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The concept of a reduced description is used to study the space dispersion of the structural 
relaxation in simple classical liquids. Microscopic expressions are derived. Dispersion curves are 
found for the half-width at half-maximum of a dynamic structure factor and also for four other 
parameters of the structural relaxation: the relaxation time T,, the structure lifetime T,, ,the 
memory lifetime r,, , and the parameter E = T,, /T, ,~.  The latter parameter characterizes the 
relative "speeding up" or "slowing down" of the molecular memory. A comparison of the 
theoretical results with experimental data on liquid rubidium, krypton, and argon reveals both 
the dispersion of this set of five relaxation parameters ( T,, Awl,, , T,, , T,,,, ,and E )  and the 
dispersion of the non-Markovian behavior of the structural relaxation and its transition to a 
quasi-Markov regime at small wave vectors, near the de Gennes narrowing and the maximum of 
the static structure factor. 

1. INTRODUCTION 

Among the basic relaxation processes in liquids, such as 
vibrational relaxation, rotation-isomer relaxation, intramo- 
lecular conversions, acoustic relaxation, and chemical relax- 
ation, an important role is played by structural relaxation 
processes. Included in this category are the nonequilibrium 
changes which occur in the stable and ordered bonds be- 
tween physical elements of the liquid. Specifically, these 
changes consist of variations in the relative positions and 
orientations of molecules. The following processes are usual- 
ly included in this group. 

1 ) Fluctuations of the order in the relative positions of 
particles. These fluctuations can be characterized by a 
change in the concentration of defects and holes and a res- 
tructuring of the radial (binary) distribution of particles, 
the ternary distribution, and the distributions of higher or- 
ders. 

2)  A randomization of a quasicrystalline structure. Ex- 
amples are transitions from an icelike periodic lattice to a 
close-packed structure. 

3 )  The ionization and dissociation of molecules, chemi- 
cal reactions, quasichemical polymerization processes, a for- 
mation and decay of dimers, trimers, etc. 

In simple liquids, of course, only the first of these relax- 
ation mechanisms operates. 

A variety of spectroscopic methods are used to study 
structural relaxation in liquids: ultrasound, hypersound, 
molecular scattering of light, laser spectroscopy, and dielec- 
tric spectroscopy. These methods can be used to study fast 
relaxation processes over times as short as 10 - "10 - I *  s for 
dielectric absorption, 10- "-10 - l 2  s in acoustics, 
10 12-10 I '  s for the scattering of light, and 10 l 5  s in 
laser All these methods, however, are af- 
flicted by a fundamental shortcoming: It is difficult (in prac- 
tice, even impossible) to observe the dispersion associated 
with the scattering wave vector. The reason is that the wave- 
lengths of sound and light waves are far greater than the 
dimensions of those microscopic regions in liquids in which 
the spatial inhomogeneity of the system is manifested signifi- 
cantly. 

To the list of research methods given above we should 

add one more: the spectroscopy of slow-neutron scattering. 
A distinctive feature of this method, and an indisputable 
advantage, is that the structural relaxation time depends on 
the wave vector k, and it can easily be varied. A particularly 
interesting situation is that in which the wave vectors in- 
volved in the neutron scattering are on the order of a few 
reciprocal angstroms, while the wavelengths are on the or- 
der of interatomic distances. In this case it becomes possible 
to study relaxation structural phenomena which play out 
over short distances, on the order of 2a/k, in microscopic 
volumes of the substance on the order of (2a/k) "n size. Our 
purpose in the present paper is to study the space dispersion 
of structural relaxation in simple classical liquids in the pico- 
second region on the basis of data on the inelastic scattering 
of slow neutrons. None of the other spectroscopic methods 
listed above can provide such information. 

2. DETERMINATION AND CALCULATION OFTHE TIME 
SCALE AND SPECTRAL HALF-WIDTH OF STRUCTURAL 
RELAXATION 

The time scale of structural relaxation can be found 
from the spectra of the coherent scattering of slow neutrons 
in liquids in the following way: 

Herep(k,  t )  is a normalized temporal correlation function 
of the fluctuations in the local number density of particles, 
S ( k )  is a static structure factor, and S ( k ,  w) is a dynamic 
structure factor, which can be measured directly in a neu- 
tron experiment with transfer of a momentum Cik and an 
energy h from a neutron to a particle of the liquid. 

