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Three-dimensional nonlinear steady states of wave fields in a ring parametric stimulated- 
Brillouin-scattering oscillator are found. A classification is given of nonlinear oscillator modes 
and a study is reported of the stability of the fundamental mode. It is shown that the fundamental 
mode is stable near the excitation threshold. When the threshold is exceeded significantly, the 
fundamental mode becomes unstable in the presence of distortions of the spatial distributions of 
the intensities of the interacting light beams and ofphase distortions of their wavefronts, but the 
instability thresholds are different for these two types of perturbation. 

1. INTRODUCTION 

Development of efficient methods for transformation of 
light beams is one of the important tasks in modern nonlin- 
ear optics. The energy relationships governing this transfor- 
mation have been investigated in great detail. The transverse 
structure of the interacting beams has for a long time eluded 
a proper description, particularly under conditions of strong 
depletion of such beams. 

We propose an approach to an analysis of the transverse 
structure of beams when a four-wave interaction in the spe- 
cific case of a ring parametric stimulated-Brillouin-scatter- 
ing (STBS) oscillator, which is one of the promising devices 
for phase self-conjugation of the wavefronts of light beams. 
In this case (Fig. 1 ) a signal beam go, which is to be phase- 
conjugated passes through a nonlinear medium and is re- 
turned, by external optical elements forming a feedback 
loop, to the nonlinear medium in the form of a beam 8, - , 
and it intersects the beam go, . At some specific value of the 
signal beam intensity the STBS process of a nonlinear medi- 
um converts the wave go, into a wave P - ,, propagating 
opposite to the wave Po - , . After passing along the feed- 
back loop, the beam 8 - ,, forms a scattered-light beam 
P - , - , , which acquires its energy due to STBS from the 
beam 8, - , and in turn amplifies the beam P - , , . There- 
fore, scattering in such a system represents an absolute insta- 
bility (oscillation). 

A ring parametric oscillator had been realized experi- 
mentally using STBS-active liquids'92 and photorefractive 
 crystal^.^ A theoretical analysis of this oscillator had been 
made on the basis of a one-dimensional but this 
ignores completely the transverse structure of light beams 
and, consequently, cannot be used to find the spatial distri- 
bution of the scattered radiation or criteria for selection of 
the phase-conjugated component. A method for calculating 
the three-dimensional structure of fields under nonlinear 
conditions in a ring parametric oscillator was proposed in 
Ref. 6; the excitation thresholds were determined and the 
structure of normal longitudinal-transverse modes of a ring 
oscillator was found. In the case of the fundamental mode its 
nonlinear characteristics were determined also above the ex- 
citation threshold. 

The question whether nonlinear stationary states pre- 
dicted for various four-wave interaction systems can be real- 
ized may be answered by an analysis of their stability. Ana- 
lytic investigations of this were published 

recently and were limited to the one-dimensional approach. 
For example, the stability of nonlinear states of a ring para- 
metric STBS oscillator was discussed in Ref. 9. 

We shall use the approach of Refs. 6 and 7 to investigate 
the stability of the fundamental mode in a ring parametric 
STBS oscillator. We shall show that when the pumping rate 
exceeds greatly the excitation threshold, the fundamental 
mode becomes unstable due to amplitude distortions of spa- 
tial distributions of the intensities of the interacting beams 
and due to phase distortions of their wavefronts. We shall 
compare the results of our three-dimensional analysis with 
those obtained by the one-dimensional approach. We shall 
demonstrate that the range of stability of stationary states 
becomes narrower outside the one-dimensional approxima- 
tion. In Sec. 2 we shall formulate mathematically the prob- 
lem and derive certain general relationships. In Sec. 3 we 
shall find a nonlinear three-dimensional stationary state of 
the fields corresponding to the fundamental scattering mode 
and we shall discuss higher modes. In Sec. 4 we shall analyze 
the ground state in the presence of amplitude perturbations 
and in Sec. 5 we shall do the same in the case of phase pertur- 
bations. In the final section we shall consider the results ob- 
tained and compare them with those of the one-dimensional 
analysis given in Ref. 9. 

