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Using the method of dispersion relations we obtain the amplitude for elastic scattering, classified 
by the spin polarization states of the electron, in an arbitrary plane-wave electromagnetic field. 
We consider radiative corrections to the motion of the electron in a field formed by the 
superposition of a constant crossed field and a plane electromagnetic wave with elliptic 
polarization. We determine the anomalous magnetic and electric moments of the electron in such 
a field. 

1. INTRODUCTION 

Considerable success has been achieved recently in the 
field of theoretical studies of radiative corrections to the mo- 
tion of particles in external electromagnetic fields. Of partic- 
ular interest is the study of the dependence of radiative ef- 
fects on the parameters of the external field, which can be 
easily varied by the experimenter. 

In this work we consider radiative corrections to the 
motion of an electron in an arbitrary plane-wave electro- 
magnetic field, whose vector potential can be expressed as: 

Based on general expressions obtained for the radiation 
probability, classified according to the polarization spin 
states of the electron in the field ( I ) ,  we find by means of 
dispersion relations the elastic scattering amplitude of the 
electron. The method of dispersion relations, proposed in 
Ref. 1 and rigorously grounded in quantum field theory in 
Ref. 2, is one of the main methods of theoretical investiga- 
tions of the interaction of elementary particles. 

The development of the method of dispersion relations 
in application to the study of radiative corrections to the 
motion of an electron in a constant crossed field was given in 
Ref. 3 and extended in Ref. 4 to the case when the external 
field is a superposition of a constant uniform magnetic field 
and a plane circularly polarized electromagnetic wave. 

One of the most important special cases of the field ( 1 ) 
is the superposition of a plane elliptically polarized electro- 
magnetic wave and a constant crossed field (E,lH,, 
/E,I = IH,l). The vector potential for such a field can be 
written in the following form:" 
A(E) =aE (e, sin p.+e, cos 9)  - ( A o / o )  (el cos 9 s in  ot 

-e, sin 9 cos og) . (2)  

The angle Ijr( - 77<21,h<r) characterizes the polarization of 
the wave. Here the condition 2$ = 0,a corresponds to a lin- 
early polarized wave, and 4$ = g ~ ,  g = + 1, corresponds to 
right (for g = 1 ) and left (for g = - 1 ) circular polariza- 
tion. In Eq. (2) e, ( i  = 1, 2) is a unit vector in the plane 
perpendicular to the wave propagation vector n: 

p i s  the angle of inclination of the principal axes of the ellipse 
with respect to the vectors E, and H, of the crossed field of 

intensity a, w is the frequency, A, is the amplitude of the 
wave. 

The study of various processes in a field, which is the 
superposition of constant and varying fields, is of consider- 
able interest, since in this type field effects are possible simi- 
lar to those that occur separately in constant and varying 
fields, as well as qualitatively new ones. 

The presence of the constant crossed field in the super- 
position (2)  makes it possible to correctly separate in the 
expression for the elastic scattering amplitude of the electron 
two terms, linearly dependent on the electron polarization 6 
and proportional to c. H, and C;. E,, and interpret them in the 
following as the interaction energy of an anomalous magnet- 
ic moment of the electron with the magnetic field H,, and an 
anomalous electric moment of the electron with the electric 
field E,. The anomalous moments turn out to be complicated 
functions of all the paramters that characterize the superpo- 
sition (2)  as well as of the electron energy; the anomalous 
electric moment appears in the field (2 provided sin2fl# 0 
and provided an electromagnetic wave with noncircular po- 
larization ( 4 $ # g ~ )  is present. 

An anomalous electric moment of the electron, induced 
by a constant field (E .H # 0), was studied in Ref. 6,  while an 
anomalous electric moment of the neutrino was studied in 
Refs. 5 and 7 .  The obtained mass shift, divided between the 
polarization states of the electron, permits one to follow the 
contribution to the correction in the electron mass due to 
electron transitions into intermediate states without and 
with electron spin flip. 