The method most widely used today to calculate S(k,  
w) is Mori's method of kinetic equations with r n e m ~ r y , ~ . ~  
which uses a projection-operator technique. The infinite 
chain of coupled kinetic equations for the temporal correla- 
tion function p(  k, t )  generated by this method, however, is 
usually closed on the basis of phenomenological assump- 
tions regarding the time evolution of the memory functions. 

In Ref. 7, for example, the unknown part of the second- 
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order memory function was modeled by a Gaussian func- 
tion, whose parameters were determined with the help of 
adjustable parameters which were themselves found 
through a comparison with experimental data at a zero fre- 
quency. A sum of several Gaussian functions was used in 
Ref. 8, while in Ref. 9 a memory function was approximated 
by a hyperbolic secant. None of these rather important ap- 
proximations for the memory functions in Refs. 7-9 were 
put on a solid foundation. In addition, the presence of adjus- 
table parameters in a theory rules out the use of the most 
general definition, in ( 1 ), for a microscopic calculation of 
the structural relaxation time. For this reason, a determina- 
tion of T ,  ( k )  was carried out in Refs. 10 and 11 through the 
use of Aw,,, (k ) ,  the half-width at half-maximum of the dy- 
namic structure factor S (k ,  w). Generally speaking, that ap- 
proach is valid only if the spectrum is Lorentzian. 

A theory was derived forS(k,  w) in Ref. 12 on the basis 
of the concept of a reduced description. In the correlation 
approximation, which was first used in Ref. 13 to describe 
magnetic relaxation in condensed media, we found the fol- 
lowing result in Ref. 12: 

with the frequency relaxation parameters 

ksT 
o , ' (k)  = - k2S-' ( k )  , 

m 
3ksT N 

o M 2 ( k )  = - k2 + - J dr g ( r )  [ I -cos ( k r )  ] L7.'u (r ) ,  
m m v  

whereg(r) is the radial distribution function of the particles 
in the liquid, u ( r )  is the binary interparticle interaction po- 
tential, and the z axis is chosen along the direction of the 
wave vector k. The microscopic theory of Ref. 12 agrees well 
with experimental data on several liquids. 

Substituting ( 2 )  into definition ( I ) ,  we find the follow- 
ing expression for the structural relaxation time r,  ( k ) :  

N + -J dr g ( r )  [ I  -cos ( k r )  I V2u ( r )  } 'h 
mV 

The space dispersion of the structural relaxation time is thus 
determined entirely by the thermal energy (k, T )  of the liq- 
uid particles, by the radial distribution function, by the static 
structure factor, and by the interparticle interaction poten- 
tial. It is not difficult to see that in the limit of large k, k -  W ,  

the relaxation time vanishes: T ,  ( k )  -0. In the long-wave- 
length limit, as k-0, in contrast, the behavior of T ,  ( k )  is 
largely determined by the particular features of the static 
structure factor S ( k )  at small values k-0. 

Research on structural relaxation phenomena frequent- 
ly makes use of yet another important characteristic of a 
spectrum: Awl,, (k ) ,  the half-width at half-maximum of the 
dynamic structure factor. The following expression was de- 
rived for the half-width in Refs. 14 and 15, for example, on 

the basis of a diffusion model of a liquid of particles modeled 
by hard spheres: 

Here D is the self-diffusion coefficient in the Enskog hard- 
sphere theory," a is the diameter of the hard sphere, and 
j, ( x )  and j2 (x) are Bessel functions of index zero and two, 
respectively. Expression ( 3 )  was used in Ref. 14 to study a 
wide range of simple liquids, but its validity is restricted to a 
narrow region kg=: 1. In practice, it is valid only in the im- 
mediate neighborhood of the minimum of Aw,,, ( k ) ,  which 
was first predicted by de Gennes." 

On the other hand, an expression for the half-width 
Aw ,,, ( k )  can easily be derived from the known form of S (k ,  
w ) .  Using ( 2 )  and the simple equality 
S (k ,  0 )  = 2S( k, Aw,,, ), we find the following biquadratic 
equation for the half-width at half-maximum Aw,,, (k) :  

The coefficients A ,  B, and C are given by 

n R = - S Z ( k ,  0) ( I - U , ~ / ~ ~ ~ ~ ) ~ O ~ ~ / W . , ~ ~ + ~  ( k )  op1/4w.w4 
4 -n2S2 (k, 0) o,8/8o,', 

n C = - S Z ( k ,  0 )  W , , ~ / O ~ ' - S ~ ( ~ ) O ~ ~ / Q J M ~ .  
4 

It can be seen from ( 5 )  that in this case, in contrast with the 
result in ( 4 )  (Refs. 14 and IS), the half-width Am,,, ( k )  
[like the structural relaxation time r,  ( k ) ]  is independent of 
the self-diffusion coefficient in the hard-sphere model, being 
determined exclusively by static structural effects in the dis- 
tribution of particles. 