2. PRINCIPAL EQUATIONS 

We shall give a theoretical description of the system in 
Fig. 1 for fairly wide slightly aberrated electromagnetic radi- 
ation beams. The interaction of such beams in a nonlinear 
medium due to the excitation of a reflecting grating of the 
refractive index and their propagation along a feedback loop 
will be described in the geometric-optics approximation. We 
shall assume that the thickness of a nonlinear medium and 
the angle of convergence of the beams are relatively small. 
This makes it possible to ignore the relative displacement of 
the beams in the thickness of the nonlinear medium and to 
represent the electric field of the pump 8,, , and scattered 
8 - , * , radiation beams in the form 

Zrnn=Ema (2 ,  p; t )  exp [ik,p2/2R,, (2) +ik,z-io,t]. ( 1 ) 

Here, z is the coordinate in the direction of propagation of 
the beam; p are the transverse coordinates; t is time; k ,  and 
w, are, respectively, the wave number and frequency of the 
pump (m = 0)  or scattered (m = - 1 ) beams; R,, (2) is 

35 Sov. Phys. JETP 72 (I), January 1991 0038-5646/91/010035-08$03.00 @ 1991 American Institute of Physics 35 



FIG. 1. Schematic representation of the interaction of four waves in a ring 
parametric oscillator. 

the radius of curvature of the beam wavefront; E,,,,, is the 
complex amplitude of the beam varying slowly compared 
with an exponential function. When beams propagate along 
their feedback loop, their radii of curvature vary in accor- 
dance with the formulas of the geometric-optics approxima- 
tion and the slow amplitude E,,,,, undergoes a scaling trans- 
formation along a transverse coordinate p .  It is shown in 
Ref. 10 that the pump radiation contracts in the external 
optical channel, i.e., when the diameter of the beam El, , in 
the nonlinear medium is less than the diameter of the beam 
El,, , the strong phase dependences of the scattered radiation 
in Eq. (1)  become reversed relative to the corresponding 
pump beams so that R , , = - R,,, and 
R ,, = - R,, , . The weak phase and amplitude depen- 
dences are governed by the complex amplitudes E,,,,, . These 
amplitudes obey a system of dynamic equations describing 
the interaction of four electromagnetic waves E,,,,, in a non- 
linear medium of thickness I (O<z<l): 

Here, v is the amplitude of an acoustic wave excited in a 
medium and corresponding to STBS through an angle 
.rr - 20, where 2 0 6  1 is the angle between the pump beams 
E,,, and Ell , in the medium, g is the nonlinear coupling 
coefficient, and T is the relaxation time. 

The electromagnetic fields El,, , and E , + , and the 
amplitude v of an acoustic grating are functions of the longi- 
tudinal coordinate z in the direction of wave propagation 
(Fig. 1 ), of the transverse coordinatesp, and of time t. The 
system ( 1 )  is identical with the equations used in the one- 
dimensional theory5 and it depends explicitly only on the 
longitudinal coordinatez and on time t. The distinction from 
the one-dimensional theory is that the system ( 1 ) contains a 
transverse coordinate p as a parameter. The details of the 
derivation of the system of equations (2)  and of the condi- 
tions of its validity can be found in Ref. 6. 

The system (2 )  will be supplemented by two boundary 
 condition^^^'^ corresponding to a given transverse distribu- 
tion of the pump beam E,,, at the entry to the nonlinear 
medium in the absence of the entry beam of the scattered 
radiation E , , : 

Two other boundary conditions correspond to mapping of a 

transverse section of the pump beam E,,, , at the exit from the 
nonlinear medium where z = I, onto the entry face of the 
medium z = 0 characterized by a scaling transformation co- 
efficient y and a corresponding mapping of a transverse sec- 
tion of the exit scattered-radiation beam E , , at the bound- 
ary z = 0 onto the boundary z = I: 

E, - ,  (0. p; t)=(rly)Eol(l .  ply; t ) ,  
(3b)  

E-,-,(l, p; t ) = r ~ E - , ~  (0, yp; t ) .  

