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The possibility of the existence of the phenomenon of collective spontaneous annihilation of a 
dense electron-positron plasma, occurring via coherent acts of single-photon annihilation of 
electron-positron pairs in a strong magnetic field B 2 lo'", is pointed out. Collective 
annihilation develops considerably more rapidly than the known incoherent processes of 
spontaneous annihilation and collisional relaxation and leads to the generation of powerful 
coherent y radiation (annihilation super-radiance). 

1. INTRODUCTION 

Recently, the annihilation of an electron-positron 
( e  e + ) plasma in natural and laboratory conditions has 
been widely discussed (see, e.g., Refs. 1-3). Despite their 
extreme nature, the corresponding analysis is necessary for 
the solution of real physical problems associated with the 
generation and dynamics of an e -  e +  plasma and its radi- 
ation-in particular, on neutron stars (the e e +  ava- 
lanche in the Ruderman-Sutherland magnetospheric gap),' 
in the vicinity of black holes (including in accretion disks),' 
in the initial stage of the development of the U n i ~ e r s e , ~  in 
accelerators in the coalescence or collision of electron and 
positron beams,"n the collisions of high-energy ions, pro- 
ducing bunches of particles and antiparticles,' etc. The anni- 
hilation process is of interest not only from a fundamental 
but also from an applied point of view, e.g., for the produc- 
tion of coherent y radiation (the y laser).' 

As will be shown below, in a sufficiently dense e - e + 

plasma the annihilation process has a collective, coherent 
character, and occurs in a time considerably shorter than the 
time T of the familiar incoherent processes of spontaneous 
annihilation and collisional relaxation. This highly nonsta- 
tionary process is characterized by the presence of correla- 
tions in a broad frequency band of the y radiation: 
T 2 T ' , where T is the characteristic time scale of the 
collective-annihilation (CA) pulse. Therefore, it cannot be 
described in the balance approximation of independent spec- 
tral components of the radiation, the width of each of which 
would be small in comparison with T I .  This means that in 
the analysis of the CA process it is not possible to confine 
oneself to a traditional quantum-electrodynamic calculation 
of the cross sections of the elementary acts of annihilation 
with the corresponding balance equations for the transport 
of the annihilation-emission intensity. 

The situation here is analogous to the collective sponta- 
neous emission (super-radiance) from a sample of excited 
inverted atoms or molecules with a discrete energy spec- 
trum, familiar in coherent and nonlinear optics (see, e.g., the 
reviews in Refs. 8-10). At a sufficiently high concentration, 
the atoms that are excited by the short pumping pulse into an 
incoherent state on some of the upper energy levels emit, 
after a certain delay time t,, a coherent pulse of collective 
spontaneous radiation, the spectral intensity of which ex- 
ceeds by many orders of magnitude the intensity of the spon- 
taneous emission from the same number of independent 
atoms, and the duration of which is much shorter than the 
energy-relaxation and phase-relaxation times in the medi- 

um: 74 TI,  T2. This phenomenon is due to the effective mu- 
tual phasing of the dipole oscillations of the atoms via the 
self-consistent field of their emission over time t < t , .  The 
coherence of their emission is thereby ensured up to the time 
t, of de-excitation. The description of the formation and 
propagation of such super-radiance pulses, which have been 
observed in a number of experiments in the radiofrequency, 
infrared, and optical ranges, also involved the need to go 
beyond the limits of the balance approximation traditional 
in laser physics. 

In view of the above considerations, in the present paper 
we have undertaken an analysis of one of the possible var- 
iants of collective annihilation-single-photon CA. Specifi- 
cally, we have considered the collective spontaneous decay 
of a relativistic degenerate e - e + plasma placed in a strong 
magnetic field B of the order of the critical field 
B, = m%'/efi =: 4.4 x 10" G ( m  and e are the rest mass and 
charge of the electron, c is  the velocity of light in vacuo, and 
f i  is Planck's constant). The solution of this problem, on the 
one hand, makes it possible to elucidate a number of ques- 
tions in the theory of nonstationary energy release in an an- 
nihilating plasma, and, on the other hand, gives an example 
of an analysis of super-radiance in a medium with a contin- 
uous energy spectrum. To examine such processes seems to 
be a necessary step on the route to obtaining ultrashort 
pulses in a nonrelativistic dense plasma as well, e.g., in the 
collective recombination of ions and electrons in a gas dis- 
charge, or in the super-radiative annihilation of holes and 
electrons in a semiconductor, recently observed experimen- 
tally." Up to now, however, studies have been made only of 
the super-radiance from media with a discrete energy spec- 
trum, e.g., in a model of molecules with two energy  level^^-^^ 
or in a system of positronium atoms,'' and also of the cyclo- 
tron super-radiance of electrons rotating about magnetic- 
field lines with the cyclotron frequency and possessing an 
energy spectrum with quasi-equal ~ ~ a c i n ~ . ' ~ . ' ~  

We use the semiclassical approximation. I t  is usually 
valid in the presence of a sufficiently large number of pho- 
tons, when the electromagnetic field may be regarded as 
classical and described by the Maxwell equations. The prop- 
erties of the e e + plasma are described by quantum equa- 
tions. From these we determine the susceptibility tensor, 
which specifies the relationship of the mean current density, 
including the annihilation current, to the electromagnetic 
field. According to the general approach in the electrody- 
namics of active media,'0,'"'6 first, in Sec. 2, we shall estab- 
lish properties (the increment, dispersion, and polarization) 
of normal waves of the e - e + plasma near the single-pho- 
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ton-annihilation threshold frequency 

0 ~ = 2 m c ~ l h  sin 0, (1.1) 

where 19is the angle between the wave vector k and the exter- 
nal magnetic field B (Fig. lb).  The normal waves of the 
unmagnetized vacuum and of an e - e + plasma in a magnet- 
ic field have been investigated in, e.g., Ref. 17. Below, since 
we are interested only in the resonance region of frequencies 
near w,, we shall simplify considerably the derivation of the 
susceptibility tensor and the solution of the dispersion equa- 
tion. This makes it possible to estimate the Hermitian part of 
the susceptibility for various plasma concentrations N, , and 
to take into account the concentration dependence of the 
increment of the extraordinary wave. The expression (2.10) 
obtained for the increment in the limit of large concentra- 
tions N, ) N p' [see (2.13) below] coincides with that found 
in Ref. 17. 

