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The initial stage of self-action of a two-dimensional (gap) wave beam in a medium with strictive 
nonlinearity is investigated. I t  is shown that an intensity maximum sets at the boundary of the 
medium, increases, and moves into the medium. The establishment ofa quasistationary state is 
investigated. 

It is customarily assumed in the theory of stationary or 
quasistationary self-action of wave beams that.the nonlinear 
response of a medium to the action of an electromagnetic 
field sets in more rapidly than the change of the incident- 
radiation intensity (see, e.g., Refs. 1 and 2).  This assump- 
tion is fully justified in those cases when the processes that 
determine the nonlinear response are quite rapid (Kerr non- 
linearity in a liquid, relativistic nonlinearity in a plasma). In 
many cases, however, the nonlinear response is produced by 
relatively slow processes (thermal, ionization, or strictive 
interaction) that evolve over times exceeding the time in 
which the intensity changes. The self-action dynamics is de- 
termined under these conditions by the formation of the 
nonlinear response. 

A nonstationary problem of this type was first consid- 
ered in Refs. 3-6 for the propagation of a rectangular laser 
pulse in a medium with relaxational nonlinearity (see also 
Refs. 7 and 8).  It was shown that the nonlinearity of the 
medium narrows down the trailing part of the pulse, where 
the waveguide propagation regime is formed, whereas the 
leading front is broadened by diffusion. 

Ray deflection due to development of strictive nonlin- 
earity was considered in Ref. 9. It was found that a focus is 
produced initially in the interior ofthe medium and moves in 
the course of time towards the boundary. It was assumed 
that at the initial instant of time, before the nonlinear re- 
sponse could be produced, the diffraction is insignificant and 
the rays are straight lines. A similar result was obtained in an 
investigation,1° with neglect of thermal pressure (known as 
the "supersonic" limit), of a self-similar solution describing 
the dynamics of the self-action of a three-dimensional wave 
beam when strictive nonlinearity evolves in a plasma. 

We consider in the present paper the initial stage of the 
self-action of a two-dimensional (gap) wave beam in the 
case of strictive nonlinearitv. It is vossible in this case to treat 
analytically the dynamics of extrusion of matter from the 
beam region by high-frequency pressure forces, and the evo- 
lution of the field. With a Gaussian beam as the example, it is 
shown that as the density of the medium becomes redistri- 
buted the nonlinear refraction compensates for the diffrac- 
tive divergence of the beam, primarily near the boundary of 
the medium. It  is just there that an intensity maximum ap- 
pears on the beam axis at a definite instant of time. The maxi- 
mum increases and shifts into the interior of the medium. 
Reaching the maximum value and the maximum distance 
from the boundary, it stops and begins to return to the 
boundary. Depending on the incident-radiation intensity, 
the maximum either returns to the boundary and vanishes, 
or  stops without reaching the boundary and remains subse- 

quently unchanged. This dynamics of the intensity maxi- 
mum differs qualitatively from the focus dynamics consid- 
ered in Refs. 9 and 10. the cause of the difference is that we 
take into account the initial diffractive broadening of the 
beam. As a result of depth and width of the produced "chan- 
nel" in the medium depends substantially on the longitudi- 
nal coordinate. Nonlinear refraction turns out here to be 
more substantial near the boundary of the medium, and not 
in the interior. 

1. FORMULATION AND GENERALSOLUTION OF PROBLEM 

Consider a semi-infinite initially homogeneous medium 
occupying the region x > 0. A wave beam, linearly polarized 
along they axis and bounded in thez direction, with frequen- 
cy w and wave number k, is normally incident on the bound- 
ary x = 0 starting with the instant t = 0. The wave propaga- 
tion in the medium, with allowance for the ponderomotive 
density perturbation Sp it produces, will be described in the 
quasioptic approximation by the system of equations (see, 
e.g., Refs. 10 and 11) 

where p =Sp/pO are the relative perturbations of the 
density of the medium and are assumed to be small, 
U = E(x,77,8)/lE(x = 0, 7 = 0 )  I is the amplitude of the 
electric-field intensity referred to the limiting amplitude on 
the beam axis, x = 2x/kz: is the dimensionless longitudinal 
coordinate, zO is the characteristic dimension of the beam at 
the boundary; 7 =z/zO is the transverse coordinate, 
8 = st /zO is the time, and s is the speed of sound. The con- 
stants a and 0 for the liquid are equal to 