Here, r is the amplitude transmission coefficient of the feed- 
back loop and y is the scaling coefficient of the transforma- 
tion. We shall consider the case when < 1 corresponding to 
compression of a transverse section of the pump beam as it 
passes along the feedback loop, because this condition en- 
sures selection of modes in the system under considera- 
tion. "' 

The system of equations (2 )  has integrals of motion 
C, (p;t), where j = 1-4 (see, for example, Refs. 6 and 10): 

The use of the boundary conditions (3a )  and (3b)  in 
the expressions for the integrals of motion ( 4 )  allows us to 
derive the following systems of equations for these inte- 
g r a l ~ : ~  

Here, f (p )  = 1 El, (p)/E,, (0 )  1 '  is a function describing the 
transverse distribution of the intensity of the pump beam 
entering the system, whereas F(p;l)  
= E * , (Z = O,p;t)/E,, (p)  is a form factor containing de- 
tailed information on the structure of the scattered radiation 
field and enabling us to determine all the output characteris- 
tics of the oscillator such as, for example, the total nonlinear 
reflection coefficient and the quality of phase conjugation of 
the pump beam El,, . The form factor F(p; r )  cannot be de- 
rived however simply with the aid of the integrals of motion 
(4 )  and the boundary conditions (3 ) ;  we have to solve the 
dynamic system (2 ) .  

3. STATIONARY STATES 

Stationary states correspond to a monochromatic scat- 
tered wave and to the substitution d/dt4iSw in Eq. (2b), 
where Sw is a possible frequency offset of the scattered radi- 
ation from the center of the gain profile. Substituting the 
expression for the amplitude of an acoustic grating from Eq. 
(2b) into Eq. (2a),  we obtain a system of four nonlinear 
ordinary differential equations, the solution of which is 
known.4 This general solution, together with the integrals of 
motion (4 ) ,  allows us to find all the electromagnetic fields 
inside the nonlinear medium and, in particular, to write 
down the following expression for the form factor F(p;  t )  of 
the scattered radiation:' 
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F ( p ;  t )  =G[-C,+Cz+d+ (Cl-C,+d) P ]  /2C,*(I G 1'-P), 

G ( p ;  t )  =- (21 C, (2+ClC2+C,2-C,d) /2C,C,, 

Here, x = gl E, (p = 0 )  1 * I  is the coefficient representing 
convective amplification of the scattered radiation during 
passage through the center of the pump beam. In stationary 
solutions the integrals C , ,  C, ,  and C, are independent of 
time, whereas C3 and F depend harmonically on time: 
C3 a F a e x p (  - i s m ) .  

The system of equations (5 )  for the integrals of motion 
C ,  to C, and the expression (6 )  for the form factor deter- 
mine all the characteristics of the investigated oscillator un- 
der steady-state conditions. The solution of the system ( 5 ) -  
(6)  is a denumerable set of longitudinal-transverse nonlin- 
ear modes, but the most interesting (from the practical point 
of view) is the family of modes corresponding to an oscilla- 
tion at the center of the gain band where Sw = 0, because 
such modes have the lowest excitation thresholds. They dif- 
fer in respect of the transverse structure of the scattered radi- 
ation beam. They can be called transverse and can be labeled 
by the index n = 0, 1,2, ... . In the case of radially symmetric 
beams the structure of the scattered field of a mode with an 
index n at its excitation threshold corresponds to the asymp- 
totic dependence F ( p )  a Ip 1 " in the limit when Ip 1 - 0. The 
excitation thresholds of such modes are given by6 

The lowest excitation threshold belongs to the fundamental 
scattering mode n = 0 described in Ref. 6 .  Typical radial 
distributions of the field of the scattered radiation of this 
mode are shown in Fig. 2, whereas the dependences of the 
nonlinear reflection coefficient R and of the coefficient H 
representing the phase-conjugation quality on the convec- 
tive gain are illustrated in Fig. 3. 

