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A description is given of a method for numerical solution of the problem ofgrowth of a crystal 
with a complex surface profile Mathematical solutions of this problem predict dendritic form of 
growth in the case of a particle which precipitates out of a liquid solution when the 
supersaturation of this solution is high. Cases of different degrees of anisotropy of the kinetic 
coefficient (which can assume different values) and of the surface tension are considered. The 
other problems addressed in the paper relate to the steady-state growth of the tip of a dendrite, the 
influence of the anisotropy of the kinetic coefficient and surface tension on the shape of the 
dendrite core near the tip, and the influence of small random changes in the local growth rate 
("noise") on the evolution of the shape of a crystal as a whole. 

1. INTRODUCTION 2. NUMERICAL CALCULATION METHOD 

Dendritic growth is the most common form of free 
growth of crystals, particularly of metals and other sub- 
stances with a low value of the melting entropy. The solu- 
tions of the diffusion problem of crystal growth admit the 
possibility of steady-state growth in the shape of a parabolic 
needle.'-3 It was shown in Ref. 4 that in the case of a finite 
surface tension a this needle shape is in conflict with the 
boundary conditions. Wave perturbations of the paraboloid 
shape and the appearance of side branches were investigated 
by Langer and Muller-Kr~mbhaar.~'~ It was established in 
Refs. 7-1 1 that if the surface tension a is finite but anisotrop- 

The description of the growth of a crystal from a liquid 
solution will be based on the mathematical solution of the 
diffusion equation 

(where C is the concentration of the diffusant and D is its 
diffusion coefficient) subject to a boundary condition which 
allows for the mass balance at the boundary between the 
phases: 

(c, -c, ) V=D (dcldn).  (2)  . * 

ic, there are steady-state mathematical solutions of the prob- H ~ ~ ~ ,  vis the growth rate, C, is the concentration inside the 
lem of dendrite growth (with aconstantform of the tip and a C, is the concentration in the liquid near the surface 
constant growth rate). Specific growth rates are also pre- of the crystal, and aC /an is the concentration gradient along 
ferred if the kinetic coefficient 0, representing the relation- the normal to the surface. 
ship between the growth rate and the local surface supersa- The local growth rate depends on the local supersatura- 
turation, is an is~ t rop ic . '~ . '~  tion, which is related to the surface curvature K at the point 

There have been few experimental investigations of in question, which follows from the ~ibbs-T~ompson con- 
dendrite growth (see, for example, Refs. 14-1 6 )  the results dition by Herring" to the case of an anisotropic 
of which be wed in a with the surface energy. Therefore, if we describe the growth rate by 
Therefore, there is much current interest in modeling of den- 
drite growth. Calculations reported in Refs. 17-21 showed v = b ( c ~ )  (0s-r (cp)K),  ( 3  
that projections of an initial shape of a crystal are not stable 
but split during growth if the coefficients a and p are iso- we have to allow also for the anisotropy of the kinetic coeffi- 

tropic. However, such initial projections are stable if the co- cient P(p) and of the surface tension a(p).  Here, g, is the 

efficients a and p are anisotropic. The results obtained by the orientation of a Part of the surface 

modeling do not yet reflect the great variety of the experi- (relative to the direction corresponding to the surface ener- 

mentally observed forms of crystal growth. For example, gy maximum)9 
anomalous dendrites with a periodically varying form of the r ( v )  = (a+d2a/dcp2)Q/kT. 
tip are frequently observed. The consecutive crystal profiles R is the volume of a molecule, and a, = ( C, - C, )/C, is the 
found by calculation in Refs. 17, 18, and 21 do not agree with 

relative supersaturation at the selected point on the surface. 
the experimental observations of the splitting of tips.I6 

In describing the anisotropy of the coefficients a and P, we 
In most published simulations of free growth of crystals 

shall adopt the following expressions which are frequently 
the starting point is the Laplace equation rather than the 

employed in theoretical calculations: 
diffusion eauation. We shall attemDt to ~rovide a satisfac- 
tory description of real dendritic growth of crystals by direct a = a o ( l f  E ,  cos 4p ) ,  p=fio(l+e, cos 4cp). 

