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An expression different from that hetertofore known is obtained for the intrinsic-photoeffect 
probability within the framework of a semiconductor model with unequal electron and hole 
effective masses. Allowance for the effective-mass difference leads to the onset of quantum beats 
in the photocurrent. The possibility is demonstrated of increasing the photoeffect probability by 
an exponentially large amount in the presence of an electric field. 

The multiphoton intrinsic photoeffect in semiconduc- 
tors was first considered in Ref. 1. In this and subsequent 
studies, use was made of the effective-mass approximation. 
The validity of using this approximation to describe essen- 
tially multiphoton processes (with absorption of a large 
number of photons) is not obvious and raises serious doubts. 
Principal among them is that to calculate multiphoton ma- 
trix elements in the S-matrix approach it is necessary to 
know the dispersion law far from the mass shell-for large 
imaginary quasimomentum values. Since the effective-mass 
approximation is valid only for small quasimomenta, this 
approximation can lead in the case of multiphoton processes 
to incorrect results. In Ref. 2 and in similar studies the in- 
trinsic multiphoton photoeffect was considered on the basis 
of the Kane dispersion law for the narrow-gap semiconduc- 
tor. The electron-hole pair production probability was cal- 
culated in the adiabatic approximation, and it was assumed 
in addition that the effective masses of the particle and of the 
hole are equal. In real cases these masses are unequal, and 
furthermore the adiabatic approximation cannot be used if 
the electromagnetic field is turned on instantaneously. 

We consider in the present paper the multiphoton in- 
trinsic effect in a two-band semiconductor. The two-band 
semiconductor approximation makes it possible to solve the 
problem without assuming that the particle and hole effec- 
tive masses are equal, and to forgo also the adiabatic approx- 
imation. 

In Sec. I we consider a two-band semiconductor. In Sec. 
2 we find the electron wave functions in electric and electro- 
magnetic fields. In Sec. 3, using the expressions obtained in 
Sec. 2 for the electron final-state wave functions we calculate 
in the S-matrix approach the electron-hole production 
probability per unit time. In Sec. 4 we consider the influence 
of a constant electric field on the probability of the intrinsic 
photoeffect. 

1. INTRINSIC SEMICONDUCTOR 

The electron wave function in the two-band approxima- 
tion 

The Hamiltonian of an electron in a semiconductor is given 
in the two-band approximation by 

AE 1 0 1 0  *.=-[ I+"[ I+'["'], 
2 0 -1 2m 0 1 m p,, 0 

The dispersion law is 

We expand (3)  for small quasimomentum values 

It must be remembered that for a three-dimensional crystal 
the quantities l/m& are tensors 

To describe a semiconductor with a scalar mass, we must 
make the substitution 

Relation ( 7 )  permits the final expressions to be written in 
terms of the measurable quantities my and m:. 

2. ELECTRON WAVE FUNCTIONS IN ELECTRIC AND 
ELECTROMAGNETIC FIELDS 

Electricjield. In the presence of a constant electric field, 
the Hamiltonian of an electron in a semiconductor is 

8= Ho-egx, (8) 

u ,  (x)  and u,(x) are Bloch functions corresponding to bands where 8 is the electric field strength. We seek a stationary 
1 and 2; All the operators acting on u (p) are 2 x 2 matrices. wave function of the Hamiltonian (8)  in the form 
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from band to band is exponentially small. Use of the zero- 
order solution po ( 17) corresponds to a transition to a basis 
of proper wave functions of a two-band semiconductor. Sub- 
stituting ( 17) in ( 11 ) we get The integration contour is chosen to have the integrand tend 

to zero at its end points. The equation for u ( p )  with 
allowance for ( 1 ) ,  ( 2 ) ,  ( 8 ) ,  and ( 9 )  is 

ElectromagneticJield. The Hamiltonian of an electron 
in a semiconductor in the presence of a uniform electromag- 
netic field is 

e 8  
A=lQo ( p " )  , F = p +  - sin o t ,  ( 2 3 )  

o 
Consider the unitary transformation 

where is the electromagnetic field intensity. 
The equation for the quasistationary wave function 9, 

is 

We substitute ( 11 ) in ( 10) and multiply the result from the 
left by U - '  ( p )  = U( - p ) :  

We seek Y, in the form 

Y . = e x p ( f  p z ) u ( p , t ) .  ( 2 5 )  