The fundamental scattering mode corresponds to com- 
plete phase conjugation of the pump beam when the ampli- 
tude structure is reconstructed subject to some distortions. 
Complete reconstruction of the phase structure of the pump 
radiation means that, in the case of the fundamental mode 
under steady-state conditions, we can regard all the fields 
E, * , and E - , . , as purely real without any limitations on 
the validity of this conclusion. 

In an analysis of the stability of the dynamic system (2 )  
we shall linearize the system near its ground state. We then 
obtain a system of differential equations for complex pertur- 
bations of electromagnetic fields SE, * , and SE , + , , and 
of perturbation of the acoustic field SY. The coefficients of 
this system are purely real. Therefore, a linearized system of 
equations can be split into two independent subsystems. One 
of them describes the stability of a nonlinear stationary solu- 
tion against excitation of amplitude distortions of the spatial 
distributions of the intensity of the interacting beams, and 
the other describes stability against excitation of purely 
phase distortions of their wavefronts. We shall give the re- 
sults of an investigation of the stability of stationary states in 
the presence of these two classes of perturbations. 

FIG. 2. Radial distributions of the intensity of a phase-conjugated wave 
(fundamental stationary scattering mode) calculated for y = 0.5, 
x = 0.38 (curve 1) ,0.5 (curve2),and 1.0 (curve3); Irl' = 1.Thedashed 
curve represents the signal beam. 

4. AMPLITUDE PERTURBATIONS 

In discussing amplitude perturbations we can assume 
that all the functions E,, , and E - , + , in the system of 
equations (2 )  can be regarded as purely real even when the 
conditions are not steady-state. We can then introduce a 
function 

and reduce the system (2 )  to one nonlinear partial differen- 
tial equa t i~n :"~  

The stationary solution of the system (9 )  is identical with 
Eq. (6) .  

In an analysis of the stability we shall represent the 
function Y as follows: 

where f is the complex dimensionless frequency f = f '  + i f "  
and SY is a small correction. We can similarly represent 
deviations from stationary values of all the electromagnetic 
fields and integrals of motion. An instability of a stationary 
state corresponds to f" > 0, whereas at the instability thresh- 
old we have f" = 0. 

Linearization of Eq. (9 )  relative to the steady state and 
solution of the resultant equation for perturbations SY 
yields, as in the one-dimensional theory,' the following 
equation: 

37 Sov. Phys. JETP 72 (I) ,  January 1991 Eliseev etal. 37 



V ( l . 0 )  

1  6d 5 dy [sh Y (1, p )  ] v ( t - i f )  
( 1 1 )  

+-- 
I +  V ( o , p l  sh y 

We can obtain a closed dispersion equation for the determin- 
ation of the complex frequency f by finding the relationship 
between the perturbations SY ( 0 )  and SY ( I )  with the aid of 
variation of the integrals of motion C , - C ,  and using the 
expression ( 8 )  for Y ;  these expressions then have to be sub- 
stituted in Eq. ( 1  1 ) .  It follows from Eq. ( 8 )  subject to the 
boundary conditions E _ ,, ( 1 ,  p; t )  = 0  that 

6'IJ (p, 1 )  =2 (C,d2)- '  [8C3C,(C,+C2) +6C:C3 (GI-C?)  

- a c , c , s c ,  I. ( 1 2 )  

The relationship ( 12)  is local, i.e., it relates perturbations of 
the function Y and of the integrals C ,  -C, at the same point. 
Similarly, variation of the expression for the function Y at 
the point z = 0 ,  subject to the definition of the integral C ,  
given by Eq. (4) ,  yields 

S y ( 0 ,  p )  = 6 Y  ( 1 ,  p ) -6C,  [ C ,  ( I - C , ) ' " ] - ' .  ( 1 3 )  

Variation of the function d which occurs on the right-hand 
side of Eq. ( 1 1 ) gives 

Finally, variation of the system ( 5 )  gives 

6C, (p )  = f i F ( p ) f ( p )  - - Y - ~ ~ C ~ ( P I Y ) ,  

2 C 3 6 C 3 ( p ) = ( r y ) 2 6 C l ( p )  [ l ( y p ) - C , ( Y p ) ]  

- ( r y ) 2 6 C , ( y p ) C i ( ~ ) ,  ( 1 5 )  

6cz ( P )  = ( r l ~  ) ' ~ C I  ( p l y )  -2f  ( p ) P  ( p )  6F ( p )  . 