Next, in Secs. 3 and 4, the problem of CA in a model 
with unidirectional propagation of the radiation is solved. A 
self-similar growth law for the field amplitude in the linear 
and nonlinear stages of the development of the instability is 
found. In Sec. 5 we consider the role of effects associated 
with the angular divergence of the radiation, the geometrical 
shape of the plasma bunch, and the kinematic flying apart of 
particles of the plasma bunch. On the basis of the results 
obtained, we elucidate the energy, spectra, and spatiotem- 
poral characteristics of the CA. The coherent y radiation 
that arises in a dense bunch of e - e + plasma is found to be 
shorter in duration and considerably greater in spectral in- 
tensity than the spontaneous annihilation emission from the 
same number of independent e - e + pairs. 

To conclude, we discuss physical situations in which 
manifestation of the CA effect is possible, and also discuss 
the role of competing incoherent relaxation processes; a 
number of open problems are formulated. 

2. NORMAL WAVES NEAR THE THRESHOLD FOR SINGLE- 
PHOTON ANNIHILATION 

We shall seek unstable normal waves in a uniform mag- 
netized e - e + plasma on the basis of a general expression 
for the four-tensor of its susceptibility, obtained in Ref. 18 to 
first order in the radiative corrections (with the use of the 
exact Green functions of the Dirac equation with an external 
magnetic field) and written in explicitly covariant form in 
Ref. 19: 

( E ' - E ) / ~ + E ~ ~ ~ - E ' ~ , -  
X 

f i ~ - ~ E , - ~ ' E , r + i o  
[rqev: (k)lP[r,",". '  (k)]'. (2.1) 

This tensor relates the Fourier components of the four-vec- 
tors of the induced current density to the potential of the 
probe field. Here, a = e2/fic is the fine-structure constant, 

is the modulus of the energy of a Dirac particle in an external 
field B = BzO (see Fig. la),  the prime indicates the final state 
of the particle, E, E' = + 1 label states with positive and neg- 
ative energies, and n: are the occupation numbers of the 
quantum states q = {n,l,u}, where n = I + ( a  + 1 )/2 is the 

principal quantum number, Iis the orbital quantum number, 
and u = f 1 is the spin quantum number. According to the 
law of conservation of thez component of the momentum, in 
(2.1 ) it is assumed that ~'p: = ~ p ,  - fik, . The vector func- 
tion [r$ (k )  I p  is the spatial Fourier component of the 
Dirac current density. An explicit expression for it is given in 
Ref. 19; e.g., for n = n' = 0, for the z component we have 

Since we are interested in an e -  e t  plasma of high 
density in a strong magnetic field B-B,, we shall confine 
ourselves for simplicity to the limiting case of complete de- 
generacy of the electrons and positrons, in the lowest, zeroth 
Landau level, with equal concentrations 

where A, = f i /mcz4X 1 0  " cm is the Compton wave- 
length of the electron. The above inequality implies that the 
Fermi energy is not too large: p= E,, = ,, (p, =p,..) 
<E, ,  = ,  (p, = 0),  i.e., for Fermi momentum 

p, < rnc(2B /B,  ) and this permits us to assume that the 
higher Landau levels are unpopulated (Fig, la) .  Moreover, 
we neglect the contribution to the susceptibility from the 
nonzero Landau levels, keeping only the terms with n, n' = 0 
in (2.1 ) . The latter is justified by the narrowness of the CA 
emission spectrum, which is concentrated near the threshold 
frequency w,, for annihilation of e - e + pairs in the zeroth 
Landau level. (This, it is true, excludes from the analysis the 
cyclotron resonances, i.e., those values of the magnetic field 
for which the frequency w, coincides with the frequency of a 
transition between any of the Landau levels.) It is obvious 
that the contribution made to the imaginary part of the sus- 
ceptibility by processes of creation and annihilation of 
e - e ' pairs in excited Landau levels is equal to zero at fre- 
quencies below the threshold frequency nearest to w,,, i.e., 
below 

w,=mc2[(1+2B/B,)'!2+1] / A  sin 0. 

After the simplifications made, the integration in (2.1 ) 
can be performed to completion. The resulting dielectric- 
permittivity tensor .zij (w,k) = gii + 4 r ~ , ,  (ij = x , ~ , z )  of 
the magnetized degenerate e - e + plasma differs from the 
Kronecker symbol tji, only by the longitudinal polarizability 

cnz. 2'hm"U6 
xZz  (a, k)= --;I a = x 2 j 2 h a 2  (a2-C2k,9 p 

where 

71 Sov. Phys. JETP 72 (I), January 1991 Belyanin eta/. 71 



FIG. 1. ( a )  Energy diagram of single-photon 
annihilation of Dirac electrons and positrons; 
( b )  geometry of collective annihilation radi- 
ation of extraordinary y quanta with wave vec- 
tor k and polarization e in a sample of e e ' 
plasma. 

Here, the momenta p,., of the particles of the e e + pair 
that generate a y quantum with frequency w and longitudi- 
nal wave number k, = k cos 8 appear (Fig. l a ) .  According 
to the laws of conservation of energy and momentum, we 
have 

p,, ,='/,fik,*P, i3= (ho/2c) [1-4mzc~/fiz(oZ-~Zk,z) ] 'b.  