modeling based on the exact solution of the diffusion prob- consequently, we have 
lem and determination of the whole concentration field de- 
scribing a growing crystal. r ( v )  =ro(l-158, cos 4q) ,  
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where ro = aofi/kT is the capillary length. 
We shall adopt a superposition of grids of two types in 

calculation of the concentration field in different parts of 
this liquid solution (Fig. 1).  In the region of the solution 
near one of the growing projections we shall use a grid based 
on radial rays, similar to that used by us in Refs. 23-25. We 
shall describe the rest of the liquid solution by a grid consist- 
ing of "vertical" lines, which are perpendicular to the polar 
axis of the first grid, and of lines intersecting them and vary- 
ing in shape from the profile of the crystal surface to the 
profile of the boundary of a container of a cell where the 
growth takes place, as the distance from the crystal in- 
creases. Such grids were used by us in Ref. 26 to find the 
temperature fields in a growing single crystal and in a melt. 
Thelines intersecting the "verticals," like the similar lines in 
the radial part, are drawn at intervals that increase in accor- 
dance with an arithmetic progression as we move away from 
the boundary between the phases. The two grids are matched 
along the line ON (Fig. I ) ,  which is the last vertical and the 
first radial ray in the polar grid. 

It is also k n ~ w n ~ ' , ~ ~  that the best method for numerical 
solution of the transport equations in the case of complex 
boundary surfaces involves the use of orthogonal grids 
matched to the surfaces so that certain nodal lines coincide 
with them. Methods for constructing such grids are 
k n ~ w n . ~ ' . ~ ~  They require solution of a large number of alge- 
braic equations. In the case of moving phase boundaries it is 
necessary to modify the grids after each calculation step in 
the time domain, but this requires considerable computer 
time. We used semiorthogonal grids. Since the locations of 
the nodes were limited to radial lines or verticals (Fig. I ) ,  
calculations of the node positions in each time layer were 
made using very simple expressions 

Y (m, n)=YS(m) + (RY(m) 
-YS(m))n(n-i)/(N(N-i)),  

where r(m, n)  and Y(m, n)  are the coordinates of nodes of 
the grid p (m) ,  YS(m) are the coordinates of the nodes on 
the surface of the crystal, R (m)  and R Y(m) are the corre- 
sponding coordinates of the edge of the container (cell) 
where the growth took place, and N - 1 is the number of 
intervals into which the distance R(m)  - p ( m )  or 
R Y(m) - YS(m) is divided. 

FIG. 1 .  Schematic representation of a calculation grid. Here, ON is the 
line of matching ofgrids of two types; A, B, and Care calculation cells used 
in computation of concentrations at the network nodes. 

The same precision of the calculations based on the dif- 
fusion equation was achieved for different grid because an 
increase in the concentration at given nodes during a short 
time interval A t  can be expressed in terms of the flux of mat- 
ter along the boundaries of calculation cells of the type A, B, 
and C shown in Fig. 1. Additional nodes (on the dashed 
lines) are shown near these calculation cells and at these 
nodes the concentration must be calculated first in order to 
determine the fluxes normal to the boundaries. Such orthog- 
onal calculation cells can be used to fill the whole investigat- 
ed region, so that the condition of conservation of the total 
amount of matter is obeyed. At the line matching the two 
grids a specific calculation cell B consists of two parts, one of 
which is rectangular and the other is radial. It follows from 
the calculations that the matching line does not perturb sig- 
nificantly the concentration field. 

The constancy of the density of nodes on the surface of a 
crystal was ensured as follows: a periodic increase of the 
coordinate of a surface, linked to the polar axis, by a definite 
amount BX equal to the distance between the verticals was 
accompanied by transfer of the pole 0 of the radial grid (Fig. 
1 ) by the same distance. Then, a new vertical ONand all the 
radial rays were drawn from there. In this way the whole 
grid and the number of the surface nodes increased with 
time. In our calculations the number of such surface nodes 
reached 55 or 95 for a 90" sector of a crystal. 

3. RESULTS OF CALCULATIONS 

Our calculations were carried out in the case of precipi- 
tation of a single-component crystal from a binary melt con- 
taining 80% of the substance to be precipitated. The diffu- 
sion coefficient D = 2.8 x 10 - cm2/s and the capillary 
length To = 2 . 2 4 ~  lo-' cm corresponded to the precipita- 
tion of tin from a binary metallic melt (for example, Bi-Sn). 

