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The ground-state energy of two-dimensional Cu-0 clusters consisting of 8 and 12 atoms with 
various occupation numbers is calculated numerically through an exact diagonalization of the 
Emery Hamiltonian. It is shown, for the first time, that there is an effective attraction not only for 
holes [J. E. Hirsh et al., Phys. Rev. B 39,243 ( 1989) ] but also for electrons in these clusters, over 
a wide range of parameter values. The stability with respect to phase separation is analyzed. The 
occupation numbers are calculated for the copper and oxygen orbitals. The spin-spin and density- 
density correlation functions are also calculated. The nature of the disruption of the 
antiferromagnetic order in the case of an electron doping is the same as in the case ofa hole 
doping: The addition of one electron (or hole) to the insulating state causes a far greater 
disruption of the antiferromagnetic order than is caused by the subsequent addition of a second 
electron (or hole). The apparent reason for the attraction of two electrons is, as for holes, a 
decrease in the size of the regions in which the antiferromagnetic order is disrupted (and a 
corresponding lowering of the energy of the system) in the case in which the excess electrons (or 
holes) are close to each other. 

INTRODUCTION 

Bednorz and Miiller's discovery of high T, supercon- 
ductivity' spurred many suggestions regarding the mecha- 
nism for superconductivity in the high T, superconductors. 
The high T, values and the small isotope effect2 have stimu- 
lated very active research on various nonphonon pairing 
mechanisms. The most popular one today is the Emery mod- 
el,3 which incorporates strong electron correlations in the 
high T, superconductors. Since CuO, planes are a common 
structural element of all known high T, superconductors, 
the usual approach has been to consider only the two-dimen- 
sional model: 

where the operators d ,I and p,f, create a hole in the states 
dx2 - yl and p, , p,, respectively; (ik ) means a summation 
over nearest neighbors ( i  specifies copper sites, and k oxygen 
sites); n,, = d ,Td,,; n,, =p&p,,; t is the copper-oxygen 
hopping matrix element; c = E, - E ,  is the difference be- 
tween the energies of a hole at copper and oxygen sites; and 
U,, Up, and V are the Coulomb repulsion energies of the 
holes at copper sites, oxygen sites, and between the two, re- 
spectively. To go over from the hole representation to the 
electron representation in ( 1 ), we should renormalize the 
parameter E, leaving the parameters t ,  U,, Up, and V un- 
changed. 

Even in this simplified form (hops to next-nearest sites, 
direct oxygen-oxygen hops, etc., are ignored), Hamiltonian 
( 1) is exceedingly difficult to analyze theoretically. The pri- 
mary difficulty stems from the large value U, = 6-10 
eV,t,- 1 eV (Refs. 4 and 5 ) ,  which rules out dealing with 
Coulomb correlations by perturbation theory. On the other 

hand, U, is not large enough that one can use the various 
reduced Hamiltonians which can be found from ( 1 ) by ex- 
panding in the parameter t /U, (see the discussion of this 
question in Ref. 6 for the two-dimensional Hubbard model). 
Furthermore, it is not possible to carry out an expansion in 
the parameter t / E  (Refs. 7-9), since we have4r5 ~ z t .  The 
large scatter in the values which have been reported for the 
parameter Up (0.7-5 eV; Refs. 4 and 5 )  and also for the 
parameter V (0-4 eV; Refs. 4,5, and 10) clouds the choice of 
parameters for Hamiltonian ( 1 ) with considerable uncer- 
tainty, and this uncertainty can only complicate the prob- 
lem. The absence of exact solutions of the Emery model and 
the difficulties which arise in attempts to find reasonable 
simplifications of it lead to the use of various untestable ap- 
proximations, which frequently detract from the results. Be- 
cause of this situation, there has recently been increased in- 
terest in numerical simulation of the electronic structure of 
small clusters of high T, superconductors; such simulations 
can provide exact results in several cases. 