Variation of the integral C ,  may be excluded from the sys- 
tem of equations ( 1 2 ) ,  ( I S ) ,  since it follows from the general 
relationship Ci-C: = C ,  C ,  that 

Therefore, we obtain for the quantities S C ,  , SC, , SC,  , 
6F. a system of four linear homogeneous equations ( 1 1 ) and 

FIG. 3. Dependences of the total nonlinear backreflec- 
tion coefficient R (continuous curves) and of the 
phase-conjugation quality coefficient H (dashed 
curves) on the convective gain K, calculated for 
y = 0.3 (curve 1 ), 0.5 (curve 2), and 0.7 (curve 3);  
ir12 = 1. 

( 1 5 ) ,  which are nonlocal in respect of the coordinatep. The 
condition of solvability of this system of equations is the 
dispersion equation for the determination of the complex 
frequency f: 

The structure of the system ( 1 1  ), ( 1 5 )  shows that its 
solutions represent a denumerable set of normal nonstation- 
ary excitation modes, which differ in respect of the trans- 
verse structures of the fields. We shall number these modes 
by two indices ( n ,  m ) ,  the first of which governs the nature 
of behavior of the fields in the vicinity of a fixed point p  = 0: 
SC,("3'n'(p) ,  S E r 3 " ' ( p )  a lpl", whereas the second is the 
number of a stationary mode from which the nonstationary 
mode in question arises. The structure of the system ( 11 ), 
( 15)  leads to the conclusion that the excitation threshold of 
a nonstationary mode n can be found from an analysis of this 
system in the vicinity of a fixed pointp = 0, where the system 
of equations ( 15)  yields 

6~, '"'")  (p)  [ l + y - 2 - n ]  =6F(",m) ( p ) ,  

~ c : ~ ) ( O )  6 ~ ~ ( " ' ~ '  ( p )  = ( r y ) z 6 ~ , ' * ~ m '  ( p )  [ I - c ! ~ )  ( 0 )  ( I + y n )  1, 
6 ~ 2 " ~ ~ )  ( p )  , r 2 , f - ~ - 1 ~ 6 ~ l ( n s m )  ( p )  -2F'"' (0)6F'"*") ( p )  . 

( 1 7 )  

We shall confine ourselves to an investigation of the 
stability of the fundamental stationary mode m = 0 .  It will 
be clear from our later analysis that an instability of this 
mode appears when its excitation threshold is exceeded 
greatly, i.e., when exp(xd) 1 .  We shall use this condition 
to determine approximately the excitation threshold of non- 
stationary modes. 

The solution of equations for the stationary state [Eqs. 
( 5 )  and ( 6 )  1 at a fixed point p = 0  gives the following 
asymptotic expressions for the integrals of motion of the fun- 
damental mode m = 0 :  

( 1 8 )  
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where 

E = 
I+? 

exp (-xd) << I,  d = 
yz ( I  +r2) 

rZ(l+y2)  ( l+yz)  ' 

Substitution of the expressions (18) into Eq. (8 )  for Y 
makes it possible to determine the value of this function and 
the boundaries of the nonlinear medium in the ground state: 