a=p, (ae'lap), (z,olc) ', 
P =  (11161~) (de'lap)slE(x=O, q=0) 12/(ap/3p)s, 

where ( a ~ ' / a p ) ,  and (dp/dp), are the derivatives of the di- 
electric constant and of the pressure with respect to density, 
taken at  constant entropy, and s = (ap/dP)~'*. For a plas- 
ma, the corresponding coefficients in Eqs. (1) and (2) are 

a= (opzo/c)" ,=[el E (x=O, q=0) 11 (2vTmo) I ', 

where w, and v, are respectively the plasma frequency and 
the thermal velocity of the electrons. 

We have neglected in ( 1 ) terms with a time derivative 
of U, a procedure justified when the inequality 
(2wzG/c2) < 1 is satisfied, and corresponding to an assumed 
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infinite propagation velocity of the electromagnetic radi- 
ation. In accord with these assumptions, a wave beam inci- 
dent at 19 = 0 on the boundary x = 0 penetrates immediately 
into the medium and has no time to produce density pertur- 
bations (p = 0). The field of the beam at the initial instant of 
time has, according to Eq. ( 1 ), the form2 

m 

u 0 ( q ,  x ) =  j d q r f ( q l ) ~ ( q - q ' ,  x ) ,  
- 0 

( 3  

where G(7 - TI,") = ( i m )  - exp [i(7 - 7')2/x] and 
f (7) = U,,(y, x = 0) is the beam field specified on the 
boundary and assumed independent of time. This assump- 
tion allows us to separate effects connected with the inertia 
of the nonlinear response from effects investigated in the 
theory of stationary s e l f - f o c u ~ i n g ~ ~ ~ ~ - ~ ~  and connected with 
the time dependence of the intensity of the incident radi- 
ation. 

It is natural to assume that the perturbation-density dy- 
namics is determined for some time by the field ( 3 ) .  Substi- 
tuting it in the right-hand side of (2) and using the initial 
conditions p(8  = 0) = (dp/dB), = , = 0, we get 

The first term in the right-hand side of (4) corresponds to a 
stationary solution of Eq. (2). The remaining two terms de- 
scribed density bursts that depart from the beam-localiza- 
tion region at the speed of sound in opposite directions along 
the z direction. The matter conservation law 

w 

is satisfied at each instant of time and for any point x. 
Equation (4) is analogous to the expressions obtained 

in Refs. 15 and 16 dealing with plasma-density perturbations 
produced by a specified two-dimensional laser beam, but the 
influence of these perturbations were not taken into account. 

The perturbation alters the acoustic field, and for a suf- 
ficiently short time interval it can be represented by 
U = U,, + U,. In the linear approximation we obtain for U, 
from Eq. ( 1 ) the expression 

a u ,  a Z u ,  
4i-+-= apU,. 

3% aq2 

Equation (9 ) has a solution satisfying the boundary condi- 
tion U, (7," = 0,e) = 0 and given by 

x 0 

where the e:cpression for the function G was given above. 
We consider below the absolute value of the dimension- 

less electric-field amplitude 

A= [ (Re Uo+Re U,) '+ ( Im  U , f  Im U , ) 2 ] ' b .  ( 7 )  

Equations (3), (4), and (6) provide an analytic solution of 
the problem of the initial stage of the dynamics of a planar 
beam. No,$i.pilar solution can be obtained for an axial beam. 

The use of perturbation theory is valid only if A differs 
little from A ,  = [ ( ReU,,)' + ( ImU,)'] 'IZ. Failure to meet 
this condition is the cause of the limited time interval during 
which our treatment is valid. 

2. DYNAMICS OF GAUSSIAN BEAM 

By way of example we consider the most typical case of 
a Gaussiar~ beam with a planar front, when f(7) 
= exp ( - 71'). From Eq. ( 3 ) we obtain2 

x exp [-- i (G wetg x  - - )]. ( 8 )  l + x Z  

Figure 1 shows lines of constant values of A,, 
= ( 1 + K') 'I4 .exp[ - $/( 1 + x l )  ] with an interval 
0.04 separating two neighboring lines. 