3. STRUCTURAL LIFETIME AND MEMORY LIFETIME 

For a more detailed analysis of structural relaxation 
and of its non-Markov nature, we introduce along with the 
relaxation time 7, ( k )  the structural lifetime T / ,  ( k ) ,  the 
memory lifetime T , ,  and their ratio 
~ ( k )  = rl, ( k ) / ~ , , ,  ( k ) .  We will show how these three quan- 
tities can be utilized to find detailed information about the 
space dispersion and the non-Markov nature of relaxation 
processes which result in a change in structure. To deter- 
mine them, we work from two normalized temporal correla- 
tion functions: p ( k ,  t ) ,  for density fluctuations, and 
M, (k, t ) ,  the memory function.I2 In contrast with Refs. 18 
and 19, we use the definitions 
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The quantity ~ ( k )  characterizes the time over which the 
microscopic structure exists with respect to the memory life- 
time. The specific numerical value of this quantity indicates 
memory effects and non-Markov aspects of the process. 
Large values ~ ( k )  ) 1 imply the condition r,, ( k )  b r,,, ( k ) ,  
which corresponds to a relatively rapid decay of the mem- 
ory. In this case the relaxation process has a very short mem- 
ory, and the process can be regarded as quasi-Markov. A 
decrease in ~ ( k )  to values on the order of unity implies a 
significant "slowing down" of the memory and an increase 
in the effectiveness of non-Markov processes in the struc- 
tural relaxation. 

Using (2) ,  along with expression (27) from Ref. 12, we 
find the following expressions for the times r , ,  ( k )  and 
r,,,, ( k )  and their ratio ~ ( k ) :  

E (k) = 2 0 n r z  (k) /wp2 (k) - I .  ( 7 )  

Substituting (2b) into ( 7 ) ,  we finally find the following mi- 
croscopic expressions for these three quantities: 

Equations (3 ) ,  (5 ) ,  and (8 )  make it possible to con- 

struct a detailed microscopic description of non-Markov re- 
laxation effects in the structural relaxation of particles in 
liquids. 

4. COMPARISON WITH EXPERIMENTAL DATA AND 
DISCUSSION OF RESULTS 

We have carried out numerical calculations on the 
space dispersion of the half-width Aw,,, (k) ;  the times 
r, ( k ) ,  r,, ( k ) ,   and^,,, ( k ) ;  and the quantity ~ ( k )  on the basis 
of Eqs. (3) ,  (5),  and (8 )  for liquid rubidium, krypton, and 
argon. For these substances, reliable experimental data on 
slow-neutron scattering are a ~ a i l a b l e . ~ ~ ~ '  The data required 
on the static structure factor S ( k )  were taken from Refs. 24- 
27. The relaxation regime corresponding to Eqs. (3).  ( 5 ) ,  
and (8 )  was chosen on the basis of our numerical estimates 
of the relaxation times rM,, and r,,,. To estimate the relaxa- 
tion time of the first-order memory function, r,,,, we follow 
Refs. 2 and 3 and use the known expression 

mD, 
Tllo = - . 

~ B T  

According to Refs. 26 and 28-31, the self-diffusion coeffi- 
cients D ,  of these liquids lie in the interval 
(1.837-2.43). 10 cm2/s for the given temperatures and 
densities. For the time rM,, we then find the interval 
(0.599-1.37) 10 - " s. The relaxation time of the longitudi- 
nal-motion energy, T,,,, for simple classical liquids can be 
estimated under these conditions from the data in Ref. 2: 
T ~ , ,  z 1.2.10 - l 3  S. It can thus be concluded that for all the 