Figures 2a and 2b showed the mathematical solutions 
obtained for the isotropic coefficients a and P ( P = Po = 5 
cm/s) obtained for a circular container where the growth 
took place and a fairly strong supersaturation 
a, = (C, - C, )/Ce = 0.127 (C, = 0.8 is the initial con- 
centration of the liquid solution and Ce = 0.71) assuming 
different degrees of distortion of the initial shape: 
p(6)/R * = 300 + 19 cos 46 for results in Fig. 2a and 
p(6)/R * = 300 + 5 cos 46 for Fig. 2b; here, 6 is the angle 
relative to the polar axis and R * = r,/o, is the radius of a 
critical nucleus. In the case of the adopted supersaturation 
the finite size of the growth container (6400R *)  had no in- 
fluence on crystal growth. During the investigated time the 
initial homogeneous supersaturated concentration field was 
retained far from the crystal. The initial concentration field 
near the crystal was specified in accordance with the results 
of the mathematical solution of the problem of growth of an 
isotropic particle in the size range from 15R * to 300R *. 

Figure 3 shows the dependences of the radius of curva- 
turep, of the tip of a projection growing under surface super- 
saturation conditions and of the growth rate on the size of a 
crystal (R is the distance from the center of the crystal to the 
tip of the projection), which correspond to the mathematical 
solution shown in Fig. 2a. It is clear from Fig. 3 that the 
mathematical solutions obtained are unstable. The degree of 
surface supersaturation and the growth rate decrease mono- 
tonically. The radius of curvature of the tip of a growing 
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FIG. 2. Consecutive profiles of crystals growing in an axi- 
symmetric container, calculated for the case when 
u, = (C, - C,)/C, = 0.127 ( P =  0.055), E ,  = E, = 0, 
Do = 5 cm/s. The profiles 1-5 are calculated for the follow- 
ing times: a)  0, 0.00089, 0.00194, 0.003, and 0.004 s; b)  0, 
0.00091,0.002,0.003 1 ,  and 0.0042 s. 

projection however remains constant in the range of sizes 
from lOOOR * to 1500R *, although the average curvature of 
the region near the initial projection decreases. In the case of 
both initial forms of a crystal corresponding to the math- 
ematical solutions shown in Figs. 2a and 2b the radii of cur- 
vature of the projection tips are approximately the same, but 
all the profiles in Fig. 2b are distorted as a whole (though 
relatively weakly). The subsequent profiles (also shown in 
Figs. 2a and 2b) are almost symmetric, although different 
grids were used by us for different regions of the diffusion 
zone. In the case of the weakly distorted form (Fig. 2b) the 
asymmetry is slightly less (down to 4% of the last profile). 
This case is characterized by a stronger mutual influence of 
the form and concentration profile, resulting in a higher 
growth rate of the more developed projection. 

In contrast to the calculations valid in the range of low 
super saturation^,"^^' based on the Laplace equation, in our 
case (Fig. 2)  an increase in the size of a crystal results in 
preferential growth not of eight but of twelve projections. 
Then, stabilization of the values of the radius of curvature of 
the tips of the initial projections in the range of sizes from 
lOOOR * to 1500R * is clearly related to the development of 
new bent parts of the surface, representing a new harmonic 
(namely the third characterized by k = 12) of the wave-like 
distortion of the shape. 

Figure 4 shows the dependences of the radius of curva- 
ture p, of a growing tip on the values of the parameters E ,  

and E * ,  which represent the anisotropy of the coefficients a 

andfl for the mathematical solutions obtained assuming the 
other parameters to be exactly the same as those used to 
obtain the results in Fig. 2a (crystal size 1500R *). It is clear 
from Fig. 4 that the dependence of p, on the values of the 
parameters E ,  and c2 is monotonic. The dependence has no 
singularities in the limits E ,  -0 and E,  -0. For all the math- 
ematical solutions obtained in the investigated range of sizes 
( 1500R * ) the rate of growth decreases monotonically. 