In this paper we are reporting a stuby of the ground 
state of the Emery Hamiltonian in two-dimensional Cu-0 
clusters for various carrier densities by an exact diagonaliza- 
tion method. It has been found that the binding energy of the 
excess carriers added to the system during doping is negative 
over a wide range of the parameter values of the model, re- 
gardless of whether these excess carriers are holes or elec- 
trons. In the case of a hole doping, a negative binding energy 
corresponds to an effective attraction of the holes, while in 
the case of an electron doping it corresponds to an effective 
attraction of the electrons. We show that Hamiltonian ( 1 ) 
has a sort of electron-hole symmetry: a symmetric disrup- 
tion of antiferromagnet correlations in the copper sublattice 
during hole and electron doping. On the basis of results cal- 
culated on the spin correlation functions, it is suggested that 
the reason for the attraction of electrons is, as for holes," a 
decrease in the size of the region in which the antiferromag- 
netic order is disrupted (and in which the energy of the sys- 
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tem is correspondingly lowered) in the case in which t ~ i  
excess electrons (or two excess holes) are close to each otn- 
er. In Sec. 1 we briefly describe the exact diagonalization 
method and specify the Cu-0 clusters to which it can be 
applied. In Sec. 2, the Emery model is used to study the 
effective attraction of holes, and in Sec. 3 it is used to study 
the effective attraction of electrons. Effects which stem from 
the finite number of atoms in the clusters are examined in 
Sec. 4 for the particular case of the one-dimensional Hub- 
bard model ( a  comparison is made with the exact analytic 
solution in the thermodynamic limit). The results are dis- 
cussed in Sec. 5. 

1. FORMULATION OF THE PROBLEM; THE EXACT 
DlAGONALlZATlON METHOD 

Numerical studies of the Emery model generally use the 
Monte Carlo method and the exact diagonalization method. 
The Monte Carlo method is capable of dealing with compar- 
atively large clusters, of Nu = 50-100 atoms,'' but the accu- 
racy of the calculations falls off sharply with decreasing tem- 
perature, with the result that the most interesting case, 
T S  T, -- 100 K, cannot be studied. The exact diagonaliza- 
tion method is free of that shortcoming: It can be used to 
study both the ground state ( T = 0 )  and excited states of the 

I.IS-o The weak point of the exact diagonalization 

method is the limitation which is imposed on the size of the 
clusters by the memory size and the speed of existing com- 
puters. Nevertheless, one might expect that it would be suffi- 
cient to deal with clusters with No k 10 in order to reach a 
qualitative understanding of the properties of systems with 
strong correlations and with a coherence length comparable 
to the interatomic distances. Caution is advised in using the 
exact diagonalization method, since the results may depend 
on the particular choice of boundary conditions and on the 
particular value of No.  

Figure 1 shows Cu-0 clusters whose ground state has 
been studied in several p l a ~ e s l ' . ' ~ - ~ ~  for various values of the 
parameters of Hamiltonian ( 1 ). Of these four clusters, only 
one, C, with Nu = 12, has the symmetry of a CuO, plane and 
is compatible with periodic boundary conditions. The Cu-0 
cluster which is next in size, which has a square symmetry, 
contains No = 24 atoms." The corresponding M x M Ham- 
iltonian matrix is too large for the use of the exact diagonali- 
zation method (even in an undoped state with N = 8 holes, 
we have M >  10'). We accordingly restrict the study to clus- 
ters A and C. For cluster C we use periodic boundary condi- 
tions, while for cluster A we use free boundary conditions. 
The latter approach is equivalent to using periodic boundary 
conditions for a (CuO), chain. 

The vacuum for Hamiltonian ( 1 ) is the electronic con- 
figuration' Cu3d I002p6 (CU + O2 - valence state). In the 
undoped insulators La, CuO, and YBa, Cu, 0, _ , with 
S > 0.5, there is one hole per copper atom in the CuO, plane 
(the Cu3d 902p6 electronic configuration; the Cu2 + O2 - va- 
lence state). It is thus necessary to choose E > 0 in ( 1 ). Dop- 
ing ( a  partial substitution of Sr2 + for La3 + in La, CuO, and 
a decrease in the oxygen deficiency in S in YBa, Cu, 0, _, ) 

increases the hole density in the CuO, layers (this is hole 
doping). It has been shown e~perimentally~'-~'  that "new" 
holes predominantly fill oxygen orbitals ( 3d 9L, Cu2 + 0 ). 
The reason lies in the large value of U,, which makes states 