FIG. 1. Dispersion of the structural relaxation time r, ( k )  for liquid rubi- 
dium at T =  315 K and n = 10.6.10'' cm ' according to definition ( 1 ) .  
0-Theory of the present paper, (3 ) ,  with a Lennard-Jones potential; 
solid line-also from ( 3 ) ,  but with effective potential ( 9 ) ;  O-experimen- 
tal data.2" 
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FIG. 2. Dispersion of Awl,z ( k ) ,  the half-w~dth at half-maximum of the 
dynamic structure factor, for dense gaseous krypton at T = 297 K and 
n = 10.6.10" cm '. 0-Theory of the present paper, ( 5 ) ;  O-experi- 
mental data." 

liquids considered here there is, more or less, a relaxation 
regime with T,,, ,-T,,,. In other words, the correlation ap- 
proximation Mo (k ,  t )  ,- K,, (k,  t )  is valid in this case, and 
we can use expression (2a)  for the dynamic structure factor. 

Numerical calculations show that the agreement with 
experiment is best for Rb  and Kr.  Some of the calculated 
results are shown in Figs. 1-5. 

Figure 1 shows the dispersion of the structural relaxa- 
tion time T,  ( k )  for liquid rubidium at  T = 3 15 K according 
to a calculation from Eq. ( 3  ) . In the calculation of the equi- 
librium integral in ( 3 ) ,  use was made of numerical results 
from Refs. 7 and 28, where this integral was calculated as a 
function of the wave vector k  on the basis of a Lennard-Jones 
interparticle interaction potential7 and an effective potential 
of the following type:*' 

FIG. 3. The half-width Am,,, versus the number density of par!icles for 
liquid argon at T =  120 K and at a wave-vector value Ikl = 1.92 A l.0- 
Theory of the present paper, ( 5 ) ;  *-experimental data.," 

FIG. 4. Dispersion of the structural lifetime T,, ( k )  (line 1) and of the 
memory lifetime T,,,, ( k )  (line 2 )  for liquid rubidium according tocalcula- 
tions from (8a) and (8b).  

Here Z is the valence, ~ ( q )  is the electric constant, which 
depends on the wave vector q, and u, ( q )  is the electron-ion 
interaction potential.28 We see from Fig. 1 that the solid line 
agrees considerably better with the experimental data. Con- 
sequently, potential ( 9 )  leads to a better agreement with 
experiment than is found with a Lennard-Jones potential in 
the case of liquid rubidium. The clearly defined damped os- 
cillations in the dispersion of the time T ,  ( k )  correspond pre- 
cisely to oscillations of the static structure factor of the liq- 
uid metal. 

Figure 2 shows results calculated on the dispersion of 
Am,,, ( k ) ,  the half-width at  half-maximum of S (k ,  w ) ,  for 

FIG. 5. Space dispersion of the quantity E = T,,/T,,,, for liquid rubidium 
[Eq. ( 8 c ) l .  
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dense gaseous krypton at T =  297 K and at a density 
n = 10.6. lo2' cm ' .  These results were found through a nu- 
merical solution of Eq. (5) .  We see a good agreement with 
experimental data2' over a broad range of the wave vector k. 
Similar results were found for liquid rubidium and argon. 
Interestingly, Eq. (5 )  gives a qualitatively correct descrip- 
tion of the behavior of the half-width Aw ,,, ( k )  as a function 
of the density at an arbitrary value of the wave vector k in the 
case of argon. It turns out that this dependence is essentially 
linear. At small values of k the half-width increases linearly, 
while at large k it falls off linearly with increasing density. 
The situation is illustrated in Fig. 3 for a wave vector 
k = 1.92 A -  '. There is also a certain value of k, approxi- 
mately 1.3 A', at which the half-width of the spectrum is 
independent of the number density of particles. 

Figure 4 shows the dispersion of the structural lifetime 
Tls ( k )  and of the memory lifetime T,, ( k )  for liquid rubi- 
dium as found from Eqs. (8a) and (8b) with the help of 
effective potential (9) .  It can be seen from Fig. 4 that the 
space dispersion of the memory lifetime T,, ( k )  is weaker 
than that of the structural lifetime T,, ( k ) .  The explanation 
here is that expression (8b) for r,, ( k )  does not have a de- 
pendence on the static structure factor S ( k ) .  

