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A theory of relaxation of the magnetization in the superfluid A-phase of liquid 3He under 
conditions of the pulsed NMR method is proposed. The relaxation is due to the development of 
instability of spatially homogeneous precession. The localized initial perturbations create moving 
fronts on which the transition of the precessing magnetization from the unstable initial state to the 
equilibrium state occurs. The main dissipating mechanism is spin diffusion in the region of the 
front. In the limiting cases of strong and weak diffusion the velocity of the fronts is found 
analytically, and in the intermediate region-numerically. 

1. INTRODUCTION 

Spatially homogeneous precession of magnetization in 
the superfluid A-phase of helium-3 is unstable. ' This circum- 
stance is important for the interpretation of pulsed NMR 
experiments in 3He-A. According to at not 
too small initial magnetization tipping angles, it is just this 
instability that determines the duration of the induction sig- 
nal. The linear theory4 allows one to describe only the initial 
stage of the development of the instability. The solution of 
the nonlinear problem in general form is probably impossi- 
ble. In the case of simpler systems it is clear, however, that 
when the initial perturbations are localized, the develop- 
ment of the instability can proceed as in combustion, i.e., a 
front propagates from the initial perturbation, in front of 
which the medium is in an unstable stationary state, and 
behind which in the equilibrium state. Dissipation of excess 
energy takes place on the front. Kolmogorov, ~etrovskii, 
and Piskunov5 showed that such a solution is possible in the 
nonlinear diffusion theory. They also found the speed of 
propagation of the front. 

Recently the question of the transition of unstable sys- 
tems to equilibrium was considered for a wider class of equa- 
tions by ~amenski i  and M a n a k ~ v , ~  who proposed a proce- 
dure which allows one to determine whether the indicated 
regime exists for some given concrete problem, and to find 
the speed of propagation of the front on the basis of an analy- 
sis of the dependence of the increment of growth of the per- 
turbations on the wave vector k. In the present article the 
indicated procedure is applied to the description of a possible 
path of development of the instability of the precession of the 
magnetization in 3He-A in the nonlinear stage. A brief expo- 
sition of the results obtained for the case of strong spin diffu- 
sion has already been published.7 

Motion of the magnetization in 3He-A takes place under 
the action of two moments-the Zeeman moment created by 
the magnetic field H, and the moment of the dipole forces 
N, . The ratio of the dipole moment to the Zeeman moment 
is characterized by the parameter (R/w, )2, where R is the 
frequency of longitudinal oscillations and w, is the Larmor 
frequency for the field H,. The frequency R depends on the 
temperature and the pressure and, since its maximum value 
corresponds to the field H,,, ~ 2 5  Oe, the dipole contribu- 
tion for fields H, several times greater than H,,, can be 
considered as a correction. In the first approximation in this 
correction the Leggett equations for the A-phase have a two- 

parameter family of periodic solutions which describe a spa- 
tially homogeneous precession of the magnetization at a fre- 
quency that differs from the Larmor frequency by the 
amount - (R/w, )'. The parameters are the angle 
0 between the magnetization and the field H, and the phase 
a of the precession. Motion of the spin part of the order 
parameter-the vector d-for these solutions is uniquely de- 
termined by the motion of the magnetization. A linear analy- 
sis of the evolution of .he small spatially homogeneous per- 
turbations of the precession shows that there is an unstable 
mode for which the small harmonic perturbations of the an- 
gles a and 0, as well as the parameters which describe the 
motion of d, grow exponentially with time. The dependence 
of the growth rate r on the perturbation wave vector k is 
described by the following formula: 

x Q2 (3 - COS 1) (1 + COS p) +ckk } '" - D k k .  

(1 Q2 (I+cos P)2+Ckk 

Here we have introduced the notation C,, = Cc, kck, and 
D,, = Dc, kck,; Cc, and Dc, are respectively the spin ve- 
locity tensor and the spin diffusion tensor. Since the problem 
has a preferred direction 1, the spin velocity tensor of the 
waves is determined by its two principal values: 

We shall assume that the spin diffusion tensor has an analo- 
gous structure with principal values D, and D ,, . The veloc- 
ities C, and CII vanish as T- Tc like ( 1 - T/Tc ) and 
C: -+ 2 C  i, so that for the same magnitude of k the perturba- 
tions with wave number perpendicular to I grow faster. 

