' (x -R)  1). 

In the small-t limit we thus have 

az  I 
Ak ( t )  a -1 a (lo+ao)R1-a- 

ax .,, (nt)'" ' 

where @ ( x )  is the probability integral. 
In the Euclidean case ( a  = 1 ) we have 

z,(x, t )  a (ao+lo) cD 

The asymptotic behavior at large distances is 

x/R>1 ( R 2 / t < l ,  x 2 / t > i ) .  

Using the asymptotic expressions above, we find 

x p'"-')I2 exp ( - p 4 ) ] .  

Taking inverse transforms, we find 

exp (-xV8t) 
X - 

I? ( u - ~ / ~ )  ~ a - 2  ( &) 1 * 
where D, ( z )  is the Whittaker function. 

Using an asymptotic expansion for D, ( z )  at  z > a  (Ref. 
71, 

Da ( z )  =za exp (- $) , 
we find 
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