We find the data in Fig. 5 particularly interesting. 
Shown here is the space dispersion of the parameter ~ ( k ) ,  
which is the ratio of the times T,, ( k )  and T,,, ( k ) .  As was 
mentioned earlier, one can draw conclusions about the ex- 
tent to which the relaxation process is non-Markov on the 
basis of this ratio. Near the maximum of the static structure 
factor S ( k )  (the value is k z  1.54 A - ' for rubidium), for 
example, this ratio is at a maximum. In other words, the 
memory lifetime is much shorter (by a factor of about 27) 
than the structural lifetime. In this case the relaxation pro- 
cess can be regarded as quasi-Markovian. The particular 
form of the memory function becomes irrelevant in this case. 
We believe that this situation explains why all the existing 
theories for the dynamic structure factor (see, for example, 
Refs. 7-9 and 12) agree identically well with experimental 
data near the de Gennes maximum (despite the fact that 
these theories use totally different forms of the memory 
function). 

For other values of the wave vector k, the ratio ~ ( k )  is 
considerably smaller than the maximum value, but still 
greater than unity. Consequently, over all the rest of the k 
region the memory lifetime is comparable to the structural 
lifetime, and relaxation processes become very non-Marko- 
vian. The particular form of the memory function becomes 
important for finding a description of the relaxation; differ- 
ent functions lead to quite different re~ul ts . ' -~ . '~  The small- 
est value of the parameter ~ ( k )  is reached in the case of 
liquid rubidium at k < 1 A- ' (this effect is not seen in the 
cases of Ar and Kr ) .  In this region, structural relaxation 
processes are of a more complex non-Markovian nature. I t  
may be that these effects are responsible for the clearly de- 
fined peaks of collective excitations in the dynamic structure 
factor of liquid rubidium in the high-frequency region.20 
These peaks have eluded theoretical explanation on the basis 
of hydrodynamic models of the liquid. 

5. CONCLUSION 

The theory presented here gives a detailed description 
of structural relaxation in liquids. We feel it is particularly 

important to introduce and use three relaxation parameters: 
the relaxation time 7, ( k ) ,  the structural lifetime T, (k) ,  and 
the memory lifetime T,, ( k ) .  Adding a fourth (relative) pa- 
rameter ~ ( k )  = rl, (k)/r,, (k ) ,  we obtain a set which gives a 
complete microscopic description of the space dispersion of 
the structural relaxation associated with the inhomogeneity 
of a medium. 

A distinctive feature of the structural relaxation process 
in a liquid is its non-Markov behavior in the case in which 
the process is characterized by a memory with a molecular 
lifetime on the order of 0.1 ps. Here again we can clearly see a 
distinctive dispersion: Over the entire wave-vector region 
there are small regions near the maximum of the static struc- 
ture factor for which memory effects become relatively 
weak, while the relaxation process itself becomes quasi-Mar- 
kovian. 

The fact that the space dispersion of all the parameters 
which we have considered is determined to a large extent by 
the static structure factor S ( k )  in this case deserves a sepa- 
rate discussion. 

This situation is found only in the region of wave-vector 
values which we have been discussing. It can be seen from 
(3 ) ,  ( 5 ) ,  and ( 8 )  that the dispersion is determined by the 
behavior of both the structure factor of the liquid and the 
equilibrium integral, which contains an intermolecular po- 
tential, a radial distribution function, and the wave function 
of the neutron. These two contributions are of the same na- 
ture and are governed entirely by the microscopic inhomoge- 
neity of the medium. In this interval of k values, however, 
the space dispersion of the equilibrium integral is weak in 
comparison with the clearly expressed dispersion of S ( k )  
(see, for example, Refs. 7 and 28). The characteristic oscilla- 
tions of the static structure factor thus play a determining 
role here. For other values of the wave vector k, the picture 
may be quite different. 

In light of this discussion, we should look at the results 
of this paper in a broader context. We would expect that 
rapid molecular processes in liquids should have a strong 
space dispersion and should be very non-Markovian, with a 
memory time ranging from tens of picoseconds to a few pico- 
seconds. The non-Markovian nature itself should have a spe- 
cific dispersion: For example, near the maximum of the stat- 
ic structure factor S ( k )  there should be a relative "speeding 
up" of the memory, while the relaxation process itself may 
become quasi-Markovian (with a short-range memory). 
This conclusion is of general applicability and should be tak- 
en into consideration in the construction of microscopic 
models for relaxation processes in condensed media. 

We sincerely thank H. Hertz (Karlsruhe, F R G )  for a 
useful discussion of these results. 
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