We will discuss the question of real perturbation 
sources in Sec. 6, but for now we will assume that these per- 
turbations depend only on the one coordinate z reckoned in 
the direction antiparallel to H, and perpendicular to 1, and 
that they are localized with respect to this coordinate. In this 
case the problem becomes one-dimensional and we may ap- 
ply the approach of Ref. 6, according to which we make the 
substitution 

for the increment in expression ( 1). Below we show that 
under the given assumptions about the form of the initial 
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perturbations in 'He-A relaxation of the precession of the 
magnetization can take place by way of propagation of a 
front, and we find the speed of the front and estimate its 
width for various values of the parameters entering into the 
problem. This can be done by using only the form of the 
increment r ( k ) .  The nonlinear system of equations of mo- 
tion is required only for the analysis of processes in the re- 
gion of the front. This system is derived for the corrections in 
the Appendix; however, we do not solve it here. To describe 
magnetic relaxation in 3He-A and interpret the correspond- 
ing experiments, it is enough to know the speed of the front 
and to show that the width of the front is small in compari- 
son with the characteristic dimensions of the cell. 

2. PROCEDURE FOR FINDING THE SPEED OFTHE FRONT 

Let qo(z) be the initial perturbation, e.g., of the anglefl, 
localized near the origin. Then for t>O and as long as 
q(z, t) is sufficiently small so that the problem can be con- 
sidered to be linear the evolution of q is determined by the 
Fourier method: 

The summation here is carried out over all of the various 
branches of the spectrum w, (k)  of the system of equations, 
linearized about the initial state of the system of equations, 
and A,(k) is the Fourier transform of the projection of 
qO(z) on the corresponding normal coordinate. We will treat 
the perturbations from the point of view of an observer mov- 
ing in the direction of the z axis with velocity V. For this 
purpose it is convenient to introduce in place of z the vari- 
able 6 = z - Vt. We then have for the contribution of the vth 
mode 

where h, (k )  = i [ k V  - w,, (k )  1. Then, following the proce- 
dure in Ref. 6 (cf. also Refs. 8 and 9) ,  we find the asymptotic 
form of q(z, t)  at large t and z, but finite 6. Restrictions on t 
and 6 will be formulated later. For what follows only the 
unstable branches of w, (k)  will be significant; the contribu- 
tions of the other modes decay near the origin. The indicated 
asymptotic form can be found by the method of steepest de- 
scent, and is determined by the saddle points k, of the argu- 
ments of the exponentials h (k)  as functions of complex k. 
The form of the integration contour in the complex k plane is 
determined by the concrete h (k )  dependence. The signifi- 
cant saddle points make the following contribution to the 
asymptotic form: 

The additional phase shift S is determined by the direction of 
the integration contour at the saddle point. The nature of the 
variation of the perturbation with time depends on the sign 
of the real part of h (k,).  The perturbation grows if Re 
h (k, ) 7 0, and decays if Re h (k, ) < 0. The locations of the 
saddle points and the signs of Re h (k, ) depend on the veloc- 
ity V as a parameter. If there exists V =  V, such that for 
V >  Vc for all of the significant saddle points Re h (k, ) < 0, 
then for an observer moving with a velocity greater than Vc 
small initial perturbations will remain small and their 
asymptotic form will be described by formula (4).  The mini- 

mum value of V,, i.e., the one for which any of the values of 
Re h (k, ) changes sign, should be taken as the speed of prop- 
agation of the front since an observer moving with a smaller 
velocity will see perturbations growing in time and a transi- 
tion to the nonlinear regime. 

For sufficiently large times formula (4) can be used to 
describe the form of the perturbation a distance 6 ahead of 
the front. To do this the variation of the phase 6 *Sk over the 
region Sk- 1/ [h " (k, ) t  ] "' of influence of the saddle must 
be small, i.e., the condition 9 * 4 h " (k, ) t  must be fulfilled. 
It is natural to define the width of the front 1, such that the 
perturbations can be assumed to be small for 6>1,. The con- 
dition so obtained may therefore be thought of as a restric- 
tion on the time after which the front is formed: 

tB IfrZlh" ( k , ) .  ( 5 )  

Below in the consideration of concrete cases we will adduce 
estimates both of the width of the front and of its formation 
time. 

For the calculations it is convenient to transform to di- 
mensionless quantities: 

362' 
-io+ (k) =I', (k) = - yi (q )s in2  p .  