The use of the relationship (18) together with ( 12)- 
( 14) gives the following equations describing the behavior of 
6Y and of perturbations of the integrals of motion in the 
vicinity of a fixed point in the case of a nonstationary nth 
mode: 

rZ ( l+y2)" 1511r(">O) (p, 1 )  z - 
l+r2 yZ 

( I + ~ ~ + ~ " + ~ + ~ - " ) ~ c , ' ~ ' ~ '  (p) ,  

6Y("+" (p, 0) z - 
(1+y2)% 

(l+r2)  y  
2[l+y2-rZ(yn+2+y-n) ]~c I ( * " )  (PI, 

Substitution of Eqs. ( 19) and (20) into Eq. ( 11 ) in the limit 
Ip( - 0 shows that the integral term in this equation is small. 
Neglecting this term, we obtain the following dispersion 
equation describing excitation of a nonstationary mode (n,  
0 )  : 

At the excitation threshold of a nonstationary mode (corre- 
sponding to bifurcation of the ground stationary state) we 
have f c, = 0 and it follows from Eq. (21 ) that 

where N = 0, + 1, + 2, ... is an arbitrary integer. The mini- 
mum excitation threshold of the amplitude mode (n,  0 )  cor- 
responds to N = 0, - 1. 

It follows from Eq. (21) that an instability of the 
ground state against excitation of the nth mode may appear 
when 

The range of values of r where the instability is possible be- 
comes narrower on increase in the mode number n and is 
widest for the mode n = 0: 0 < r < 1/3. If r > 1/3 the 
ground state is stable against excitation of amplitude pertur- 
bations with any number n. The minimum excitation thresh- 
old for the first few modes is approximately the same and 
corresponds to the relationship U,, a IT. A rough estimate 
carried out using Eq. (22) subject to y - 1 gives x::,",'~, - 2 ~ .  
This threshold is reached at low values of r 2:r 1, which 
decrease on increase in the mode number n. We must also 

FIG. 4. Dependenceofthestability loss threshold (bifurcation threshold) 
of the fundamental scattering mode on the beam compression coefficient 
in a feedback loop, calculated for lrl' = 0.1; amplitude perturbations. (0. 
0) mode. 

bear in mind that an increase in the mode number 11 results in 
breakdown of the condition E < 1 of Eq. ( 18), so that Eq. 
(22) describes well the bifurcation thresholds for several 
low numbers n. Typical dependences of the bifurcation 
threshold on the beam compression coefficient y and on the 
transmission coefficient r * of the channel are plotted in Figs. 
4 and 5. 

5. PHASE PERTURBATIONS 

In discussing the instability of a stationary state against 
phase perturbations of the wavefronts of the interacting 
waves, we shall represent the deviations of the complex am- 
plitudes of electromagnetic fields from their stationary val- 
ues as follows: 

We shall similarly describe deviations of the amplitude of the 
acoustic wave and of the integrals of motion C ,  and C, from 
their stationary values. The integrals C ,  and C, remain un- 
perturbed, because they are always purely real. 

The system ( 2 )  leads to equations similar to those used 
in Ref. 9: 

FIG. 5. Dependences of the bifurcation thresholds of the fundamental 
scattering mode on the transmission coefficient of a feedback loop in the 
case when y = 0.7; amplitude perturbations: 1 )  (0, 0 )  mode; 2 )  (1, 0 )  
mode. 

39 Sov. Phys. JETP 72 (I), January 1991 Eliseev eta/. 39 



where 

I , ( z ,  p; t )=IEi j (z ,  p; t )  1'7 

and to the following equation for the amplitude of the acous- 
tic wave 

where 

Ix ( z ,  p; t )  = z o l + z o ~ l + ~ ~ l , + I ~ l ~ l  

is the sum of the intensities of all four waves interacting in 
the nonlinear medium. 

Variation of Eq. (25) subject to the condition that 
61, = 0, gives 

I 

g 6 r  (2. p) = b v  (1, p) exp[ -j ~ z ' I x  (z' ,  p) ]  . 
I-if 

The function I ,  on the right-hand side of Eq. (26) is gov- 
erned by the distributions of the intensities of the interacting 
waves in the stationary state. Variations of the equations in 
thesystem (24), subject to Eq. (26), obey the following rela- 
tionships: 

where 

The boundary condition E - , , ( I ,  p; t )  = 0 is allowed for in 
the derivation of Eq. (27). 