According to (4)  and ( S ) ,  the density perturbation 
produced by the wave beam is given by 

To analyze ):he establishment of a stationary state, it is expe- 
dient to rewite (9) in the form 

FIG. 1 .  Lines of constant amplitude A in the plane of 
variables 7 and x for the instants of time 0 = 0 ( a ) ,  1 
(b) ,  and 2 ( c ) .  Average intensity 3.3.10'' W/cm2, 
interval between neighboring lines M = 0.04. 
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The density dip on the beam axis (at  
8 < 8, = [ ( 1 + x2)/2] ) increases as the square of the 
time, corresponding to neglect of the thermal motion in Eq. 
(2).  It is precisely in this approximation that the beam dy- 
namics was investigated in Ref. 10. At 8 < 8, the thermal 
pressure becomes substantial and a stationary state sets in. 
Taking 8, to be time required to reach the stationary value, 
we can conclude that it is reached faster the closer the point 
tc is to the boundary of the medium. 

At each instant of time there are two lines r]()(x,e) sym- 
metric about the beam axis, on which the density perturba- 
tions are equal to zero. According to (9 ')  the equation for 
these lines is 

1+x2 
rlo = -Arch [exp (2€12/ (1+x2) ) 1. 

40 

At 8 < 8, the position of these lines is independent of time 
( r ] ,  =: + 4 ( 1 + x 2 )  'I2 ) and at  8 > 8, this dependence is 
close to linear (v2=: + (8 /2 - ( 1 + x 2 )  (1n2)/28) ). An 
analogous variation is observed for the location of the maxi- 
ma of the unperturbed density r ] ,  (%,@, a location deter- 
mined according to (9') by the equation 

At 8 < 8, the location of the maxima depends little on the 
time (r],,, =: f (31/2/2) (1  + x2)1 /2 ,  while at 8 >  8, the 
maxima move away at the speed of sound (vm =: + 8) from 
the beam axis. 

The beam-field change due to the density perturbation 
takes according to (6 ) ,  (8 ) ,  and (9 ')  the form 

X 

erp [rl2(.3ifp) iQ]  

X { f-cos ( 4 1 r q 8 )  - . exp [ (10) 

whereP=  1 + i q a n d Q = 3 ( x - q )  - i ( l  + x q ) .  It is im- 
possible to evaluate the integral in (10) analytically. We 
confine ourselves therefore to a short time interval (8 < 8, ) 
and consider the field perturbation on the beam axis 
( r ]  = 0) .  From ( 10) we get 

U ,  (q=O, x, 0<0,) 

Within the context of the perturbation theory employed, Eq. 
(7 )  should be considered in an approximation linear in U,, 
when 

Substituting here expressions ( 8)  for r ]  = 0 and ( 1 1 ) we ob- 
tain the beam amplitude on the axis. Calculating the deriva- 
tive dA /ax and equating it to zero, we obtain an equation for 
the position of the extremum of the amplitude: 

where @(x2)  is a rather complicated algebraic function that 

decreases monotonically with increase of x2  and satisfies at 
x2 < 1 the approximate expression @ ( x 2 )  =:76 - 600x2. 

Equation ( 12) has solutions only for 8 > 8,) = 4/ 19a0, 
the solution for 8, corresponding to x, = 0. With increase of 
8 the value of x,, increases like 

As shown by numerical integration of Eq. ( l o ) ,  the re- 
sults of which are given below, the extremum of the ampli- 
tude on the beam axis is a maximum. It  can therefore be 
concluded that as the medium is forced out of the beam re- 
gion an intensity maximum is produced on the beam axis. 
This maximum sets in at a time interval 8,) after the start of 
the self-action on the boundary of the medium, and moves 
away from the boundary to the interior in the course of time. 

3. NUMERICAL EXAMPLES 

To illustrate the results of the preceding section, we 
have calculated the perturbations of the density p of the me- 
dium and the amplitude A of the field according to Eqs. (7)-  
( 10) for a number of specific parameters of the medium and 
of the incident radiation. 