The feasibility of steady-state growth when the concen- 
tration field is artificially kept in a steady state was tested by 
obtaining mathematical solutions for a lower degree of su- 
persaturation (u, = 0.0666) when the size of the growth 
container is increased along the polar axis. At the edge of this 
container in the "polar" region the supersaturation is as- 
sumed to have the initial value. Figure 5a demonstrates con- 
secutive profiles of the crystal for this solution obtained sub- 
ject to the isotropy of the coefficients a and fl. Figure 5b 
represents the solution for the anisotropic coefficient a. In 
the case of the solution with the isotropic coefficients the 
radius of curvature of the projection tips increases slowly 
(Fig. 6) and its change in the range of sizes from lOOOR * to 
2000R * represents no more than 10% of the average value 
250R *. The solution with the anisotropic surface tension 
(Fig. 5b, E ,  = 0.04) is nearly steady-state. In this case in the 
same range of sizes the deviations of the radius of curvature 
of the tip from the average value 84R * do  not exceed 1 % and 
changes in the rate of growth are also small (Fig. 6) .  

Several mathematical solutions were obtained for a 
high value of the kinetic coefficient f l ,  = 250 cm/s and they 

FIG. 3. Dependences of the relative value of the surface supersaturation 4 qo4 qo2 qo2 4 406 ' 1  
AC,,, = (C, - C, ) /(C_ - C , ) ,  of the growth rate V,,, = V,/R *, and of 
the relative value of the radius of curvature p,/R * of the tip of a growing 
projection (curves 1.2, and 3, respectively) on the size of a crystal (mea- FIG. 4. Dependences of the relative value of the radius of curvature 
sured in terms of distances from the center of the crystal to the tip of a ptlR * of the tip of a projection (curves 1 and 2 )  and of the quantity 
projection), plotted on the basis ofthe mathematical solution presented in 0, = 2DT/p: V (curve 3 )  on the values of the anisotropy parameters E ,  

Fig. 2a. and E ~ ;  p =  Do = 5 cm/s. 
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b 
FIG. 5. Consecutive profiles of crystals in a container of 
increasing size, calculated for 0= 8, = 25 cm/s, 
om = 0.0666 (P=  0.023): a )  E ,  = E, = 0, profiles 1-8 
correspond to times t = 0, 0.0027, 0.0063, 0.01, 0.017, 

u 0.025,0.032, and0.039 s; b)  E ,  = 0.04, E, = 0, profiles 1- 
7 correspond to times t = 0, 0.0028, 0.0065, 0.01, 0.018, 
0.026, and 0.033 s. 

were characterized by random changes ("noise") of the rate 
of motion of surface nodes, representing about 20% of the 
average value. Figures 7a and 7b showed two such math- 
ematical solutions for the anisotropic coefficients 0 and a, 
respectively. An increase in the crystal size results in this 
case in an initial development of 12 and then of 20-24 projec- 
tions. The growth shape is highly unstable if the surface ten- 
sion is anisotropic. Figure 7b shows periodic changes in the 
tip shape (corresponding to very large changes in the radius 
of curvature of the tip p, 1. On the whole, this pattern of 
evolution of the shape of the crystal resembles the growth of 
anomalous dendrites described in Ref. 15. 

The tip shape predicted by the mathematical solutions 
obtained assuming that the coefficients a and0 are isotropic 
differs only slightly from the parabolic profile. For example, 
in a region of size 2p, adjoining a tip the profile 8 of Fig. 5a 
can be described satisfactorily by a parabola with a focal 
parameterp = 300R *. The computer-calculated value ofp, 
for this profile is 270R *. The deviations of the tip profile 
from a parabola increase on increase in the parameters E ,  

and E, , representing the anisotropy of the coefficients a and 
0. For example, in the case of the profile 7 in Fig. 5b, we have 
p, = 85, whereas a parabola approximating on the average 
satisfactorily this tip has a focal parameterp = 150R * (for a 
perfect parabola it should be p = p,  ) . 

4. DISCUSSION OF RESULTS 

It follows from the calculations of Ref. 21 that in the 
case of a sufficiently large crystal which has specified initial 
distortions corresponding to one wave number k = 4 (four 
projections) the growth is accompanied by the development 
of higher harmonics of the wave distortion of the shape 
(these are the second, third, and fourth harmonics charac- 
terized by k = 8, 12, and 16). Since in the case of the third 
and fourth harmonics the amplitudes of these distortions 

FIG. 6. Dependences of the relative growth rate V,, = V, /R * (curves 3 
and 4) and of the relative radius of curvature of the tip p , / R  * (curves 1 
and 2) of the main projections on the crystal size; curves 1 and 3 corre- 
spond to the profiles in Fig. 5a, whereas curves 2 and 4 correspond to the 
profiles in Fig. 5b. 