Using the transformation U ( p ( t )  ) ( 1 1  ), we get 
t 

i 
u , , ~  ( t )  = exp {- 7! E , , ~  (p(tf) )d t t } .  ( 2 6 )  e A 

where H ,  = U( - p ) H , U ( p ) ,  

The condition for the validity of ( 2 6 )  is 

e 8 h  cos a t  < 
I*'" ( AE) Y1 

A E PQ A (a,) ,, = -sin 29 + - cos 2q=- (no)=, ( 14) 2 m 
Electric and electromagneticjelds. The Hamiltonian of 

an electron in a semiconductor in the presence of an electric 
field and of an electromagnetic field is 

cos 2lp - e s i n  2q1)= I?,,,. ( 1 5 )  
2m m 

We determine the function q ( p )  from the diagonalization 
condition of the right-hand side of ( 12): e 8 ,  

8=Ao(p") -e8 ,s ,  p"=p + -sin o t .  
0 

( 2 8 )  
A E P Q  d 

-sin 2q  + - cos 2lp==ie8h - cp. 
2 m dp We seek a quasistationary wave function in the form 

We solve ( 16) by perturbation theory, assuming the right- 
hand side to he small: 

Just as above, we use the transformation U ( p ( p , t )  ). We ob- 
tain an equation for ii,,, ( p , t ) :  

The condition that the discarded terms be small is 

This equation is valid under the condition 

e 8 , h  cos ot+e8,% sin a t  
CL"(AEj" < 1. or, with allowance for ( 7 ) ,  

-- em I <I. 
p''' (AE) Y* 

I t  is necessary to obtain an approximate solution of ( 3 0 )  
such that Y,, goes over into Y, or '4, when one of the fields 
is turned off. This requirement is satisfied by the solution The condition ( 2 0 )  means that the probability of tunneling 
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The condition for the validity of ( 3  1 ) is that the terms dis- 
carded in the solution (30) be small: 

3. MULTIPHOTON IONIZATION 

The calculation of the intrinsic multiphoton photoef- 
fect in a semiconductor differs from the analogous problem 
for systems of the atomic type. In contrast to an atom, where 
the perturbation of the discrete state by the field is negligibly 
small, in a semiconductor the multiphoton transition is from 
a continuum into a continuum (from a band into a band). 
An electromagnetic field perturbs strongly the electron 
states (hole states) in the upper and lower bands. This cir- 
cumstance must be taken into account. 

We assume that the electromagnetic field is turned on 
instantaneously and is instantaneously turned off after a 
time T; the S matrix of such a process is 

x <Ybi ( p ,  t = T )  I Y 1 ( p ,  t = T )  ), (34) 

where the superscript denotes the number of the band. 
The ionization probability per unit time is 

To find the S matrix we must calculate the following inte- 
grals [see Eqs. (3)  and (26) l :  

The integrals (36) differ from their analogs in Ref. 2. In the 
S-matrix approach an electromagnetic field perturbs only 
the final state, so that a time dependence appears in the inte- 
grals (36) only in the expression for the final-state energy. In 
the adiabatic approach the electromagnetic field perturbs all 
the states, in both the lower and upper bands. The time de- 
pendence in the analogous integrals of Ref. 2 appears corre- 
spondingly in all the expressions for the energies, of both the 
initial and final states. This accounts for the difference 
between our final expressions and those of Ref. 2. 

An estimate of J , , ,  with exponential accuracy is ob- 
tained by the saddle-point method. To avoid the difficulties 
connected with the square-root singularity in the exponent 

of (36) [see Eq. ( 3  ) 1, and correspondingly the bypassing of 
the branching points along different edges of the cuts, one 
can replace the integrals along the cut by bypassing the 
branching points on another sheet of the entire Riemann 
surface, on which the integrand is analytic everywhere and 
has no singularities. The saddle points to are determined 
from the equation 

e 8  
p"(t0) = p  + - sin wt,,  

w  

the plus or minus sign corresponds to different sheets of the 
Riemann surface. The condition (27) coincides at the saddle 
point t,, with the requirement 

Calculation of the probability of the multiphoton in- 
trinsic photoeffect for an arbitrary value ofp encounters no 
fundamental difficulties, but in view of the unwieldy expres- 
sions we present the result for only the most interesting 
case-ionication from boundary to boundary of the band, 
i.e., for ~ ' / 2 ~  < AE. We assume that p = 0. We have then 

In the multiphoton limit 

so that we can assume in the calculation of J , , ,  

e 8  . e 8  -sin a t  z - e'"'= 
Zio -a, w  

and then (forp = 0 )  

where 

Finally, 
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where 

This result differs substantially from that obtained in the 
effective-mass approximation 

e 8  1 
x ~xP(.) [ ~ ( E , ( P ) + E ~ ( P ) + ( ~ )  - nhau)]. 

