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An expression is derived for the time evolution of the muon polarization in a polycrystalline, 
anisotropic, uniaxial type I1 superconductor. 

1. Measurements of the London penetration depth of 
superconducting ceramics are typically made on polycrys- 
talline samples. In this case the London depth is found by 
comparing experimental data with a theoretically predicted 
mean square width of the magnetic-field di~tribution.'.~ 
However, this width makes a definite contribution to the 
depolarization of muons only very early in the process, while 
the polarization is more than 98% of its original value. The 
reason is that the moments M2, in the expansion 

increase very rapidly with increasing n for a type I1 super- 
conductor. As a result, only 2% of the experimental infor- 
mation is useful in a rigorous analysis. It is thus obvious that 
we need to work from a theoretical expression for the time 
evolution of the muon polarization which incorporates the 
distribution of the magnetic field, not simply its second mo- 
ment. 

Most generally, the expression for P ( t )  in a transverse 
field can be written in the form 

P ( t )  = K  ( t )  cos [ yB t f  ( t )  1, ( 2 )  

where R ( t )  is the envelope of the precession curve, q, is an 
auxiliary phase which depends on the time, and B is the 
mean magnetic field at the muon. 

Barford and Gunn2 have recently pointed out that dif- 
ferences between the lower critical fields H,, for the ran- 
domly oriented crystallites in a polycrystalline sample might 
give rise to a broadening of the field distribution and thus an 
additional depolarization. 

The boundary conditions for an individual crystallite in 
a polycrystalline sample are exceedingly complex, and it is 
by no means obvious that the mean magnetic fields in the 
crystallites would be different. If they were, however, a de- 
termination of the London depth in polycrystalline samples 
by the muon method would become essentially impossible, 
because of the large uncertainty which would arise. 

There is the possibility in principle of demonstrating 
experimentally that there is no dispersion of the mean field. 
Such a demonstration would require comparing the time 
evolution of the precession amplitude with that of the 
precession phase. As we will see below, such experiments 
would be difficult, requiring a high accuracy, since phase 
oscillations set in when the muon polarization becomes 
small. However, once it has been established that there is no 
dispersion of the mean fields determined from the various 

crystallites, one can find the London penetration depth from 
a single point of the R ( t )  function, i.e., from the envelope of 
the precession curve on the part of this curve corresponding 
to early times, where the polarization is still more than 20% 
of the initial value. 

2. The calculations below are based on solutions derived 
by Barford and Gunn2 for the London equation with an 
anisotropic tensor A: 

where n is a unit vector along the c axis of the crystal. The 
quantity A, = A:,/' is usually adopted as the London depth. 
According to Ref. 2, the Fourier transform of the magnetic 
field is 

Here G is a vector of the magnetic reciprocal lattice, 
Q = [ G  X n ] ,  N is the number of magnetic flux quanta 
through a unit area, and Q0 is the flux quantum. The mag- 
netic field is directed along the z axis; e, is a unit vector. 
Expression (4)  corresponds to the region of intermediate 
magnetic fields, H,, < B< H,, , and to crystallite dimensions 
which are infinitely large in comparison with the magnetic 
lattice constant and in comparison with the magnetic-field 
penetration depth. Below we assume that there is no disper- 
sion of the mean field. 

The magnetic field inside the sample is 

G 

and the deviation of the field from its mean value is given by 

h ( r )  =H ( r )  -B = z H ( G )  e iGr.  (6 )  
G+O 

In the limit r - 0 ,  the sum in (6 )  diverges, but this is a well- 
known and integrable logarithmic divergence. We can re- 
strict all the calculations to a region r >  ro such that 
h (ro ) <B.  The condition h 4 B simplifies all the calculations 
substantially. The usual approach is to measure the projec- 
tion of the polarization vector onto its original direction, 
which we take to be the x axis. We can then write 

= ( C O S  ( IB+h 1 t y )  )= cos[ ty  (B2+2Bhl)%] .  (7)  

Here y is the gyromagnetic ratio of the muon. The last ap- 
proximation in (7)  is valid under the condition t < B  /( yh 2 ) .  

In sufficiently strong external fields, we thus need consider 
only the variations of the z component of the magnetic field. 
From expression (7  ) we find 
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which corresponds to (2),  with an envelope 

while the phase p ( t )  is determined by the conditions 

We restrict the discussion below to the limiting case of 
an infinitely large anisotropy, 

The basis vectors of the direct lattice then have the compo- 
nents 

3'" a1 
a,,=al, a,,=O, a,,=-- 

at 
2 cos 0 ' az2 = - . 

2 

Here 8 is the angle between the external magnetic field and 
the c axis of an individual crystallite. The components of the 
basis vectors of the reciprocal lattice are 

4n cos 0 
b1,=0, b,, = --- 

3'i2al ' 
22% 2n cos 0 

(11) 
b,,=-, b a!, ---L - 

a, S'"a, ' 

The number of magnetic flux quanta through a unit area is 
2 cos 0 N = - -  3'" a12 * 

The reciprocal-lattice vector is 

In very strong external fields we can assume that the condi- 
tion A,G2$ 1 holds for any Gf 0. Using the condition 
A, <A8, we can then replace (4)  by 

and from (31) and (13) we find 
Q2+Q," -= 

(kl-2k2)' sin2 Q 

Q" 
1 - 

3/4k,2+ (ki-kz)' ' 

(15) 

The deviation of the z projection of the magnetic field from 
the mean value rver the crystallite is then 

where 
F=cos(klblr)cos(k2b2r) -sin (klblr) sin(k2b2r), 

(17) 

Expressions ( 16)-( 18) areindependent not only of the mag- 
netic lattice constant but also of the azimuthal angle, i.e., of 
the relative orientation of the initial polarization vector and 
the c axis of the crystallite. This circumstance goes a long 
way toward simplifying the process of taking an average of 

FIG. 1 .  The envelope of the polarization versus the dimensionless time 
T = a<, y/A ; . 

(8)  over angles. By virtue of the symmetry of the direct lat- 
tice, it is sufficient to consider only the region 

3" 
O<x<O,5, O<y < - . 

4 cos 0 

Figures 1 and 2 show the envelope R ( t )  and the phase 
p ( t )  for a polycrystalline sample. It follows from these fig- 
ures that over the rather wide interval t@,y// l :  < 120 the 
polarization is described by a damped cosine function, since 
the phase is a linear function of the time. The precession 
frequency is determined by the mean field B decreased by an 
amount 0.01@,//2 :. This frequency shift is totally unrelated 
to the lower critical field H,, ; it is due exclusively to the 
spectrum (or distribution) of magnetic fields, which is 
slightly asymmetric. In this region, the function R ( t )  can be 
described somewhat crudely by a single exponential func- 
tion: 

R (t) -exp (-0,01ty@o/h~2). (19) 

At t@,//l : > 130, oscillatiotp of both the phase and the 
envelope begin. We note in conclusion that a description of 
the oscillations of the envelope in the phase by means of the 
same parameter A, may serve as a test of the absence of a 

FIG. 2. The additional phase e, versus the dimensionless time T. 
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