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A variational procedure for an integral over a conditional Wiener measure is analyzed. This 
procedure yields a lower approximation of an equilibrium density matrix. A harmonic oscillator 
is considered as a trial system. The parameters which are varied are not only the frequency, as 
usual, but also the shift of the equilibrium position. The result is put in the form of an upper 
estimate of the pseudopotential, which is determined by a Gaussian transformation of the original 
potential. This new procedure leads to the correct Wigner correction for a diagonal element of the 
density matrix. For the energy of the ground state, it leads to a variational estimate by the Ritz 
method. An explicit analytic expression for the pseudopotential as a power series in the 
anharmonicity is derived for a system with one degree of freedom. The coefficients are expressed 
in terms of Legendre functions of the second kind, Q, (2n + 1 ), where n is the mean occupation 
number for phonons ofthe trial system. 

Methods for reducing quantum statistical calculations 
to the well-developed analytic and numerical procedures of 
classical statistical mechanics are finding progressively 
wider applications in the physics of the condensed state and 
field theory. The most important of these methods for con- 
tinuous systems is the Feynman representation' of the equi- 
librium (temperature) density matrix by an integral over a 
conditional Wiener measure. The existing procedures for ap- 
proximate evaluations of this integral outside perturbation 
theory ( a  Wigner expansion) involve a partition function 
and are based primarily on Feynman's variational princi- 
ple,' with a harmonic oscillator being used as a model. 

The Feynman-Kleinert variational procedure2 is ap- 
parently the best developed of these methods. A similar 
method was proposed independently by Giachetti and Tog- 
r~ett i , ' .~ who also examined certain applications to nonlinear 
field  model^.^-^ A partition function was also studied in 
Refs. 9 and 10. 

A lower estimate of the quantum partition function was 
found in Refs. 2-9 as an effective classical statistical integral; 
the integral was approximated by an integral over closed 
paths with a fixed expectation value in terms of the evolution 
parameter. 

The same results for the partition function are found 
through the use of the two-cumulant approximation of the 
path integral proposed in Ref. 11, combined with the method 
of steepest descent.I2 This mean value of the paths ( a  dis- 
placement parameter) is not fixed in the case of the density 
matrix of a system with one'%r manyI4 degrees of freedom 
in this procedure. It is instead varied. This situation leads, in 
particular, to an exact result for a harmonic oscillator in the 
correct Wigner correction for a diagonal element of the den- 
sity matrix. The two-cumulant approximation, however, is 
heuristic in the sense that it leans on certain plausible quali- 
tative physical considerations and is not controllable, since it 
contains an a priori estimate of the result. 

In the present paper we eliminate the latter shortcom- 
ing. 

We consider a nonrelativistic particle of mass m in a 
field with a potential V ( x ) .  In  a system of units with fi  = 1 
and m = 1, the exact equilibrium density matrix p, can be 

represented1 as a Feynman integral over a conditional Wie- 
ner measure: 

P 

p.(x, k ;  x1 ,0 )=  dllrxerp{- b'[x(Bi)ldB,}. 
0 

As a trial system (or  reference system) we choose one 
which has the same mass and which has a potential V,, ( x )  
which also depends on adjustable parameters A .  We write 
the density matrix in the classical Boltzmann form, 

where W(x,x1;P) might be called a "classical pseudopoten- 
tial" in this sense. 

Now using Feynman's variational principle and the 
known' rules for taking an average over a Wiener process, 
we find a strict upper estimate of the pseudopotential W,: 

R 

w . ~ w = w ~ + B - ~  1 dgl J dxlu(x,)p(xl, pi) .  ( 3 )  
0 

Here W,, is the pseudopotential of the model, which is as- 
sumed known; v = V - V,,; and p is a conditional distribu- 
tion of the intermediate coordinate x ,  , given by 

P (x,, p i ;  x, P; x', 0) =po-I (2, p; x', 0) 

x PO(& p; xi, P1)po(x1, p i ;  x', 0 ) .  
(4)  

According to ( 3 ) ,  the best upper estimate W, is found 
by solving the variational problem 

W ,  = min W, ( 5 )  
A 

where A appears in a known way in all the functions which 
refer to the model and which have a subscript 0. 

Equations (3)-(5)  give a general solution. In practice, 
however, p, is known for only harmonic and singular oscil- 
lators (the latter represents a contraction of a multidimen- 
sional harmonic oscillator on a sphere). 