4 W L  

The subscripts " + " denote the two branches of the root in 
formula ( 1 ) . For y , (q) we then have 

( 3  - cos p) +3 (1 - cos p)  q2 '" 
- Aq2. 

The growth rate h(k)  should also be reduced to dimension- 
less form: 

where &(q)  = iqw + y(q) and we have introduced the di- 
mensionless velocity w according to the relation 

3"Q 
'v=- Cw sin p. 

4 0 ,  

The saddle points are found from the equation 

An analytic solution of Eq. (7)  with growth (6) with subse- 
quent analysis of the sign of Re h (k, ) turns out to be possible 
only at the limiting values of the diffusion coefficient A % 1 
and A = 0. Just these cases will be considered in the follow- 
ing two sections. In the intermediate region the solution is 
found numerically. 

3. THE CASE OF STRONG DIFFUSION 

From formula (6) it is clear that with growth of A the 
interval of wave vectors for which the perturbations grow 
with time narrows down and for A)  1 the development of 
the instability is determined by the region of small q. If we 
exclude from consideration the region of angles fl close to T 

(this case will be considered separately), then for q ( 1 
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3 - cos p '" 
y* (r) = 

+ cos 81 *-An2, 

Let us first consider the branch y + ( q ) .  Then 

n=iqw+qcp ( p )  -Aq2, c p ( f , )  = ( 3  - cos p ) " l  . 
1 + cos B 

The function h has a saddle point 

The initial integration contour, passing along the real axis, 
must be shifted upward parallel to itself so that it passes 
through the point q , ,  . Then the time dependence of the 
corresponding contribution to the asymptotic limit will be 
determined mainly by the exponential 

~ X P  I (3Q2/80L) X+ (9 , )  t ] ,  

where 

K+(q,) = ( 1 /4A )  [ ((p2-w2)+2iwcpl. 

The sign of the real part of h changes at w = ~ ( 0 ) ;  this value 
of w is to be taken as the speed of propagation of the front w, . 
Transforming to dimensioned quantities, we obtain for it the 
following expression: 

D 
vC,.-C A ,in B(  3 - ' ) I". 

4 0 L  1 + cos p 
Next setting z = V,t + 6 and using the standard procedure 
of the method of steepest descent, we find the asymptotic 
form of the perturbation ahead of the front in a system mov- 
ing with velocity V, : 

3'"Q 
q=A (k . )  (&)'I' e x p { - q ( p )  [iV.t+ ( i -1) i l s in  PI. 

8AC 

For the branch y - ( q )  the saddle point is 

qs-=[iw-(p ( B )  ] / 2 A  

and the integration contour must be made to pass through it 
just as for q.y + -parallel to the real axis. The speed of the 
front is found to be the same as for y + , but the asymptotic 
form of the perturbation ahead of the front is given by the 
complex conjugate of expression ( 10) .  Thus, the front prop- 
agates with velocity given by formula (8),  and the perturba- 
tion ahead of the front decays at a length of the order of 

Here we have introduced the dipole length 
I, = C/n =: 10 - ' cm. An estimate of the width of the front 
can be obtained from energetic considerations. From for- 
mula ( 10) we conclude that the characteristic scale of the 
inhomogeneity in the front region is the length A. At the 
front width I ,  the dissipation rate per unit area of the front is 
=I ,  Dot  /A 2, while on the other hand the same quantity 
should be of the order of V,w;. Comparing both expres- 
sions, we obtain the estimate 

Using next condition (51,  we arrive at an estimate for the 
formation time of the front: 

for typical experimental conditions this time is small in com- 
parison with the total relaxation time. 

Let us now consider the region of angles close to IT. The 
first term in formula ( 6 )  has a singularity as q -. 0 and 0- IT. 

The result of taking the limit depends on the order in 
which it is carried out. We set 0 = IT - $and keep the main 
terms in formula ( 6 )  as $ and q - 0 .  As a result we obtain 

y=[8q2/  ( q 1 ~ + 1 2 q ~ ) ]  'i1-Aq2. 

If 12q2 for the values of q that are significant in the 
problem, then, arguing as before, we obtain for the speed of 
the front expression ( 9 )  expanded about B = IT. In this case 
the region q oc 1 / A 1 / 2  is significant since the saddle point is 
located a distance a 1/A$ from the origin and has a region 
of influence ar 1 /A . ' / 2  This condition limits the applicabili- 
ty of formula ( 9 )  to the region $% 1/A'I2. 