grow slowly, in the range of sizes from lOOOR * to 2000R * 
the splitting of the initial projections produces a shape with 
eight projections, corresponding to the strongest develop- 
ment of the second harmonic. In our calculations the shape 
with eight projections is intermediate and is obtained only 
for the mathematical solutions describing the case with a 
small initial distortion amplitude (Fig. 2b). The initial pro- 
jections are then retained and there is no splitting. The rea- 
son for this is clearly the difference between the concentra- 
tion fields obtained by solving the Laplace equation and 
those based on the diffusion equation. If a concentration 
field ensuring a better supply of matter to the projections is 
established in the course of growth, the "memory" of the 
initial concentration field may ensure that these projections 
are retained and grow preferentially during the subsequent 
stages. 

In the two-dimensional case it is practically impossible 
to establish experimental conditions which would corre- 
spond to the mathematical solution of the Laplace equation. 
One would need to ensure very weak supersaturations in a 
very large container, because (in the view of the low growth 
rate) the region or the zone of the influence of a growing 
crystal as a result of diffusion becomes very large for a small 
increase in the size of the crystal. Photographs of ice crystals 
of individual projections undergoing splitting16 suggest that 
random splitting is more likely. Such splitting is not related 
precisely to tips of the projections and after splitting the pro- 
jection profiles are on the whole conserved, remaining simi- 
lar to the profiles shown in Fig. 5a. However, according to 
the calculations of Refs. 17 and 21, the splitting of the initial- 
ly present projections is a consequence of slow evolution of 
the whole profile of a crystal. 

The dependences of the radii of curvature of tips of the 
projections on the parameters E ,  and E,  (Fig. 4 )  have no 
singularities in the limits E ,  -0 and E, -0, whereas accord- 
ing to Refs. 7-13 there are no steady-state mathematical so- 
lutions of the problem of growth by diffusion when the coef- 
ficients a and p are isotropic. Our calculations allow us to 
follow the development of the profile of a growing crystal 
also when the coefficients a and 0 are isotropic. The solu- 
tions presented in Figs. 2-4 are not in conflict with the theo- 
retical predictions of Refs. 7-13 because they apply to the 
initial unsteady stage of growth. A recent paperz9 reported a 
rigorous calculation of the dependence of the criterion 
a, = 2DI'/p: V, which governs the selection rule applicable 
to the mathematical solutions with specific values of p, and 
V, on E ,  ; this dependence was obtained for two values (0 and 
0.25) of a number P = p, V/2D, which is a function of the 
supersaturation and governs the relationship betweenp, and 
Vwhen the growth shape is a paraboloid or a parabola.'." It 
follows from this dependence that a,, -0 when E ,  40 .  Con- 
sequently, if P is not equal to zero we find that 
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FIG. 7. Consecutive profiles of a crystal calculated for 
P = 0.023 and 8, = 250 cm/s: a )  E ,  = 0, E, = 0.15, pro- 
files 1-8 correspond to times t = 0, 0.0027,0.0063, 0.01, 
0.017,0.025,0.032,and0.039s;b) E ,  =0.01, E, =O,pro- 
files 1-7 correspond to times t = 0, 0.0027, 0.1, 0.17, 
0.025,0.032, and 0.039 s. 

p, = T/(Pap)  - in the limit E ,  4 0 .  In our solutions the 
tip radius p, is finite not only for the unstable solutions 
(Figs. 2-41, but also for the solutions in which the concen- 
tration field approaches the steady-state form (Fig. 5 ) . 

The theoretical treatments reported in Refs. 7-13 deal 
with the growth forms or shapes differing from a parabolic 
needle only in the vicinity of the tip of a crystal. In fact, only 
very anisotropic crystals grow to form needles. If the anisot- 
ropy of the coefficients a and/?is low, branched or dendritic 
crystals are formed. The region adjoining the tip of a den- 
drite is subject to wave distortions of the shape and these are 
responsible for the appearance of the side branches. 

The value a, = 0.025 proposed in Ref. 6 was found as- 
suming steady-state growth of a paraboloid with a periodi- 
cally perturbed shape. Our mathematical solutions are in 
qualitative agreement with this earlier estimate 
(a, = 0.01-0.014 for the isotropic solutions characterized 
by different values of/?), although we are dealing with two- 
dimensional rather than three-dimensional growth. An in- 
crease in the degree of anisotropy increases a, (curve 3 in 
Fig. 4). In the case ofthe solutions shown in Fig. 5b, we have 
a, = 0.1, which is in agreement with the calculations report- 
ed in Ref. 29. 