FIG. 1 .  The clusters used in the exact diagonalization of the Emery Ham- 
iltonian. The numbers of atoms in the clusters are N,, = 8.9, 12, and 16 for 
A ,  B, C, and D, respectively. C C o p p e r  atom; 0-oxygen atom. 

with two holes at copper sites unfavorable from the energy 
standpoint. A different situation arises in the compound 
Nd2Cu04 upon a partial substitution of Ce4+ for Nd" 
(Refs. 24 and 25) or of F- for O2 - (Ref. 26): The number 
of holes in copper orbitals decreases, while the oxygen orbi- 
tals remain vacant. A decrease in the number of holes is 
equivalent to an increase in the number of electrons (this is 
electron doping). 

According to the discussion above, the number of holes 
in undoped Cu-0 clusters, N, is equal to the number of cop- 
per sites, Ncu . For cluster B (Fig. 1 ) we have N,, = 2, while 
for clusters A ,  C, and D we have Nc, = 4. An increase (de- 
crease) in N corresponds to hole (electron) doping of the 
CuO, plane. By studying the ground state of Hamiltonian 
( 1 ) for various values of N one can trace the changes in the 
electronic characteristics of the system (the occupation 
numbers, the correlation functions and so forth) during 
both hole doping ( N >  N,, ) and electron doping ( N  < N,, ). 

The interaction of excess holes is characterized by a binding 
energy (Ref. 11, for example) 

where E ( N )  is the energy of the ground state of a cluster 
with N holes. The case A,, < 0 corresponds to an attraction 
of two excess holes, while the case A, > 0 corresponds to a 
repulsion of these holes. Along with A, we consider the 
electron binding energy 

a value A, <O corresponds to an attraction, and a value 
A, > 0 to a repulsion, of two excess electrons. It follows from 
these definitions that a negative value of Ah (A,) corre- 
sponds to a situation in which it is favorable from the energy 
standpoint for the two excess holes (electrons) to be beside 
each other-within the region bounded by the dimensions of 
the cluster. In order to distinguish an attraction of holes 

134 Sov. Phys. JETP 72 (1). January 1991 Elesin eta/. 134 



TABLE I. The linear dimension M of the Hamiltonian matrix of the Cu-O clusters for various 
values of No (the number of atoms in the cluster), N (the number of holes), and S, (the projec- 
tion of the total spin). 

N a I h ' s z l  &f N ~ I I s z I  &f 

(electrons) from their condensation in real space, we should 
verify that the stability condition dp/dN> 0 holds ( p  is the 
chemical potential). In other words, the addition of a third, 
fourth, etc., hole (electron) to the same spatial region (clus- 
ter) should be disadvantageous in terms of energy. It is thus 
necessary to test the satisfaction of the conditions 

Al, = E(Ncu + E(Ncu + 3) 

- E(Ncu + 2) 

-E(Ncu + 1 ) > 0 ,  

A;: = E(Ncu) + E(Ncu + 4) - 2E(Ncu + 2) > 0  

AY=E(Ncu + 1) +E(Ncu +3)-2E(Ncu + 2 ) > 0 ,  

etc., for holes and the corresponding conditions for elec- 
trons: 

A: = E(Ncu + E(Ncu - 3) 

- E(Ncu - 22) 

-E(Ncu - 1 ) > 0 ,  

A: = E(Ncu ) + E(Ncu 4) - 2E(Ncu - 2) > 0  

AT = E(Ncu - 1) + E(Ncu - 3) - 2E(Ncu - 2) > 0 ,  

etc. Since the dimensions of our clusters and the permissible 
number of carriers in them are small, we restrict the study to 
the conditions actually written out here. Since we have 
A" = A' - A, under the conditions A' > 0 and A < 0, we au- 
tomatically have A" > 0 for both holes and electrons. 