As is well known, the most important feature of the 
polarizability (2.2) is the annihilation resonance: 
xZZ a 1/& C C ~  as w' - c' k + 4m'c4/fi'. It is a root singular- 
ity, and is related to the singularity of the density of states of 
the electrons and positrons near the edge of the forbidden 
band (cf. the van Hove singularities in solids). In the case 
k, = 0 this is obvious by virtue of the fact that 
dp,/dE,,I,; = ,, = a. The case k, # O  can be reduced to the 
previous case by a Lorentz transformation or  can be consid- 
ered directly, and one can convince oneself that the density 
of states ofe e + pairs that are able to annihilate with emis- 
sion of a y quantum possessing a fixed longitudinal momen- 
tum fik, has a singularity (Fig. l a )  : 

cally in the k, B plane (Fig. l b ) .  Solution of its dispersion 
equation 

shows that in a degenerate e e t  plasm2 it is unstable and 
has quasi-transverse polarization, i.e., t9.k-0 (since, for 
this wave, 

f o r k =  R e k ) .  
In the problem of CA as a problem with initial condi- 

tions, it is necessary to know the complex frequency 
w, ( k )  = w:, + iwf of this unstable wave as a function of the 
real wave number k for arbitrary angle 8. Far from the anni- 
hilation resonance ( 1.1 ), for lck - w,,l$ wf, Ick - wl 1, it is 
determined by the first correction to the vacuum dispersion 
law w = ck: 

o, ( A : )  z c k  (1-231 sin Oxzz lo+eR), 
(2.3) 

o," (k) ~2'"(006 sinz O(ko/k)z(kz/koz-l) -I", k>ko=oo/c. 

This balance increment w:: can also be obtained directly 
from the well known formula for the probability of single- 
photon annihilation.19 

However, the most interesting region- the region of 
maximum values of the increment-lies near the resonance 
( 1.1 ), and is not described by the balance approximation 
(2.3). It is possible here to reduce the dispersion equation 
approximately to a cubic equation for the detuning from the 
resonance frequency, of the form 

In such a uniaxial medium, in accordance with the Fres- if we assume that 6, < 1 and confine ourselves to the linear 
nel equation14,15 terms in the expansion of 2, from (2.2) in a series in pow- 

ers of P / m c <  1. In this resonance approximation, 
( ~ ~ k ~ 8 ~ ~ - ~ ~ k ~ k ~ - ~ ~ ~ ~ ~ ) 8 ~ = O  k ,  - Iw,/clcos 8 and 

there exist an ordinary and an extraordinary plane normal X,,'X-- - 
wave, proportional to gexp(  - iw_t + 11-r).  In the ordinary 

6o { @ (pP. k,) 2n 
wave the electric-field amplitude g l k ,  B, and the refractive + itq(pp-I~II)+q(~F-I~Zi)-llsinO 
index ck /w - 1. The extraordinary wave is polarized ellipti- (o/oo- I )  'I- 

} (2.7) 
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Since we shall be interested in the solution of the dispersion 
equation in the case p, 2 ifl I, when the imaginary part of 
(2.7), expressed in terms of the step function 7, is greater 
than the real dispersion factor @(p,,k, ), we shall not give 
its explicit dependence on k,. For transverse propagation, 
we have 

The dispersion and increment of the extraordinary 
wave for wave numbers k in the vicinity of k,, = wO/c are 
determined by solving Eq. (2.4) :" 

( U S U )  3"i  (u-u)  

Y=-2- 2 ' 

It follows from this solution that the increment has a maxi- 
mum, equal to 

The valueo:,'(k) -w" = maxw; ( k )  is reached only in a 
narrow band of wavelengths / k - ko/k, ,  5 Q2" < 1 (see Fig. 
2 ) .  Within this "resonance" band, 

while outside it [more precisely, for ( k  - k,,)/k,,>> Q2/' 1, 
the balance approximation (2.3) is valid. The instability is 
most effective for propagation transverse to B, i.e., for 
6 = r /2 .  Figure 3 shows the dependence w" ( B  /B,. ); with 
decrease of the magnetic field B<B,  the increment de- 
creases exponentially, while with increase of the field to 
B- 103B, it reaches a value of the order of a,,, and, after 
that, does not correspond to Eq. (2.10). The scale of the 
spatial coherence, i.e., the maximum length over which the 

FIG. 2. Dispersion and increment of the unstable extraordinary wave 
[w,. ( k )  = w,', + io::] near the single-photon annihilation threshold 
o,,=ck,,=2mc2/li  sin 8: The solid curve is the resonance approximation 
(2.9)-(2.1 I ) ,  and the dashed curve is the  balance approximation (2 .3 ) .  
The curves are  plotted for the values B = B, , 0 = 1;/2, and p,  = mc. 

FIG. 3. Increment rot' (2 .10)  (curve 1 )  and inverse delay time 1 ,, ' (3.5) 
(curve 2 )  for the CA from a sample of degenerate e e ' plasma for 
p,  2 Ap, = (fio,,/c) (o"/o,,)" ' ,  0 = 1;/2, s = L, , i,, = 10, and also the 
rate R ,,. (6 .1)  of spontaneous single-photon annihilatiotl (curve 3 )  for 
N,. = 4 X  10'"m ' asafunctiotl  o f the  magnitude B / B ,  of the magnetic 
field. 

annihilating e e ' pairs are still causally coupled by the 
field of their own radiation, is determined by the so-called 
cooperative length L, = c / w 0 .  For B = B, and 9 = n-/2 we 
have w " ~ 3 ~ 1 0 "  sec < w , , ~ 2 X 1 0 "  sec I gnd LC -1 
A. 