The additional equations for the determination of per- 
turbations of electromagnetic fields at the boundaries of a 
nonlinear medium can be obtained by varying the expression 
in the system (4)  for the integrals of motion C, and C,; 

and by varying the boundary conditions of Eq. (3b): 
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The system of equations (27), (29), and (30) has-as 
in the case of amplitude perturbations discussed in the pre- 
ceding section-a denumerable set of eigensolutions (non- 
stationary excitation modes) which are again numbered by 
the indices (n, m). The index n describes the behavior of the 
fields of a nonstationary mode in the vicinity of a fixed point 
p = 0: SEV (p)  cc IpJ "; the index m identifies the number of 
the stationary mode from which a given nonstationary mode 
arises. As before, we shall consider only the stability of the 
fundamental stationary mode m = 0. The excitation thresh- 
old of a mode ( n ,  0 )  can be found simply by analyzing the 
system of equations (27), (29), and (30) in the vicinity of 
the fixed pointp = 0. The dispersion equation for the ( n ,  0 )  
mode obtained as a result of such analysis is 

(0, i+y' -2 (c, - - i ) 4. 
y2 

In Eq. (3  1 ) the functions J and the integral C iO' apply at 
the beam center (p  = 0).  The expressions for the intensities 
of the interacting waves in a stationary state with p = 0, 
which are represented by the integrands on J rOi, follow from 
the solution of the system ( 1)  in the stationary state and are 
described by the expressions 

where 

Y= [ 2CJZ+C1 (C,+C2-d)  ] [2C,2+C, (C,+C,+d) 1 - I ,  

M (z)  =exp [ x d  (zll-I) 1, 

all the integrals C,  -C, are taken at p = 0, and, finally, we 
have I, = IE, (p = 0)  1 2. 

We shall first analyze the dispersion relationship (3  1 ) 
at the excitation threshold of the ground state m = 0. We 
then have C :O' 4 0 ,  C 1'' -+ 1 ,  C F' -+ ( r / y )  ', and it follows 
from Eq. (3 1 ) that 
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Since xth,,d = ln(1 + r - Z  + yn) [see Eqs. (7)  and (18)], 
the above expression can be written in the form 

The solution of Eq. (33 ) gives f = 0 for the n = 0 mode 
and f = if", where f" < 0, for the modes with nonzero values 
of n. In other words, at its excitation threshold the ground 
stationary state (m = 0) is the state of neutral equilibrium 
relative to the mode n = 0 and stable equilibrium relative to 
the modes n > 0. The physical reason for the existence of a 
neutral equilibrium state is the circumstance that, within the 
framework of the system of equations ( 1 ) and (2) ,  the phase 
of the scattered radiation is indeterminate and can have any 
value. The conclusion that the ground state (n = 0) is the 
state of neutral equilibrium applies at any value of the pump 
intensity exceeding the threshold for the appearance of a 
stationary state. 

The situation for the (n, 0)  modes when n > 0 is differ- 
ent. When the pump intensity is sufficiently high, the ground 
stationary state is unstable and its modes are excited. We can 
demonstrate this by considering the dispersion equation 
(3 1 ) with n # 0 on the assumption that x $ 1. Using the 
asymptotic values (18) of the integrals C jo)-C~o' in this 
limit and calculating the functions J, and J, of Eq. (28), we 
can reduce the dispersion equation (3  1 ) to 

where 

At the instability threshold of the (n, 0)  mode (bifurca- 
tion of the ground state) the solutions of Eq. (34) corre- 
spond to high values of the frequency f A, $1. Bearing this 
point in mind, we find that 

where N = f 1, ~fr 2, ... is a nonzero integer; the minimum 
bifurcation threshold corresponds to N = * 1. Since 
Vn > 1, instability of the ground state due to excitation of 
phase perturbations is possible for any value of r and y, but 
the bifurcation threshold is fairly high: x,, Z 47~. Character- 
istic dependences of the bifurcation threshold of the ground 
state in the case of excitation of the mode ( 1,0) are plotted in 
Figs. 6 and 7. 