The calculations were made for a Gaussian beam of 
width z, = 30pm and frequency w = 2. lOI5 s ' , propagat- 
ing in a hydrogen plasma with electron temperature 100 eV 
and a ratio of the electron density to critical 5 .  lo-'.  For 
these parameters, the dimensionless variables r],x, and 8 are 
connected respectively with the transverse and longitudinal 
coordinates z and x  and with the time t by the relations 
r] = 3 . 3 . 1 0 ' ~  ( cm) ,  x = 3 . 3 ~  (cm),  8 = 3.3t (ns) .  

Figures 1 and 2 show the lines of constant amplitude A 
calculated from Eqs. (7) ,  (8 ) ,  and (10) and the constant- 
density lines calculated from Eq. (9) ,  for a number of in- 
stants of time at an average incident-radiation energy-flux 
density 3.3. 1012 W/cm2. I t  can be seen that as the density 
dip produced by the beam deepens and the forced-out plas- 
ma goes out of the beam region, and a maximum of radiation 
intensity sets in and moves away towards the boundary. Fig- 
ure 3 shows the time variation of the coordinate %() of this 
maximum and of the amplitude A, at the maximum for a 
number of incident-radiation intensities. At an intensity 
3.3. 1012 W/cm2 (ap = 4.2) the quantities ?to and A ,  reach 
maxima at close instants of time, after which they decrease 
somewhat and assume stationary values. With decrease of 
the incident-radiation intensity this effect of motion of the 
amplitude from the boundary into the i'interior of the plasma 
and back becomes ever more pronounced. Finally, at an in- 
tensity 1.2. 1012 W/cm2 (afi = 1.46) the amplitude maxi- 
mum produced on the boundary and moving away from it 
again returns to the boundary and vanishes. In the steady 
state the beam amplitude has no maximum outside the 
boundary. No maximum is produced at all at aB= 1.42. 

Figure 3 shows the amplitude-maximum coordinate 
calculated from Eq. ( 13) for a B =  4.2. I t  can be seen that 
the instant of the onset of the maximum, obtained from Eq. 
(13),  agrees well with the results of the numerical calcula- 
tion. 

As seen from Fig. 3, at  an incident radiation intensity 
3.3.1012 W/cm2 the field amplitude in the self-action pro- 
cess differs little from A,, which justifies in fact our approach 
for a sufficiently long time. With increase of the incident- 
radiation intensity the time interval during which our ap- 
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proach is valid becomes narrower. The main features of the 
beam self-action dynamics are nevertheless preserved. Fig- 
ure 4 shows the change of the field amplitude in the beam at 
the instant 8 = 0.06 at an intensity 6.6. loL4 W/cm2. For 
longer times, the difference between A,, and A becomes large 
and our treatment is unsuitable. 

As seen from Fig. 4, refraction of the radiation by the 
sound waves in the interior of the medium makes the trans- 
verse intensity distribution in the beam nonmonotonic. This 
effect becomes clearly manifest also in numerical computa- 
tions'' of the propagation of a narrow beam against the 
background of a broader beam in a plasma. 

Our calculations for a plasma are applicable also to a 
liquid. Using the characteristic values of the quantities in the 
equationsL8 (po = 1 g/cm3, p,(a~'/dp),  = 1.5, 
(ap/ap)sL'2 = lo5 cm/s, z, = 30pm) ,  we find that the val- 

FIG. 2. Constant plasma-densityp lines in the plane of 
the variables 7 and x for the instants of time 0 = 1 (a ) ,  
2 ( b )  and 3 (c) .  Average intensity 3.3.101* W/cm2; 
interval between neighboring lines Ap = 2.10- '. 

ue afl= 4.2 corresponds to an average incident radiation 
intensity 4.10' W/cm2. 

4. DISCUSSION OF RESULTS 

The results can be made clear by simple qualitative con- 
siderations. The material is forced out most rapidly near the 
boundary, where the beam width is a minimum and the stric- 
tion forces, determined by the derivative ofthe intensity with 
respect to the transverse coordinate, are largest. In addition, 
near the boundary the beam divergence is minimal on ac- 

"4-0 
FIG. 3. The coordinates x,, (solid lines and maximum amplitudes A,,, 
(dashed) vs the time 0 for different values of the average incident-beam 