We emphasize that the increment and dispersion de- 
pend very weakly on the concentration, while the maximum 
w" does not depend on it at all. These conclusions pertain to 
a sufficiently dense plasma, when particles fill all states in 
the range of momenta p, of width of order 2fl at 
/w - wOl -wV/2, i.e., 

' ho , ,  
.,I' = (;; ) ;-sG 

about the value fik,/2 (Fig. l a ) .  It is the annihilation of 
these particles that gives rise to the instability of the extraor- 
dinary wave propagating in the specified direction 6. The 
corresponding concentration that saturates the maximum 
increment at the level of (2.10) is determined from the con- 
d i t i o n ~ ,  2 (Ap, + fik, )/2, i.e., 

Saturation first occurs for the wave propagating trans- 
versely to the magnetic field ( 6  = ~ / 2 ) ;  for B = B, /4 it OC- 

curs at NI"= lo2' cmP3, and for B = B, it occurs at NI," 
z 4 X  loZX cm ' .  This saturation of the increment at a con- 
stant level, in contrast to the law w" ar N"" familiar for the 
super-radiance of two-level molecular media, is related, 
clearly, to the Fermi degeneracy of the e e +  plasma. We 
note that the actual instability arises only above a certain 
threshold of degeneracy, when the average (over the range 
Ap,) occupation number no of the annihilating quantum 
states satisfies no= (n;(p, ) )  > l/2 in the vicinity of 
p, = fih,/2. In fact, in the general case it is easy to show that 
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the sign of w: coincides with the sign of the factor 2n0 - 1, 
and the magnitude of a:,', both in the balance approximation 
and in the resonance approximation, is obtained from (2.3) 
and (2.1 I ) ,  respectively, by the replacement b-- 12n0 - llb. 
At high temperatures k, T s p  or at low concentrations 
N,. <NS", when no41,  absorption due to the creation of 
e  e  + pairs from the vacuum suppresses the annihilation 
instability. 

3. MODELOF UNIDIRECTIONAL PROPAGATION OF 
ANNIHILATION RADIATION 

We shall consider the formation of a CA-radiation field 

from spontaneous initial ( t  = 0 )  fluctuations g O ( s ) ,  and 
consider its propagation along one direction s in a sample of 
e e ' plasma with dimensions L, 4 L ,  5 L, 4 L ,  (Fig. 
l b ) .  In the initial, linear stage, when the occupation 
numbers n,,- 1 and the slow complex amplitude %', (t,s) is 
still sufficiently small, its temporal Laplace transform 

8: ( p ,  ,s)= J 8* ( l .  . s ) v s p ( - p / ) d /  
0 

obeys the equation 

This is also established from the dispersion equation of the 
unstable extraordinary wave (Sec. 2)  with neglect of spatial- 
dispersion effects and with the assumption that 
4rlxzI (a) ( 4 1. For the polarizability x,, (w) in (3.1 ) we 
confine ourselves to the resonance approximation ( 2 . 7 ) ,  re- 
taining the dependence of x:, (p )  on p = i ( c d , ,  - w )  only in 
the resonance denominator a l/p'/'. 

The solution of Eq. (3.1 ) describes the nonstationary 
amplification of a packet of plane unstable waves in an anni- 
hilating e  e  ' plasma, and is expressed, in the form of the 
convolution 

in terms of their Green function 

Expanding the exponential in a series in powers ofp and 
integrating, we obtain 

"" csp[-~k,(s-s')@Do] . =z 5- ---L,- 
,, (o,,Fr ( ? I +  1 ) 1 7 ( r 1 / 2 )  

(3.3) 

We neglect the contribution of the dispersion factor 
a @bO to the exponent, since over lengths s - sf 5 LC it is 
smaller than unity. Over lengths s 5 LC we can also neglect 

the retardation ( t ~ t )  and convince ourselves that the prin- 
cipal contribution to the convolution f9,  (t,s) for sufficiently 
smooth initial conditions (Idg0/dsfl,.  =, 46 1 g 0 ( 0 )  //s is 
given by the region with the greatest amplification length- 
the neighborhood of the point s' = 0. Then, folding the series 
(3.3) term by term with the initial field g 0 ( s 1 ) ,  we find the 
intermediate (in the linear stage) asymptotic form of the 
field for t - cc : 

According to (3.4), the delay time t, needed for the 
field to reach its maximum, nonlinear level g,,, [see (4.5) 
and (4.8) below], and the characteristic duration 7 of the 
leading front of the CA pulse, determined by the condition 

are equal to 

The corresponding width of the y-radiation spectrum 
(Aw 5 7-  ' ) turns out to be smaller than the increment w" 
(for s-LC, by a logarithmically large factor). This narrow- 
ing of the spectrum is a natural consequence of the nonsta- 
tionary amplification of the radiation in the CA process." 
The dependence of the characteristic times on B / B ,  for 
6, = 10 is shown in Fig. 3. 

We note that the form of the intermediate asymptotic 
form (3.4) of the CA and the corresponding self-similar 
variable {a s2I3 t ' / '  differ substantially from those known 
for super-radiance of two-level atoms, for which 6 ar (st) I " .  

This is connected with the fact that the singularity in the 
susceptibility of an e  e  ' plasma near annihilation reso- 
nance is a root singularity, and not a linear one as it is near 
the frequency of a quantum transition in atoms. As a result, 
the dynamics of CA in the nonlinear stage also turns out to 
be different. 