6. CONCLUSIONS 

The problem of stability of a stationary state of a ring 
parametric STBS oscillator in the presence of amplitude and 

FIG. 6. Dependence of the bifurcation threshold of the fundamental scat- 
tering mode on the coefficient of beam compression in a feedback loop, 
calculated for IrlZ = 1; phase perturbations, ( 1 , O )  mode. 

phase perturbations was considered in Ref. 9 using the one- 
dimensional model. It was shown there that the fundamental 
mode of a stationary state may be unstable in the presence of 
amplitude perturbations if the transmission coefficient of a 
feedback loop is r 2  < 1/3, but it corresponds to a state of 
neutral equilibrium relative to phase perturbations. A com- 
parison of these results with our results obtained by a three- 
dimensional analysis shows that the one-dimensional ap- 
proach yields qualitative results compared with those of a 
study of the stability of stationary states, but only in the case 
of excitation of the fundamental nonstationary mode (0,O) 
in the three-dimensional case. The exact values of the bifur- 
cation thresholds in the presence of amplitude perturbations 
of the mode (0,O) are different in the one- and three-dimen- 
sional cases, although they are of the same order of magni- 
tude. 

Some characteristics, such as the maximum value of the 
transmission coefficient of the optical channel at which a 
stationary state may be unstable due to excitation of ampli- 
tude perturbations &,,, = 1/3, are the same for the one- and 
three-dimensional models. The higher modes of amplitude 
perturbations (n, 0) characterized by n > 0 are not described 
by the one-dimensional theory, but their excitation thresh- 
olds are higher than the threshold of the (0,O) mode and the 
range of existence in terms of the relevant parameter is nar- 
rower. Therefore, on the whole, we can say that the one- 
dimensional model gives a qualitatively correct answer on 
the subject of the stability of the ground stationary state and 

FIG. 7. Dependence of the bifurcation threshold of the fundamental scat- 
tering mode on the transmission coefficient of a feedback loop, calculated 
for y = 0.8; phase perturbations, ( 1,O) mode. 
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amplitude perturbations are excited. The reason for this is 
clearly the fact that the transverse structure of the field of the 
(0,O) mode does not differ too greatly from the transverse 
structure of the fundamental stationary mode. 

The situation is opposite in comparisons of the predic- 
tions of one- and three-dimensional models in the case of 
excitation of phase perturbations. In this case the presence of 
modes with n $0 in the three-dimensional analysis, which 
have no analogs in the one-dimensional model, changes the 
situation qualitatively and gives rise to a new instability in 
the three-dimensional model, which is not predicted by the 
one-dimensional approach. 

We shall now compare the relative role of amplitude 
and phase perturbations considered using the three-dimen- 
sional model (Secs. 4 and 5 in the present paper). The mini- 
mum excitation threshold of amplitude perturbations 
(x,,, - 237) is less than for phase perturbations, but ampli- 
tude perturbations can be stabilized by ensuring that the 
transmission coefficient of a feedback loop of a system is 
sufficiently high: r * > 1/3. These transmission values are re- 
alized experimentally and have the additional advantage 
that the excitation threshold of a stationary nonlinear state 
decreases on increase in r '. 

Although phase perturbations have a higher excitation 
threshold, they can be more dangerous because they exist for 
any value of r 2  and y. The bifurcation threshold of the 
ground state in the case of excitation of phase perturbations 
coincides approximately with the onset of excitation of an 
ordinary convective STBS process, which is x - 20. 

However, our model does not describe satisfactorily the 
system under discussion because of the possible excitation of 
other spatial gratings of the refractive index and of wide- 
angle parasitic stimulated scattering. In the range from x - 1 
(excitation threshold of a stationary state) to x - 20 a ring 
parametric STBS oscillator is stable against the two classes 
of excitations considered by us. 
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