As a model here we adopt 

v ~ = Q ~  ( X - X ~ ) ~ / ~  (6)  
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with the frequency R and the shift x, being used as adjusta- 
ble parameters. In this case the distributionp is normal with 
a center Mx, given by 

and with a dispersion Dx, given by 

Dx,=aZ[l- (ch cplch f )z ] ,  ( 8  

where 
t=y-so, y= (x+x')/2, 

and a' is the mean square displacement of the harmonic os- 
cillator, given by 

As a result we find 

From (15) and ( 16) follows the correct first Wigner correc- 
tion.'' 

4 )  In the low-temperature limit, we find a variational 
estimate by the Ritz method for the energy of the ground 
state on the basis of a trial Gaussian packet in accordance 
with the well-known result of Feynman and KleinerL2 Nu- 
merical calculations which they carried out demonstrate the 
high accuracy of this approximation even in the case of a 
pronounced anharmonicity. 

The latter circumstance, combined with the result in 
( 16), makes it possible to simplify the calculation procedure 
in a reasonable way. For this purpose we note that results 
1)-3) do not depend on the choice of 0. In case 3),  the 
satisfaction of condition (16) is sufficient. Making use of 
this latitude, we choose R in accordance with the ground- 
state energy E,,. In other words, we find fZ from the low- 
temperature limit, ( 13) : 

W= (T/4) 11-2f cth 2f-2 ln(2flsh 2f)] 
+T2f[th f (l-2flsh 2f)E2 

+cth f (l+2flsh 2f)q2+2 (t11 f )  gq] 
+U(Y, 9; B;  5, Q) .  (12) 

The smoothed potential U is found from the original 
potential V by means of a Gaussian transformation with 
parameters ( 7 )  and (8 ) ,  followed by an integration over PI 
in accordance with (3 )  and (9) .  

For a diagonal element (x' = y = x, 7 = 0 )  the 
smoothed potential allows an explicit analytic representa- 
tion in series form: 

Here tz = k + 1 + m, and Q,, is a Legendre function of the 
second kind.I5 

Series ( 13 ) is obviously a power series in the anharmon- 
icity. This approach is particularly convenient in applica- 
tions, e.g., in the theory ofquantum crystals, in which Vnear 
a site is usually approximated by a polynomial. In this case, 
series ( 13 ) and ( 14) are truncated. 

Let us consider the basic particular cases and limiting 
situations. 

1) The harmonic oscillator. Here the exact result is 
found from the construction of the approximation. 

2 )  The same comments apply to a first-order perturba- 
tion theory for a harmonic oscillator. 

3) In the first order of a high-temperature (Wigner) 
expansion we find 

W=V+pV'/12+p2/24 min [ (SdgE) '-2V' (x) (Q2t) 1 .  
E.Q 

(15) 

The optimum values of the adjustable frequency R and of the 
adjustable shift satisfy the physically graphic equation 

We thus see that 0 = 0,) minimizes the ground-state 
energy in accordance with the Ritz variational principle. 

We choose the shift ( in accordance with ( 16) here. In 
other words, we choose it to result in the correct Wigner 
correction: 

Both of the adjustable parameters are thus fixed unam- 
biguously with the correct correspondence to the basic limit- 
ing cases. As a result we find the approximation 

W,(X, p ) =  (Tl4) [l-2I0 cth 2fo-2 In (2fnlsh 2fo) 1 

where f;, = BR0/2, 8, = (Q,,/2) coth J;, is the energy of a 
harmonic oscillator, and the Q,, are defined in ( 14). 

All the parameters of approximation (19) are deter- 
mined by the choice of the original potential V. This pro- 
nounced simplification of the calculations [a  calculation 
from ( 14), ( 19) instead of a solution of variational problem 
( 12) for each (x, 8 )  configuration] is won at the cost of, in 
general, losing the extremal property of the approximant. 
However, all the most important qualities of cases 1 )-4) of 
this approximant are preserved by construction. 

We note in conclusion that the density matrix is a fun- 
damental solution of the Bloch equation.' Several other 
equations of physical importance, e.g., the Fokker-Planck 
equation in the theory of Brownian motion and the diffusion 
equation in a medium with absorption (which may be ran- 
dom) are known to reduce to the Bloch equation. Conse- 
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quently, the method proposed here may also prove useful in 
the approximate solution of those other problems. 
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