4.THE NONLINEAR STAGE 

To determine the entire spatiotemporal profile of the 
pulse of y radiation it is necessary to take into account the 
nonlinear depletion of the concentration of annihilating 
e  e  + pairs. Roughly, by neglecting subtle kinetic effects 
associated with the redistribution of the particles over the 
momenta, we may assume that the radiation in a specified 
direction s a t  frequencies close to wo is generated by annihila- 
tion of e  e  + pairs with momentap, in the interval ofwidth 
Ap,. (2.12) about the value fik,/2. Then the change of the 
averaged (over this range of momenta) occupation number 
no(E,,) of the electron (or  positron) states with energy 
E o - - h o / 2  is determined by the energy-conservation law: 

an, Im(98, ' )  
AN,-- = 

B App , AN,=No-- .  
d t  22 B, mc (4.1) 

It describes the transformation of the total energy of the 
e  e +  pairs of the plasma into energy of y radiation as a 
result of the work of the field ?'?, on the current 
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j, = - i w , 9  of the annihilating pairs. In the indicated ap- 
proximation it has been taken into account that the principal 
factor leading to the generation of radiation in the CA pro- 
cess is the disappearance, rather than the braking, of 
charges. It is this circumstance that leads to the essential 
differences of CA from ordinary (e.g., beam) instabilities in 
a plasma.20 

In the resonance approximation the Fourier transforms 
of the polarization 9 and field $, in the nonlinear stage are 
connected by the relation 

9 ( p ,  s )  =- [ b o ( 2 n o - I )  61,'" sin 0 exp ( in/4)/2np1"] 8 ,  (p, s ) .  

(4.2) 

It generalizes (2.7) to the case no< 1 [with neglect of the 
small nonresonance contribution @(p,,k,  ) 1, and includes 
the current local value of the occupation number n,(t,s), 
since the formation of the polarization response of an e -  e  + 

plasma to an external influence obviously occurs more rap- 
idly than the evolution of the distribution function of the 
particles. Going over in (4.2) to the originals, we obtain the 
constitutive equation in integral form: 

bo 
9 ( t ,  s ) = -  - mO1" sin 0 exp 

2n 

To analyze the nonlinear stage of CA we must solve 
Eqs. (4.1 ) and (4.3 ) jointly with the truncated wave equa- 
tion 

3 8 ,  c d 8 ,  - + ---- = 2nioo5D sin' 0 ,  
at as 

describing the propagation along s of a quasi-plane wave in 
the angular interval 

[it coincides with the diffraction interval - (A&, )'/'/LC 
for s- LC,  determined by the size (A&, ) of the first Fres- 
nel zone; A, = 2?r/ko]. Neglecting the retardation, as in 
(3.3), we find a self-similar solution of this system 

iiPZ ( t ,  s )  =8,,[ ( 6 .  3'4)  '"s~L, ]  "$8, (g) , 
2no(t ,  s ) - l = A n ( E ) ,  8,v,r,2j~fioo sin2 BAN,. (4.5) 

It is described by the ordinary integrodifferential equations 

For f% 1 in the linear stage, when A n ( f )  =: 1, the solu- 
tion of (4.6) has the intermediate asymptotic form 

which, to within the unimportant pre-exponential factor, 
can be joined with the asymptotic form (3.4) found above. 
Therefore, the solution (4.6) and An < 1 is the continuation 
of the latter into the nonlinear stage. Here, owing to the 
exponential growth of the field, the initial values of the inte- 
gral 9, in (4.6) for f  5 1 up to the point of joining do not 

\ 
0 - I 'I 1 

10 
ied *Or .- ~ o t  

FIG. 4. Self-similar profiles of the field amplitude I PA / (the solid curve), 
and the excess An = 24,  - 1 of the number of e-  e + pairs above the 
degeneracy threshold (the dashed curve), according to the resonance- 
approximation equations (4.6) and (4.7) .  The curves are plotted as func- 
tion of 6 cc s2/' t 'I3 for A ( 0 )  = and An(0) = 1 .  

play any role. As a result, we obtain universal profiles of the 
field SR, and concentrations An of e - e + pairs as functions 
of the one self-similar variable { (Fig. 4) .  They describe the 
spatiotemporal dependence of the rapid growth and decay of 
the coherent y radiation, confirming the estimates indicated 
at the end of Sec. 3 for the temporal and spatial scales of the 
CA. The self-similar solution (3.4), (4.5) has a relativisti- 
cally covariant form and does not depend on the angle 0 for 
given transverse dimensions L , ,  of the bunch. Therefore, 
different groups Ap, ( 8 )  of e  e +  pairs in the vicinity of 
each momentum value p, = fik,/2 generate similar CA 
pulses (with retardation by a factor of y = l/sin 8 )  with the 
same maximum amplitude of the z-component of the field, 
equal to 8, =: (s/Lc )3'2 $,, /9. Fors = LC and B = B, the 
value g, = : 3 ~  1 0 4 B , .  

The energetics of the process is dictated by the motion 
of the annihilation discharge front f = f, into the interior of 
a bunch of the e -  e  + plasma. At the maximum of the CA 
pulse the Poynting vector of the generated quasi-plane wave 
with field amplitude 8, is determined by the rate of disap- 
pearance of e  e  + pairs, which is proportional to the dis- 
charge-front velocity Ids/dt I = s/2t-c( 3''' s/L,f, 13:  

From this the above-indicated maximum value 8, - 8, 
follows immediately. The duration of a CA y pulse (at the 
0.5 level) is found to be of the order of the time t, needed to 
reach the nonlinear stage of the CA on the boundary of the 
bunch. 

5. ALLOWANCE FOR THE DIVERGENCE OF THE RADIATION 
AND THE FLYING APART OF PARTICLES OF THE e-e+ 
PLASMA 

The angular divergence of the annihilation y radiation 
does not substantially alter the pattern of the CA in suffi- 
ciently uniform bunches of e e +  plasma. The point is that 
waves propagating in difference directions s are incoherent 
and are amplified independently of each other. Therefore, it 
should be expected that for sufficiently extended bunches 
(see footnote 2) the dynamics of the generation of the y 
radiation will be determined by the self-similar amplifica- 
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tion law (3.4), (4.5)-(4.7) along each direction s (with dif- 
fraction accuracy). 