In the opposite case, 12q2 % $', we have 

y- ( ' I 3 )  'I1-Aq2, ( 1  1 )  

the saddle point in this limit is equal to q, = iw/2A,  and the 
front speed corresponding to it is equal to 
w = ( 3 2 / 3 )  "'4A"'2, which in dimensioned units corresponds 
to 

V,= (Y8) '" (Qlo,)  A'% sin B. ( 1 2 )  

The region of applicability of this expression for the front 
speed is ~ + g l / A ' / ~ .  Note that in this limit the increment 
( 1 1  ) has the same form as in the problem considered by 
Kolmogorov et al.,' and the answer, of course, coincides 
with that obtained there. 

4. THE CASE OF WEAK DIFFUSION 

The presence of dissipative terms in the equations of 
motion is important for the establishment of the considered 
regime of development of the instability since it is dissipation 
that carries the solution to the equilibrium state in the pro- 
cess of motion of the front and determines the width and 
shape of the front. However, the front propagation speed 
found by the procedure described in Section 2 remains finite 
also as A - 0 .  Let us first consider this limit. To simplify the 
calculations further, we will assume that the anglefl is small. 
Then, according to formula (6), y = + q ( l  - q 2 )  and we 
must find the stationary points of the function 
h , = iqw + y - + ( q ) ,  i.e., of the equation 

For w > 23/2 Eq. ( 1 3 )  has two real roots, and for both of 
them q2 > 1 and the function h has purely imaginary values 
at the stationary points. This means that for w > 23/2 the per- 
turbations will not grow at large times. For w < 23/2 the roots 
of Eq. ( 13) become complex, which leads to exponential 
growth, i.e., in this case w = 23/2 is the speed of the front, or 
in dimensioned units 

v,= ( 3 / 2 ) ' i 2  ( ~ 2 1 0 ~ )  C sin B .  ( 1 4 )  

At this speed the two stationary points coalesce and a sta- 
tionary point of higher order appears: q; = 3 /2 .  This cir- 
cumstance leads to the result that the perturbation ahead of 
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the front decays only according to a power law: as 
(z - V,t ) - In such a situation there is hardly any sense 
in speaking of the existence of a front; however, addition of 
even a small diffusion makes the decay exponential, and the 
change in the speed of the front turns out to be small. 

To consider this question in more detail, let us expand 
h - (q) in the vicinity of the point go = (3/2) ' I2, setting 
q = q , + p a n d  w = wO-  U: 

~-~ i [3" : / 2 -u  (3 /2 )  ' h ]  -ip~-2'~2ip~-G'~Ap-~/A. 

The values ofp = p, at which the function h is stationary are 
given by the expression 

The addition u to the front speed is found from the condition 
that the real part of 4- vanish. Analysis of the equation 

shows that u % A and to leading order in A 

factory approximate formula for the front speed at small A 
and arbitrary angles P. Toward this end it is necessary to 
represent the radicand in formula ( 6 ) in the form 

1 + cos p 
~ ( ~ ) = 3 ( 1  -COS p)  

and expand the radical in formula (6) with respect to the 
second term in the braces in the above expression. As a result 
we have 

which gives after differentiation 

Regarding the second term on the right-hand side as a cor- 
rection, we obtain after the first iteration 

(1 - COS p) (13-5 cos P)  
(11-7 cos 8)' 

u='/& 51b12'13, This formula gives a good approximation for the speed even 

i.e., the addition to the front speed is small as long as is at P= r, when the error should be maximal.   he angle- 

small. dependent correction does not exceed 10%. 

To find the asymptotic form of the perturbation ahead 
of the front, as we set z = Vc t + < in Sec. 3 and use the 
method of steepest descent. The decay of the perturbation 
ahead of the front is then described by the factor 

3"s Q 
" X P (  - A1lJC sin d) , 

i.e., the characteristic length over which the decay takes 
place is proportional to I,/A1'' sin P. According to criterion 
(5 )  the formation time of the front in this case is -w, /  
AR2 sin P. 