We have carried out a systematic study of A,, , A;, , A;,', 
A,, A;, and A:,' for - 2 g ~ g 4 ,  O<Ud<20, O<Up<8, and 
0< V<4. Here and below, all quantities with the dimension- 
ality of an energy are expressed in units of t f t = 1). Our 
results on A, and Al, agree with results found by other inves- 
tigatorsii.'5-'9 for various values of E ,  Ud, Up, and Vin the 
specified region of parameter values. To the best of our 
knowledge, there has been no previous study of electron dop- 
ing in the Emery model. These are also the first calculations 
of A;. 

At fixed values of N = N t + N1 ( N  t and Nl are the 
numbers of holes with spins, respectively, up and down) and 
of the projection S, = (1/2) ( N  t - N1) of the total spin, 
the linear dimension M of the M X M Hamiltonian matrix 
which is to be diagonalized is equal to the number of meth- 
ods by which N holes can be distributed among N, sites un- 
der the restriction of the Pauli principle: M = C ;"'C ;:. Ta- 
ble I shows M for several values of N,, N, and S, (we are 
interested in the smallest possible values for the given value 
of N, i.e., S, = 0 for even Nor S, = 1/2 for odd N, since these 
values correspond to a minimum ground-state energy of the 
Emery Hamiltonian in the clusters under consideration 

here). With the exception of the nine-site cluster ( B )  the 
dimensions of the matrices are such that a complete diagona- 
lization is not possible (it is not possible to find all the eigen- 
values and eigenvectors). Incorporating the symmetry un- 
der translations and reflections reduces M by a factor of only 
a few units and thus does not solve the problem. One way out 
of the difficulty is to make use of the sparse nature of the 
matrices and to use the Lanczos method,27 which makes it 
possible to find the smallest eigenvalue and the correspond- 
ing eigenvector (or eigenvectors, in the degenerate case). In 
our problem, this eigenvalue and this eigenvector corre- 
spond to the ground state of Hamiltonian ( 1 ). 

In the present study we have used an iterative Lanczos 
algorithm. The dimensionality (m) of the Krylov subspace 
for the various values of the parameters of the problem and 
of M was varied over the interval 20 < m < 50. For the most 
part, the calculations were carried out for m = 20; this value 
leads to a relative error of 10 - after two to five iterations. 
Where the convergence was slow (taking ten or more itera- 
tions), an increase in m from 20 to 50 made it possible to 
reduce the overall computation time by a factor of five to ten. 

FIG. 2. The hole binding energy A, versus U, in an 8-site cluster. a- 
Up = V =  O; b--E = 1, V =  O; C-E = 1, Up = 0. 
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FIG. 5. Phase diagram of an 8-site cluster ( E  = 1, U,, = 0).  Contour lines 
of (solid line) A,, = 0, (dashed line) A;, = 0, and (dot-dashed line) 
A;: = 0. Region I-Repulsion; 11-attraction; 111-instability, 

FIG. 3. The same as in Fig. 2, for a 12-site cluster. 

2. EXCESS HOLES IN THE EMERY MODEL 

Figures 2 and 3 show the hole binding energy A, versus 
U, in clusters A and C for various values of&, U p ,  and V. This 
binding energy is negative, A, <O, in the case U p  = V = 0 
with E 5 3; the absolute value IA, I increases monotonically 
with increasing U, (and then becomes constant at U, k 20). 
At a fixed value of U,, it goes through a maximum at E =: 1-2. 
A further increase in E changes the sign of A ,  at E Z  3-4. In 
clusters A and C, A, becomes positive at Up ~ 0 . 3  and 0.8, 
respectively. The apparent reason for the increased sensitiv- 
ity of A, to Up in the eight-site cluster is the higher popula- 
tion of the oxygen orbitals in that case. 