To illustrate what has been said about the angular di- 
vergence, we may consider the model linear problem of the 
annihilation instability of a cylindrical linearly polarized 
(ellB) wave propagating at a right angle to the axis zOllB of a 
sample of e -  e +  plasma in the form of a circular cylinder. 
(the fact that the dominant generation of CA radiation is in 
the transverse (0- r /2 )  and not in the longitudinal (84 1 ) 
direction is determined by the angular dependence of the 
increment (2.10) : w" a sin 0) .  If we seek the asymptotic (at 
large distances r ) A ,  from the axis of the cylinder) solution 
of the inhomogeneous wave equation in the form 

cos mcp 
~ ( t ,  r ) = 8  ( t ,  r )  [H:)  (k0r )+HP)  ( k o r ) ]  ci4{ } , sin mcp 

(5.1) 

then, for the amplitude of the field $ we arrive at the pre- 
vious asymptotic form (3.4) apart from an unimportant pre- 
exponential factor and a change of the effective amplifica- 
tion length by an amount -Ao. Thus, the entire change 
induced in the spatial structure of the field by the angular 
divergence is taken into account by the asymptotic form 

H:' - [21nkor] '" exp ( ikor)  

of the Hankel function, and, in essence, the temporal dynam- 
ics does not change. 

The model problems solved above make it possible to 
present a picture of the development of the CA of an arbi- 
trary three-dimensional bounded bunch of e -  e  + plasma. 
We need only take it into account that for bunches that are 
not too extended along the z axis 
( L ,  4 ct, ( 1 + m2c2/pF2) spatiotemporal evolution of 
the velocity distribution function f(v, ,t,r) occurs as a conse- 
quence of the kinematic flying apart of particles along the 
magnetic field (Fig. 5). Groups of e  - e  + pairs with a spread 
ApF (2.12) of momenta about the valuep, = fik, /2 fly away 
from each other with velocities v, = c cos 8, and radiate, at 

FIG. 5. Spatiotemporal evolution of the distribution function f(o:,t,z) of 
the particles of a degenerate e e ' plasma in the process of kinematic 
flying apart along the magnetic field: a )  at the initial time t = 0; b)  at the 
time of the maximum of the annihilation y radiation, i.e., at the delay time 
r,, . The boundary velocity v,,p,.. (m' + p;/c2) "' . 

with momenta p, zp,,  emits at the angle Omi,, = arc- 
tan(mc/pF). To summarize, the regions of generation of y 
radiation with various frequencies and angles is spread out 
along the z axis (Fig. 6).  The CA emission occurs equally 
from each of the indicated groups of e -  e  + pairs in its own 
reference frame (moving with velocity v, = c cos 0 ) ,  ac- 
cording to the relativistically covariant self-similar solution 
(see Sec. 4).  For the existence of CA it is necessary only that 
the longitudinal dimension L, of the initial bunch be greater 
than the distance AL, by which the particles inside the 
group have flown apart by the time t, [see (3.3) ] : 

the corresponding times t, (O), independently at L,>AL,=tdAu,=2ct~ sin 0 ( o " / w , )  '". 
different spatial points-each at its own frequency 
w, = 2mc2/fi sin O and at its own angle 8 = arccos(z/ct, 1. Then the change of the distribution function inside a given 
The complete radiation cone is determined by the range of group of e - e + pairs as a result of the kinematic flying apart 
angles OE(O,,, , r - Omin 1; the fastest group of e -  e +  pairs, is small, and the pair concentration obeys Eq. (4.1 ). For 

FIG. 6 .  ( a )  Initial plasma bunch; ( b )  geometry of the 
annihilation radiation, at different angles Band on dif- 
ferent frequencies w,, = 2mc2/fi sin 8, from groups of 
e e + pairs flying apart from the initial plasmabunch 
with different longitudinal momenta 
p, = Iik,/2--mc cot Bat the time t , .  

t 
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sin 8- 1, for s 2 1, , the shortest distance beyond which the 
CA is suppressed by the flying apart is 
AL, -LC Jd (wW/w,,) i.e., of the order of fractions of an 
Angstrom. 

We estimate the power of the coherent y radiation from 
each group of e  e  + pairs with sizes L, - L, -LC and 
L, - AL, by taking into account that in the time - td ap- 
proximately half of the e  - e  + pairs of the group annihilate: 

liooANeL,2ALz 8.wL2L,2c 
A W -  - - ( 5 ) I "  . 

2 t d  sin t) (5.3) 

For B-B, and sin 8- 1 we have A W- 10' W. The total CA 
power of a whole bunch of e -  e + plasma is greater than the 
indicated power (5.3) by a factor equal to the number of 
groups and by a length factor: 

For p, - mc, when 2p,/Ap, =: 20, and L, AL, =: 5, we have 
W- 10'' W. This value corresponds, for example, to the 
annihilation of - 10' e -  e +  pairs with concentration 
N,-lo3' c m 3  inavolume - 1 A ' i n a t i m e t d - 3 ~ ~ ~ - - ' 8  
sec. 

It can be shown that CA leads to a considerably higher 
spectral and volume power density of y radiation than does 
incoherent spontaneous annihilation. For B-B,, s 2  3L, 
and 8 = ~ / 2 ,  their ratio W,,,, / W:S,, k lo2, and increases 
both with decrease and with increase of the magnetic field. 

6. CONCLUDING REMARKS 

In conclusion we shall give an assessment of the role of 
the incoherent processes that compete with the coherent 
CA, and formulate a number of open problems related to the 
observation and theoretical description of the phenomenon 
under consideration. Amongst the competing processes are 
spontaneous and collisional relaxation, which disrupt the 
phase of the current of the pairs participating in the CA. 
These processes are primarily single-photon and two-photon 
spontaneous annihilation and electron-electron (e -  e -  , 
e  + e + ) and Compton (ye- , ye + ) collisions. 