Formula ( 14) for the front speed is applicable only for 
small angles & however, at such angles, as was shown by 
Sonin, ' O  the instability of the precession is suppressed by the 
spatially homogeneous relaxation by the Leggett-Takagi 
mechanism. For applications it is possible to obtain a satis- 

5. INTERMEDIATE VALUES OF A 

The experiments that have been conducted on the relax- 
ation of 3He-A used magnetic fields of - 100 Oe. For such 
fields and for temperatures not too close to T, we have 
A ~0.2-0.3, but as T- Tc the parameter A - cc owing to the 
vanishing of the spin wave velocity, making the region A - 1 
of greatest interest from the point of view of applications. 
For such A the front speed was found numerically using the 
procedure described in Sec. 2. Figure 1 shows the results of 
the calculations. As A -+ 0 and A + co the numerical values of 
the front speed approach the corresponding limits found us- 
ing the formulas in Secs. 3 and 4. The variation of the ratios 
of the limits at the left and right infinities as one goes from 
small angles to angles close to n- is connected with the afore- 
mentioned singularity of the increment as P+ n-. 

FIG. 1. Dependence of the dimensionless propagation 
speedofthe front w sinD = 4.3 - (oL /a) ( V / C )  on the 
logarithm of the dimensionless spin diffusion coefficient 
A = 2Do, /C for four values of the initial tipping angle of 
the magnetization f l  a) 30", b) W, c) 90", d) 150". 
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Figure 2 shows the dependence of w, sin f l  on at dif- 
ferent A. This dependence is not very strong and is deter- 
mined mainly by the factor sin 8. The dependence of the 
front speed w on A is also not very strong. The order of 
magnitude of the front speed and its temperature depen- 
dence are determined mainly by the scaling factor RC/w,.  
At moderate magnetic fields the entire existence region of 
the A-phase is located near Tc and it can be assumed that 
n C a  1 - T / T c .  For rough estimates one can assume that 
the coefficient in this dependence does not depend on the 
pressure, then 

which for the typical values H- 100 Oe and T=:0.9Tc gives 
the speed V- 1 m/s. To obtain more exact values of the front 
speed one must use the dependences shown in the figures. 

6. INITIAL PERTURBATIONS AND RELAXATION RATE 

To apply the results it is necessary to refine the assump- 
tion made in Section 1 that the initial perturbations are local- 
ized. This assumption was used in applying the method of 
steepest descent, in which it was assumed that the Fourier 
transform of the initial perturbations A ( k )  is a slowly vary- 
ing function in the vicinity of the saddle points. For A - 1 the 
saddle points are located at k 5 I ;  ' and the initial perturba- 
tions can be assumed to be localized if they are characterized 
by a scale less than I ,  - 10 - ' cm. Deviations of the initial 
conditions from homogeneity at such scales can arise in the 
bulk of the 3He as well as at the walls. 

Bun'kov, Dmitriev, and ~ u k h a r s k ; ~  have experimen- 
tally investigated the influence of the walls on the develop- 
ment of the instability of precession in 3He-A and found that 
the introduction of additional walls oriented perpendicular 
to H, accelerates the relaxation, but has practically no effect 
if oriented parallel to H,. They connected this result with the 
presence near the walls perpendicular to the field of an inho- 
mogeneous texture of the vector 1 that characterizes the ori- 
entation of the orbital part of the order parameter. The 
boundary conditions require that 1 be oriented along the nor- 
mal to the wall. In the bulk of the liquid in equilibrium we 
have llH,. Both of these conditions can be simultaneously 
satisfied only for walls parallel to H,. Near walls perpendic- 
ular to H, or making a finite angle with the direction of the 
field there appears a transitional layer with thickness of the 
order of 1,. The spin precession frequency in 3He-A depends 

w, sin p 
jr 

FIG. 2. Dependence of the dimensionless propagation speed of the front 
on the initial tipping angle of the magnetization for A = 1 (solid curve) 
and A = 0.1 (dot-dashed curve). 

on the mutual orientation of the vectors 1 and H,, for which 
reason the local precession frequency near walls not parallel 
to H, differs from the spin precession frequency in the bulk. 
As a result, after turning off the tipping pulse there arises a 
state whose spatial homogeneity is violated near such walls. 
If the investigated helium volume is bounded only by walls 
parallel to H, (side walls) and perpendicular to H, (base 
walls), then each of the base walls serves as a source from 
which a front propagates after the tipping pulse is turned off. 