If the coefficient a or /? is strongly anisotropic, the re- 
gion of wave distortions of the shape seems to move away 
from a tip (Fig. 5b) and there is an increase in the ratio of the 
wavelength ( A )  of distortion of the growth profile to the 
radius of curvature of the tip. Under these conditions it is 
physically meaningful to compare the results of calculations 
and the theory of growth of a parabolic needle. If the anisot- 
ropy of the coefficients a and /? is low or if there is no such 
anisotropy, the ratio A /pi is considerably less (Fig. 5a). 
Therefore, the mutual influence of the newly formed wave- 
like distortions of the surface profile near the tip and of the 
profile of the tip itself becomes important. Periodic appear- 
ance of new projections or inflections of the surface at a short 
distance from a tip may give rise to periodic changes in the 
tip curvature. An increase in the total number of projections 
in the profile of a crystal can be regarded also as the result of 
motion of a wave from regions where initially the parts of the 
surface lag behind (and the distortion amplitude is maxi- 
mal) toward the tips of the projections. If such a wave 
catches up with a tip, the growth of the latter becomes un- 
steady. 

Several mathematical solutions illustrate in Fig. 8 the 
changes which occur on increase in the quantity 
P, = p, V, /u ) ,  representing the calculated values of the cur- 
vature of a tip and of the rate of its growth (i.e., the calculat- 
ed values of the number P) .  It is clear from this figure that 
the mathematical solution characterized by an anisotropic 
value of the coefficient a (curve 2, corresponding to 

/? = Po = 25 cm/s) becomes practically steady on increase 
in the crystal size. On the other hand, the mathematical solu- 
tion obtained for isotropic coefficients (curve 3) is oscilla- 
tory. Such oscillatory growth is unsteady (which is not in 
conflict with the theory), but the radius of curvature of the 
tip no longer becomes infinite. This radius is finite and it 
varies periodically. If such periodic variations are relatively 
slight, they may not be detected experimentally. 

We can see from Fig. 8 that the mathematical solution 
with an anisotropic coefficient /? (curve 4) and a high value 
of the "noise" of the local growth rate is also of unsteady 
oscillatory nature. In the case of an analogous mathematical 
solution shown in Fig. 7b (with an anisotropic coefficient a)  
the changes in the value of PI are so large that they cannot be 
fitted into this figure. Such mathematical solutions are char- 
acterized also by a rapid growth of harmonics of wave per- 
turbation of the form corresponding to a large number of 
projections. The development of higher-order harmonics is 
naturally associated with the "noise" level, since the rate of 
increase of their amplitude increases with the amplitude it- 
~elf.*~.~O When the "noise" level is high, the starting values 
of the amplitudes of all the harmonics that can grow are also 
high. 

In principle, noise is always present in numerical solu- 
tions. It follows from our solutions that the noise level in- 
fluences the evolution of the shape of a crystal. However, in 
the mathematical solution for an infinitely large coefficient 
/? but a low noise, when the surface concentration is in equi- 
librium for a given curvature of the surface and growth rates 
are found from the condition of balance of matter at the 
phase boundary, the accelerated growth of higher harmonics 
of distortion of the growth shape is no longer observed. 

The question arises whether the noise associated with 
the effects of some real physical factors, such as fluctuations 

FIG. 8. Dependences of the values of the number P, = p, V,/2D on the 
sizeofcrystals; the curvescorrespond to the following patterns: 1 ) Fig. 2a; 
2 )  Fig. 5b; 3)  Fig. 5a; 4) Fig. 7a. 
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of the temperature or contributions of transient convective 
fluxes on the transport of heat or matter, can influence the 
development of the shape of a crystal. It seems to us that 
such an influence does indeed exist. There is no other reason- 
able explanation of the formation of anomalous dendrites 
described in Ref. 15. However, in such cases the noise should 
be regarded as a real technological factor and a comprehen- 
sive analysis of its influence would be desirable. 

The author regards it as his pleasant duty to thank E. A. 
Brener and 0. P. Fedorov for discussing formulation of the 
problem. 
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