The expressions for the ionization probabilities differ from 
one another by the exponentially large quantity 

The quantities a,,, (44) have the meaning of ponderomotive 
potentials in the valence and conduction bands, and depend 
on the quasimomentum p. We use the smallness of 

and then, retaining the first nonvanishing terms in (44), we 
get 

p, is the quasimomentum projection on the electromagnetic- 
field polarization direction. 

This fact means that, in contrast to the usual case, the 
energy spectrum of the photoelectrons in the valence band 
has, at a fixed electromagnetic-field frequency o, not one 6 
peak whose position is determined from (45), i.e., from the 
relation 

but two peaks separated by a distance SE and having widths 
T(p). The peak positions, SE, and T(p) are given by 

EIs2 ( p )  4-01.2 (P) =*nf io+E2,1(~)~  (49) 

4. FRANZ-KELDYSH MULTIPHOTON EFFECT 

The principal scheme for calculating the probability of 
the photoeffect in an electromagnetic field of intensity 8, in 
the presence of an electric field of intensity 8, (we assume 
for simplicity that the fields are parallel) is the same as for 
the case of multiphoton ionization (Sec. 3). We choose the 
initial-state wave function to be Y, (2 1 ), (22) and the final 
states to be Y,, (29), (32). All the peculiarities of the multi- 
photon processes in a semiconductor can be elucidated with 
the intrinsic photoeffect as the example (Sec. 3). We confine 
ourselves in this section therefore, after indicating the meth- 
od used to calculate the entire energy spectrum, to only one 
problem: we consider the change of the ionization probabili- 
ty by application of an electric field in the case A E  = nCiw. 
The total ionization probability per unit time is 

where J ,  is calculated as in the preceding section. When the 
electric field is turned on the saddle point p, undergoes a 
small shiftp,. The electric field is weak, andp, is determined 
from the equation 

The correction top, - p ,  for the electric field is obtained 
from the equation 

Omitting the unwieldy calculations, we present directly an 
estimate of the exponential correction for the ionization 
probability per unit time following application of the electric 
field 

The value of q5 can exceed unity noticeably. For example, its 
value is -10 in the case 8,=:105 eV.cm-', p =O.lm, 
A E =  leV.and&=O.l eV. 

DISCUSSION OF RESULTS 

It is thus possible to obtain, within the two-band model 
of a semiconductor, an expression for the probability of the 
multiphoton intrinsic photoeffect without using the assump- 
tion that the electron and hole have equal effective masses. 
Nor is it necessary to assume adiabatic turning on (off) of 
the electromagnetic field. We have calculated here the pho- 
toeffect probability for instantaneous application of the 
field. The expression obtained for the probability of the in- 
trinsic multiphoton photoeffect differs noticeably from the 
results obtained in the approximation of equal electron and 
hole masses.' In particular, the values of (46) and of its 
dependence on the effective masses differ substantially. 

Further, allowance for the difference between the effec- 
tive masses of the electron and hole leads to the appearance 
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of two maxima in the photoelectron energy spectrum. The 
distance between the maxima is determined by the difference 
between the ponderomotive potentials of the particle and 
hole. For an electromagnetic-field intensity 8 -- 10" 
eV.cm-' andforp=O.lm,  AE= 1 e V , a n d h = O . l  eV 
we have 6 E z  10 eV. The width of the peaks is SE /n. Con- 
sequently, at a fixed frequency of the perturbing electromag- 
netic field electron-hole states with different energies are co- 
herently excited, and beats of frequency SE/f i  can be 
observed in the photocurrent. It must be noted that this ef- 
fect can be experimentally observed only in thin films of 
thickness smaller than the electron mean free path, and at 
temperatures not higher than 10 K. the constraint on the 
sample temperature is determined from the condition that 
the temperature current be small compared with the photo- 
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current. From our point of view, an experimental verifica- 
tion of the results is of interest. 

An analytic study of the multiphoton Franz-Keldysh 
effect in a two-band semiconductor has shown that the prob- 
ability of the multiphoton photoeffect can increase exponen- 
tially in the presence of a constant electromagnetic field. 

In conclusion, we thank V. A. KovarskiT for a helpful 
discussion. 
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