At U, k 2, an increase in V leads to large negative values 
of the binding energy, and it also results in an instability: 
Al, <O and/or A;: < 0. Figure 4 illustrates how all three pos- 
sible states of the system are realized in succession as V in- 

FIG. 4. A,, A;, and A: versus Vin an 8-site cluster with E = 1, U, = 8, 
and Up = 1. Region I-Repulsion; 11-attraction; 111-instability. 

creases: a repulsion (A ,  > 0 )  an attraction ( A ,  < 0,  Al, > 0 
and A: > O ) ,  and an instabilit;~ ( A ,  < 0,  A;, < 0 or A: < 0 ) .  
The phase diagram in Fig. 5 shows the regions of the various 
states for E = 1 ,  Up = 0, 0( Ud (10, and 0( V(4.  The pa- 
rameter values were deliberately chosen to be the same as in 
Ref. 1 1 ,  where the single condition Al, > 0 was used as a 
stability condition. We see that incorporating the condition 
A: > 0 does no more than cause a very slight contraction of 
the stability region. The same result (a  nearly simultaneous 
change in the signs of A;, and A;,') was found at other values 
of E and Up.  

3. EXCESS ELECTRONS IN THE EMERY MODEL 

Certain mechanisms which have recently been pro- 
posed for the superconductivity of the high T, superconduc- 
tors lean heavily on the assumption that the pairing is of a 
hole nature (see, for example, Ref. 28).  On the other hand, 
we know of high 7; superconductors (Nd, _ , Ce, CuO,, 
etc., with T, ~ 2 5  K )  in which the carriers are electrons rath- 
er than  hole^.^^.*^ It is thus tempting to attempt to explain 
the "hole" and "electron" versions of high T, superconduc- 
tivity in a common model. Our numerical calculations of the 
electron binding energy A ,  in Cu-0 clusters show that it is 
possible to find an attraction of not only holes ( A ,  < 0 )  but 
also electrons ( A ,  <O) at the same parameter values in 
Hamiltonian ( 1 ). 

Figures 6 and 7 show A, versus U ,  in clusters A and C 
for various values of E ,  U p ,  and V. The binding energy is 
negative, A ,  <O, at Up = V = 0 with E S 2. In contrast with 
the case of a hole doping, [ A ,  I does not increase monotoni- 
cally with increasing U,. It instead goes through a maxi- 
mum at U, = 4-10, depending on the &. For electrons, the 
optimum values E = 0-1 are slightly smaller than those for 
holes. The change in the sign of A, occurs at Up ~ 0 . 2  and 0.4 
in clusters A and C, respectively. The value of A, is very 
sensitive to the parameter V (Figs. 6c and 7c). We find 
A, 7 0 at large V, in contrast with A,.  Interestingly, the state 
corresponding to an attraction of electrons is always stable: 
A: > and A: > 0. We thus see that only two situations arise 
during electron doping: a repulsion (A,  > 0 )  and an attrac- 
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FIG. 6 .  The electron binding energy A ,  versus U, in an 8-site cluster. a- 
Up = V=O; b-E= 1 ,  V=O;c-E= 1 ,  Ul, = O .  

tion ( A ,  < 0, A: > 0 and A: > 0 ) .  Figure 8 shows a phase 
diagram for electrons in comparison with that for holes. We 
see that the region of attraction for the electrons is smaller 
than that for the holes. 

4. ONE-DIMENSIONAL HUBBARD MODEL; COMPARISON 
WITH EXACT SOLUTION 

A crucial question is how the cluster size affects the 
results of the numerical analysis. We would like to compare 
the cluster calculations with analytic results in the limit 
N, - cc in the example of some model which is amenable to 
exact solution in the thermodynamic limit. One such model 
is the one-dimensional, one-band Hubbard model with hop- 

FIG. 7. The same as in Fig. 6, for a 12-site cluster. 

FIG. 8. Phase diagram of a 12-site cluster ( E  = 1 ,  Up = 0 ) .  I-A, <O, 
A, < 0; 11-A, < 0, A,. > 0; 111-A,, > 0, A, > 0. 

ping only to nearest sites.29 The corresponding Hamiltonian 
is 

where C i;: ( C ,  ) is assumed for definiteness to be the elec- 
tron creation (annihilation) operator. 