In this case the time dependence of the total (integrated 
over the investigated volume) longitudinal component of 
the magnetization should be linear, and the total relaxation 
time r-if the formation time of the fronts is not taken into 
account-should be proportional to the distance L between 
the bases and equal to L /2 V,.  The dependence of T on the 
magnetic field, on the temperature, and on the initial tipping 
angle is a result of the dependence of the front speed on the 
indicated quantities. As has been shown, it is determined 
mainly by the factor w , / R  a H / ( 1 - T / T c  ) . sin P. De- 
pendences have been experimentally ob~erved~.~."  that are 
close to those indicated. The observed relaxation time of - 1 
ms coincides to within an order of magnitude with the esti- 
mate for fields H- 100 Oe and cells with characteristic size 
- 1 cm. However, the cell geometry in these experiments 
was far from ideal for the realization of the simple relaxation 
regime considered here. 

A serious limitation of the applicability of the above- 
described relaxation picture is the assumption of the absence 
in the investigated helium volume of significant initial per- 
turbations. Such perturbations may be solitons or domain 
walls separating the regions in which llld from those in which 
111-d. These walls also have thickness = I d .  Thedomain walls 
are difficult to prepare or annihilate in a controllable way, 
and only a small number of them is needed to initiate insta- 
bility in the volume. To realize pure conditions it is neces- 
sary, in the preparation of the initial state, to avoid proce- 
dures in which solitons appear. It is well known, for 
example, that they arise during the relaxation of the magne- 
tization after it has been tipped by an angle close to 180". 
Solitons can also form when the A-phase is obtained by re- 
heating from the B-phase since this is a first-order transition. 

In the absence of solitons direct observation of the prop- 
agation of fronts is possible with the help of a few detector 
coils in analogy with the way this was done in 3He-B.'2 How- 
ever, it is important to emphasize the fundamental differ- 
ence in the mechanism and character of the relaxation in 
both phases. In 3He-B the relaxation proceeds quasistatical- 
ly, and when the dissipative mechanisms is turned off the 
emerging two-domain structure is formed infinitely slowly. 
In 3He-A the homogeneous precession decays even in the 
absence of dissipation, after a time of the order of the inverse 
growth rate of the perturbations, and the formation of the 
fronts takes place as a consequence of the existence of dissi- 
pation. 

The type of magnetization relaxation considered here is 
new also in comparison with types known for other magnetic 
materials. Comparison with the available experimental data 
does not allow one to definitely conclude that relaxation in 
3He-A takes place by formation and propagation of fronts, 
wherefore it would be helpful if experiments would be de- 
vised having as their aim the direct observation of fronts and 
the measurement of their speed of propagation. 
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APPENDIX 

The motion of the order parameter-the vector d-is 
parametrized by the Euler angles a ,  P, and y according to 
the definition 

d(t)=R(a,  8, y)do=Rl(a)R,(p)R,(~)d,. 

Here d, is the initial orientation of the order parameter. For 
definiteness, we will assume that it coincides with they axis. 
R,  (a) is the matrix of the rotation by the angle a about thez 
axis, etc. The angles a ,  0 ,  and y are canonically conjugate 
with the spin projections S,, Sc, and SD, respectively, on the 
iaxis, the f = R (a ,  P, +),?axis, and thedirection f x i .  The 
complete system of equations of motion consists of six equa- 
tions for the indicated variables; however, for ( W w ,  ) 4 l 
it can be reduced to a system of four equations for the vari- 
ables a ,  fl, @ = a + +, and Sc. We will assume that the vari- 
ables depend only on the one spatial coordinatez, and we will 
denote differentiation with respect to this coordinate by a 
prime. We will choose the units to be such that the magnetic 
susceptibility of 3He-A and the gyromagnetic ratio for the 
3He nuclei are equal to unity. Then the equations of motion 
take the form 

d a  1 6U - + or = - -[- - Dwr(2a'pr cos p+a"sin B) 1 ,  
at S, sln p 6P 

ap  - 1 6U D 
[ (COS p) "+ (a') "inZ p], 

at wLsin 6a  sin j 

- 1 [ - *or (2arB' cas p+a"sin p) 1. St (1 + cos p) 

To abbreviate the equations we have used the notation 

etc., and the dipole energy and gradient energy, which enter 
here, have the following forms, respectively: 

StZ u=- 
8 

[cos2 p+'/, (1 + cos fi)2 cos 2cD I ,  

1 
G=-C2[(1-cosp) 4 (3-cosp) (a ')2+(pf)2 

+2 (0')'-4(i - cos B)'a a']. 
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