3 
intensity ( 1-3.3 10"; 2-6 10" ; 3 4 . 6 . 1 0 ' '  W/cm2). Curve 4 was FIG. 4. Spatial distribution of field amplitude A in a beam for the instant 
obtained for x,, from Eq. ( 13) for an intensity 3.3.10" W/cm2. of time 0 = 0.06 at an average intensity 6.6.10'' W/cm2. 
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count of diffraction, and the wavefront is closest to planar. It 
'is therefore just near the boundary that the nonlinear refrac- 
tion compensates most rapidly for the diffractive divergence, 
and near the beam axis there is produced a focusing region in 
which the wavefront is concave. With time, as the density 
dip deepens and broadens, this focusing region expands both 
radially and longitudinally. The field amplitude at the maxi- 
mum is then increased, and the maximum itself shifts into 
the interior of the medium. 

Near the boundary ( x  < 1 ), at the time 8- 1 the density 
perturbations of the matter forced out by the beam are locat- 
ed on the edges of the central dip (at 7 =. + 1 ), and the non- 
linear refraction determined by the value of the density drop 
is a maximum. Its effect on the beam focusing is then stron- 
gest. It weakens subsequently with increase of the distance 
between the density bursts and the beam. The largest focus- 
ing effect is therefore produced in the transient regime, and 
for beams with a relatively low intensity a field maximum 
exists in fact only in the transient regime. 

Note that in our analysis one cannot rigorously speak of 
a stationary state. The picture of the density and field pertur- 
bations ceases to change by the instant 8 only in the interval 
K ( 5 (28  ' - 1 ) I", and continues to change at large values of 
x .  In the perturbation theory used by us it is impossible to 
track the evolution of stationary self-action far from the 
boundary. In that region the zeroth-approximation field is 
made weak enough by diffraction, and establishment of a 
stationary state entails an appreciable field variation. 

It can be assumed that after establishment of the first 
(closest to the boundary) intensity maximum formation of a 
second intensity maximum farther from the boundary sets 
in, followed by a third, etc. The basis fort his assumption is 
the fact that after establishment of the first maximum the 
field behind it is close to the field present near the boundary 
in the self-action process (cf. the fields at 8 = 0 and 8 = 2 for 
x > 1 in Fig. 1 ). This can result in the periodic sequence of 
maxima predicted by the stationary theory for gap wave 
beams.' 

It must be emphasized that the onset of an intensity 
maximum near the boundary and its motion into the interior 
of the medium is not connected with a special choice of 
boundary conditions, and in particular with assumption of a 
planar wavefront on the boundary. W-e have carried out 
computations also for a Gaussian beam whose phase has on 
the boundary a parabolic variation $(O) = - $6, where 
S = kz:/2R, and R is the wavefront-curvature radius. At 
S < 0 (diverging beam) the local intensity maximum pro- 
duced at a certain distance from the boundary increases with 
time and shifts into the interior of the medium. At low wave- 
front curvature (for &'= 4.2 at IS1 5 0.5), starting with a 
definite instant of time, the intensity at the maximum begins 
to exceed the boundary intensity. With increase of the front 

curvature, the intensity in the local maximum remains all 
the time lower than the limiting intensity on the beam axis. 
At S > 0 (focused beam) the intensity maximum initially 
produced at  the point xo = S/( 1/S2) and determined by the 
wavefront curvature on the boundary increases with time 
and shifts to the interior of the medium. The conclusion that 
the intensity maximum moves in the course of self-action 
away from the boundary of the medium is quite general and 
remains valid for both focused and defocused beams. 

Our analysis pertains to a pulse that has with time an 
abrupt leading front and constant intensity. For our conclu- 
sions to be valid for a real pulse, the intensity growth time 
must be short and the pulse duration must be long compared 
with the characteristic time of the considered transient pro- 
cesses. For the example considered above, namely self-ac- 
tion of a wave beam of intensity 3.3 X 10" W/cm2 in a plas- 
ma, the time of establishment of a stationary state for the 
first maximum is approximately 1 ns. 

In conclusion, we emphasize once more that in the case 
of a planar wavefront the considered onset of a field maxi- 
mum near the boundary of the medium is connected with 
allowance for the diffractive broadening of the beam at  the 
initial instant of time and, as a consequence, with the in- 
homogeneity of the density dip in the longitudinal direction. 
If diffraction is neglected, the density dip is homogeneous, 
and nonlinear refraction sets in first of all far from the 
boundary. 
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