We shall estimate the rate of spontaneous single-photon 
annihilation as the inverse lifetime of a positron (e.g., with 
momentum pi = 0 )  with respect to independent annihila- 
tion with all the electrons of a degenerate e e + gas in the 
lowest Landau level: 

p ~ l t u e  

2amc2 
=- 

exp [ -  (B,/B) (l+.z2) ' " I  dx 
~XP(-;) j -. (6.1) f i  

0 ( 1 + ~ 2 ) ' ~  

Here we have used the well known expression for the cross 
section for single-photon annihilation in the rest frame of the 
positron: ' 

As can be seen from Fig. 3, in a wide range of concentrations 
and magnetic fields spontaneous single-photon annihilation 
proceeds with a rate (6.1 ) much lower than the CA rate: 

R ,,&w". Only at a very high concentration, when 
R ,, t ,  2 1, can spontaneous annihilation lead to some reduc- 
tion of the total concentration of the e -  e + plasma by the 
time td of formation of the collective y radiation. However, 
since w" > R , , , this will not lead to complete suppression of 
CA, just as energy relaxation with time TI k td does not sup- 
press the super-radiance of an active Qualita- 
tively, this effect can be described in the adiabatic approxi- 
mation, by introducing a relaxation term - rG1n,(t,s) into 
Eq. (4.1 ). 

The rate of spontaneous two-photon annihilation in 
strong fields B k B, /4, as shown in Ref. 1, is lower than the 
single-photon rate (R ,,, S R ,, ), and for R , , & w" its role is 
certainly insignificant. With somewhat lower magnetic 
fields ( B  < B, /4) the rate of spontaneous single-photon 
annihilation naturally decreases in relation to the two-pho- 
ton rate: R ,, < R ,,; however, for relatively low concentra- 
tions, when Ap, Sp, &mc, the increment of the single-pho- 
ton CA can remain greater than the rate of spontaneous 
two-photon annihilation, so that the inequality R ,, &w" re- 
mains valid. Only upon further decrease of the magnetic 
field ( B  < 0. lBc ) does the two-photon annihilation process 
become decisive. We note, however, that in this case too, for 
a sufficiently high concentration of plasma, even two-pho- 
ton annihilation can apparently have a collective character. 

The estimate given in Ref. 2 1 for the frequency of elec- 
tron-electron collisions in a magnetic field B- B, shows that 
in a wide range of concentrations, up top, -mc, its magni- 
tude is small: Y,, & t; I .  Only above p, k lOmc can this in- 
equality be violated. Furthermore, according to Ref. 22, the 
cross section for Compton scattering of a y quantum with 
frequency close to the threshold frequency by an electron in 
a magnetic field B-B, has a value of the order of a few 
Thon~seon cross sections IT,. ~7 X cm2. Extending 
this estimate to the annihilation y quanta of interest to us, we 
find that their Compton mean free path I, in the conditions 
under consideration is greater than the cooperative length 
L C ,  i.e., the scale of the effective amplification of the y radi- 
ation. For example, for N, - lo3' cm 3 ,  we have I, - 100 
A > LC - 1 A. To summarize, neither of the incoherent pro- 
cesses that we have discussed forbids the realization of sin- 
gle-photon CA. 

The question of the observation of the indicated phe- 
nomenon remains open. To supplement what was said in the 
Introduction, we note that the strong magnetic fields B-B, 
required for this are realistic both for astrophysical condi- 
tions (neutron stars) and for terrestrial conditions (colli- 
sions of heavy ions2' ). Bunches of e  e + plasma of the nec- 
essary density N, 2 lo2' cm - and necessary sizes s k 1 A 
can evidently be formed in collisions of relativistic particles 
and during their motion in strong accelerating electromag- 
netic fields, both in the magnetospheres of compact astro- 
physical objects and in laboratory conditions. Thus, in Ref. 5 
there is a discussion of a hypothetical experiment with col- 
liding electron and positron beams, which, after separate ac- 
celeration in toroidal chambers, merge and then collapse 
(pinch). As a result, in the opinion of the author of Ref. 5, 
who takes only spontaneous annihilation into account, the 
e - e  + plasma bunch is compressed to a density of the order 
of nuclear density ( lOI5 g/cm4) and an azimuthal magnetic 
field with an intensity at the surface of the bunch of 1016- 
10" G is generated. The collective process considered in the 
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present article will lead, most probably, to annihilation of 
the e  e +  -plasma bunch, with emission of coherent y radi- 
ation, considerably earlier, when the density is still several 
orders of magnitude smaller than that indicated by the au- 
thor of Ref. 5 and the magnetic field is - 1013 G. 

Finally, we indicate a number of questions that have 
remained outside the scope of this article. 

a )  The profile of the trailing edge of the pulse of collec- 
tive y radiation and the law of its re-absorption as it propa- 
gates beyond the limits of the annihilating bunch, with 
allowance for the inhomogeneous and nonstationary e - e  + 

plasma that it generates from the vacuum. 
b )  The role of kinetic effects associated with the redis- 

tribution of particles in momentum space. 
C)  Allowance for the nonzero temperature, the popula- 

tion of the excited Landau levels, and radiative processes of 
higher orders. 

d )  The statistical (fluctuation and correlation) effects 
that arise in the generation and propagation of coherent y 
radiation in an e  - e  + plasma on the boundary of the region 
of applicability of the continuous-medium approximation, 
when the interparticle distances N ;  "' are greater than or of 
the order of the wavelength A,,. 

e) The analysis of analogous CA processes and the gen- 
eration of coherent y radiation (annihilation super-radi- 
ance) in other systems, e.g., the two-photon CA of an e -  e  + 

plasma, super-radiance in interband electron-hole transi- 
tions in semiconductors, in free-to-bound transitions in a 
recombining electron-ion plasma, etc. As is shown by the 
above-considered example of single-photon CA of an e - e  + 

plasma, the dynamics of the generation of collective sponta- 
neous radiation in such active media with a continuous ener- 
gy spectrum can differ substantially from the dynamics of 
super-radiance in media with a discrete energy spectrum. 