We are interested in the energy E ( N )  of the ground 
state of Hamiltonian (2)  for the case of a half-filled band or 
an approximately half-filled band, with N =  No ,  N,  - 1, 
and N, - 2 electrons in a chain. Since the ground state of 
Hamiltonian ( 2 )  is antiferromagnetic with S, = 0, we con- 
sider chains with even numbers of sites: No = 4,6, 8, and 10, 
withS, = 0 for even Nor  S, = 1/2 for odd N.  The maximum 
linear dimension of the M X M  Hamiltonian matrix is 
M = 63 504, for Nu = 10, N = 10, and S, = 0. In all cases, 
periodic boundary conditions were used. The energy is ex- 
pressed in units of t ( t  = 1 ) .  Figure 9 shows the binding 
energy 

versus U for 0& U< 100. Using the expression derived in Ref. 
30 for the energy of the ground state ofa Hubbard chain with 
Nu - L electrons, we find A = 0 for all U in the limit 

Nu - Consequently, A vanishes in the thermodynamic 
limit, despite the circumstance that we have A < O  for 
O< U S  10 in chains with Nu = 4  and 8 (Fig. 9 ) .  For 
0 < U S  20, the function A(N, ) is oscillatory. These oscilla- 
tions show that A is highly sensitive to the size of the cluster. 

At Uk 40, this oscillatory dependence of the electronic 
characteristics gives way to a monotonic dependence. Figure 
10 shows A as a function of No for U =  100. We see that an 
extrapolation of the binding energies calculated for Nu < 10 
to No - cc leads to zero, in agreement with the exact solu- 
tion. For U = cc , the problem can be solved exactly for any 
N, : A = 8 sin2(n-/2N, ) . 

In the one-dimensional Hubbard model, there are thus 
two types of A(Na ) dependence, for various values of U: an 
oscillatory dependence and a monotonic dependence. In 
each case we have A = 0 in the thermodynamic limit. Conse- 
quently, in cluster calculations of A, and A, in the Emery 
model one must ensure that there are no oscillations or a 
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FIG. 9. The one-dimensional Hubbard model: the 
A(U)dependencefor (0) N, =4,  (e) 6, (A) 8, ( A )  
10 and N, - oo (A=O). 

monotonic tendency of A,, and A, toward zero with increas- 
ing N , .  

5. DISCUSSION OF RESULTS 

It follows from our calculations that in the attraction 
region the absolute values of the binding energies A, and A, 
increase as we go from the 8-site cluster to the 12-site cluster. 
I t  is difficult to pursue the study of A, (No ) and A, (Na ) 
further, since cluster Cis the largest cluster with square sym- 
metry which can be treated by the exact diagonalization 
method. Nevertheless, we can cite some reasons why A, and 
A,  should not vanish in the thermodynamic limit. For exam- 
ple, by transforming Hamiltonian ( 1 ) through an expansion 
in the small parameters t / U d ,  t /E, and t /( Ud - E) ,  Ogata 
and Shiba" were able to reduce the size of the Hilbert space 
of states (the occupation of the copper orbitals was fixed) 
and to calculate A,, in clusters with N, = 12, 24, and 30 for 
the case Up = V = 0. They demonstrated that there are no 
oscillations of A,, with increasing N, for those values of Ud 

FIG. 10. The one-dimensional Hubbard model: dependence of A on 1 / N i  
for U = 100. 

and E for which the relation A, (No = 12) < 0  holds: 
A, ( N ,  ) z const < 0. In  addition, an increase in No leads to 
an expansion of the region of parameter values with A, < O  
(see Fig. 8 in Ref. 18). I t  is our belief that, again in the case of 
the (more realistic) values E Z  1 and Ud 5 10 of the present 
study, taking the limit Na -+ rn would not substantially alter 
the results found for the 8- and 12-site clusters. 

That bound hole states could form in an infinite C u - 0  
plane in the Emery model was pointed out in Ref. 3 1-for an 
insulating ground state of the resonant-valence-bond type 
(through a construction of wave functions for the plane 
from the wave functions for clusters of type C)-and Ref. 
32-for an antiferromagnetic ground state (by a variation 
method). 

On the phase diagram (Fig. 5; see also Figs. 13 and 14 in 
Ref. 1 1 ) we can distinguish two regions of a stable attraction 
of holes: at V=;O ( ( A ,  1 = 0.01-0.1) and at  1 5  V 5  3 
( 1 A, 1 = 0.1-1). For Ud 2.6, there is no clearly defined 
boundary between these regions, but it is still reasonable to 
suggest that the mechanism responsible for the negative val- 
ues of A, is different at small and large values of V. This 
conclusion is also implied by the different values of I A, I and 
by the proximity of the instability at  V = 2-3. I t  can be seen 
from Fig. 8 that in one of these regions ( VzO) the electron 
binding energy A, is also negative. We thus reach the conclu- 
sion that there is a large region of parameter values for Ham- 
iltonian ( 1 ) in which there is an effective attraction of both 
excess holes (A,  > 0)  and excess electrons (A, < 0 )  : E = 0- 
2, Ud = 0-10, Up = 0-0.5, VzO (we recall that we have 
adopted t z  1 eV as the unit of energy). These parameter 
values correspond to values found in experiments on photoe- 
mission" and values calculated from first principles4,5 for 
high T, superconductors. Interestingly, the values of (A,  1 
and ) A , )  are (1-5). 10-'t = 1 W 5 0 0  K (for t z  1 eV), in 
agreement with experimental values of the gap in the high T, 
superconductors. In addition, we have I A, I / (  A, I = 2-4, in 
accordance with the higher value of T, of the hole high T, 
superconductors. 

Barabanov et have studied the instability question 
analytically in the limit U,, Up - and t g ~ .  They showed 
that a condition for the existence of a bound state of two 
holes is V> V, = ~ / 3  and that an instability with respect to 
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TABLE 11. Occupation numbers (n,, ) and (n,,) and copper-copper correlation functions m, 
andp, in cluster Cwith E = 1, Ud = 8, and Up = V =  0 (the numbering of the sites is shown in 
Fig. 1; N is the total number of holes in the cluster). 

the formation of large clusters of holes arises at 
V> V, = &/2. With Up #o, our results agree qualitatively 
with the conclusions of Barabanov et al. For example, with 
E =  l,Uc, = 8 , a n d U p  = l w e h a v e v ,  =:1.5andV2z2.5for 
cluster A (Fig. 4) .  On the other hand, we find V, = 0 at 
Up = 0 (a decrease in V, with decreasing Up was pointed 
out in Ref. 33). 

Table I1 shows the results calculated on the occupation 
numbers of the copper and oxygen orbitals, (n,, ) and (n,, ), 
and also on the correlation functions (between copper 
sites)-the spin-spin correlation functions my = 4(Sz,Szj) 
and the density-density correlation functions py = (n,n,)- 
for various numbers of holes, N = 2-6, in a 12-site cluster 
with E = 1, Ud = 8, and Up = V = 0 (A, = - 0.044, 
A, = - 0.013 ) .  We see that either a hole doping ( N  > 4)  or 
an electron doping ( N <  4)  disrupts the antiferromagnetic 
order in the copper sublattice. It was pointed out in Ref. 11 
that the addition of the first excess hole to a cluster leads to a 
far greater disruption of the antiferromagnetic order than is 
caused by the subsequent addition of a second hole. It fol- 
lows from our data (Table 11) that the same picture prevails 
in the case of electron doping. The reason for the attraction 
of the two electrons appears to be (as in the case of an attrac- 
tion of holes) that the dimensions of the region in which the 
antiferromagnetic order is disrupted are smaller for two 
electrons (or holes) which are adjacent to each other than 
for electrons (or holes) which are far apart. 

It can be seen from Table I1 that there is a sort of elec- 
tron-hole symmetry in the Emery model: a symmetric dis- 
ruption of the antiferromagnetic order for both electron 
doping and hole doping. The dimensions of the clusters ame- 
nable to exact diagonalization are too small for a more de- 
tailed study of the effect of the density of holes (or electrons) 
on the antiferromagnetic order, since the values N = 5 and 6 
( N =  3 and 2)  correspond to x = 0.25 and 0.5 in 
La, - , Sr, CuO, (Nd, _, Ce, CuO, ) . Experimentally, a 
comparative study of electron and hole high T, supercon- 
ductors has indeed demonstrated that there is an approxi- 
mate symmetry in the x dependence of their transport and 
optical proper tie^.'^.'^ 

This work was carried out as part of Project 2 16 of the 
State Program "High Temperature Superconductivity." 
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