7. CONCLUSIONS 

The results obtained permit us to assert the following: 
1. There exists a process of collective annihilation of a 

sufficiently dense [degenerate; see (2.13) ] e -  e  + plasma 
with concentration N, k 10'' cm-3  in a strong magnetic 
field B 2 10'" that occurs via coherent acts of single-pho- 
ton annihilation of e -  e +  pairs and develops considerably 
faster than incoherent processes of spontaneous and colli- 
sional relaxation. 

2. This process is due to instability of the extraordinary 
normal waves in a narrow band of wave numbers near the 
threshold wave number k, = 2mc/fi sin 8 with maximum 
increment w" (2. lo) .  

3. In the CA process, spontaneous fluctuations of the 
field and polarization in a bunch of e -  e  + plasma develop 
into powerful coherent y radiation. In the unidirectional 
model of propagation the law of increase of the radiation is 
described by the intermediate asymptotic form (3.4) in the 
linear stage and by the self-similar solution (4.5)-(4.7) 
[which is joined to (3.4)] in the nonlinear stage, both of 
which depend on the single combination 6 a s213 t '13. This 
specifies the spatial and temporal scales of the process. For 
example, for B- B, the spatial scale s is of the order of the 
cooperative length LC = c/w" - 1 A, the CA-delay time 
td =:3 X 1 0  l 8  sec, and the duration of the leading front of 
the pulse is r=:3t,/ld [see (3.5) 1. With decrease of the 

magnetic field B, all the indicated scales L C ,  t,, and T in- 
crease significantly. 

4. The spatial divergence of the radiation and the geo- 
metrical shape of the annihilating e -  e  + -plasma bunch do 
not qualitatively change the above-indicated dynamics of 
the process, since the decisive factor is the exponential 
growth of the coherent y radiation along the quasi-one-di- 
mensional (with small diffraction divergence) rays in the 
direction of the maximum amplification coefficient 6. The 
latter is determined by the combined action of the factor 
describing the angular dependence of the increment 
(w" a sin 8) and the factor s ( 8 )  describing the geometrical 
length of the plasma bunch [see (3.4) 1. 

5. Kinematic flying apart of a not too short [see (5.211 
e  e  + bunch along the magnetic field leads only to the spa- 
tial separation of groups of e  e  + pairs generating coherent 
y radiation on different frequencies and at different angles to 
the direction of the magnetic field (Fig. 6 ) ,  built not to sup- 
pression of the CA process itself. 

There are two possible subsequent fates of the annihila- 
tion y quanta as they propagate in the vacuum beyond the 
limits of the initial e  - e  + -plasma bunch. In those situations 
where the magnetic field is strongly nonuniform in magni- 
tude and direction (on scales -LC and over times - t ,  ), the 
y quanta radiated outwards turn out to be far, in frequency 
and direction, from the annihilation resonance of the magne- 
tized vacuum, and can propagate without substantial ab- 
sorption. A similar variant should arise in the case of local- 
ization of the magnetic field near the e  e  + -plasma bunch, 
e.g., if the magnetic field is produced by internal plasma cur- 
rents and vanishes as the plasma is annihilated up to the time 
of generation of the powerful y radiation. The latter pertains, 
e.g., to situations analogous to the experiment5 that was dis- 
cussed in Sec. 6 .  In such cases the collectively annihilating 
plasma serves as a source of coherent y radiation. In those 
situations where the magnetic field is quasi-uniform in space 
in time, the y quanta will remain close to annihilation reso- 
nance and will produce e -  e + pairs again, at a distance 
-LC from the initial plasma sample. (Such absorption 
awaits all the annihilation y radiation emitted in the depth of 
the plasma sample (see footnote 2) if the same length s is 
much greater than the cooperative length LC;  (cf. the ab- 
sorption of super-radiance in a two-level active med- 
i ~ r n . ~ - "  ) In these conditions the indicated process leads in 
effect to rapid and effective transfer of electrons and posi- 
trons across the magnetic field by way of absorption of y 
quanta, i.e., to the phenomenon of anomalous transverse dif- 
fusion of magnetized plasma. As a result, what is realized is 
not only kinematic flying apart of the plasma along the mag- 
netic field but also spreading of the plasma across the mag- 
netic field, despite the impossibility of direct motion of the 
magnetized electrons and positrons across the field B. In this 
case, an external observer will "see" only the burst of inco- 
herent y radiation formed by the y quanta that have emerged 
from the region of effective pair creation as a result of Comp- 
ton scattering. 

In different concrete situations the ideas that we have 
described can serve, in our view, as a basis for estimates of 
the role of CA in a number of other elementary processes 
involving the dynamics of the energy release, decay, and ra- 
diation of a dense cosmic or laboratory e -  e  + plasma in 
strong magnetic fields. 
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In conclusion, the authors express their gratitude to V. 
V. Zheleznyakov and Yu. V. Chugunov for discussion and 
for their interest in the work. 

"The second [different from (2 .9) ]  complex root (2.4) turns out to be 
superfluous, i.e., is not a solution of the dispersion equation by virtue of 
the Landau rule for calculating the integral (2.1 ). The third, real root of 
(2.4) corresponds to the excitation of "light-positronium,"" and is not 
important for the annihilation instability. 

"The regular solutions considered here and below are valid only over 
lengths s that do not exceed the length -ct, zL , . { , / 2 ,  i.e., a few coop- 
erative lengths t,. - 1 A. Otherwise, over different segments of length 
-ct,,  independent CA y pulses will be formed from the quantum noise 
and will form, in their propagation and absorption in the plasma, an 
irregular sequence. 
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