2. ELECTRON RADIATION PROBABILITY 

The probability of emission of a photon with 4-momen- 
tum xw and polarization e, with the electron going from the 
state Y, to the stateo Y,. , referred to unit volume Vand unit 
time T, is given by the formula 

Substituting into (3)  the electron wave functions obtained 
by Volkov8 and expanding the functions of nx in a Fourier 
integral, we obtain after integration overx a four-dimension- 
a1 6-function, with the help of which we remove the integra- 
tion over d 3 x  and ds, after evaluation of the trace of the Pauli 
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matrices (s, is the variable of integration in the Fourier inte- 
gral ) : 

d3xds,6(') (q-9'-x+ns,) +ds16 (9,-go'-x,+s,)  
+ x o  ( n x )  -'. 

For the integration over q' we have introduced the fol- 
lowing variables: 

u+v/z 

=dudvdtdx-,go1 ( n q )  (1+ t ) -3 .  

The integration over the variables x, = ( x , ,  x , )  reduces to 
Gaussians. 

After performing the indicated integrations in (3 )  we 
obtain for the photon emission probability by the electron in 
the field ( 1 ) the following expression: 

m ca Ca 

where 

a,, is the Kronecker symbol, and f  = f  l ( f  = + 1 ) charac- 
terizes the two possible orientations of the electron spin 
component along the unit vector l.9 The terms proportional 
to SZ,c, describe emission without spin flip while the terms 
proportional to SZ, - c. -with spin flip of the electron. 

We note that the dependence of the emission probabili- 
ty with electron spin flip ( a SZ, - Z. ) on f  is an indication of 
the fact that in an arbitrary plane-wave field as a result of 
photon emission the electron may become polarized under 
certain conditions (F- &n#O). Since the radiation by the 
electrons is treated in perturbation theory, but the exact so- 
lutions of the Dirac equation are used for the unperturbed 
wave functions, the resultant Eq. ( 4 )  describes the probabil- 
ity of the process under study with the external arbitrary 
plane-wave electromagnetic field taken into account exactly. 

3. ELECTRON ELASTIC SCATTERING AMPLITUDE 

According to the optical theorem, the probability of ra- 
diation by the electron in an external field determines the 
imaginary part of the elastic scattering amplitude in this 
field. Consequently, from a knowledge of the radiation prob- 
ability we can reconstruct the real part of the amplitude by 
means of dispersion relations. 

The mathematical basis of dispersion relations is the 
integral Cauchy f o r m ~ l a , ~  which establishes a connection 
between the real and imaginary parts of a function of a com- 
plex variable. In our case the role of the integration variable 
z' will be played by the parameter ( n q ) - ' .  The dependence 
of the radiation probability ( 4 )  on this parameter 
[nq = q, - q,,p, is the quasi-energy, q, = n-q ,  n  = ( 0 , 0 , 1 ) ,  
q  is the quasi-momentum of the electron] is contained only 
in the exponent so that in the calculation of the real part of 
the amplitude we need the integrals"' 
Ca 

dz' Jz (sin Z ' T ,  eos z l r )  =n (cos 2%. -sin z r ) .  
- -7 

Taking into account that the imaginary part of the elas- 
tic scattering amplitude T is connected to the total radiation 
probability w by the relation 2  Im T = w, and making use of 
Eqs. ( 4 )  and ( 5 ) ,  we obtain after evaluating the real part of 
T the following expression for the elastic scattering ampli- 
tude of the electron in the field ( 2 )  : 

where N + stands for the complex conjugate of N. 
In this manner the existence of electron radiation ( 4 )  in 

an arbitrary plane-wave electromagnetic field ( 1 ) leads to 
elastic scattering, whose amplitude, classified by polariza- 
tion states, is determined by Eq. ( 6 ) .  Performing in ( 6 )  the 
summation over the electron polarizations in the final state 
( f  ') we obtain an expression for the electron elastic scatter- 
ing amplitude, polarized in the initial state, which could also 
be obtained by evaluating the electron mass operator in the 
field ( 1 ) .".'2 Substituting (2 )  into ( 6 )  and making use of 
the familiar expansion of a plane wave in terms of Bessel 
functions we obtain for the elastic scattering amplitude in 
the field ( 2 ) ,  after needed transformations and integration 
over the variable u, the following expression: 

2is 
(L,.  - - sin 2i3 otg 2$)] , 

xz 
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zz 1 CT 
Gl = - + - b2 sin2x(1-iL8 cos 2$) - 2i bLz, sin x, 

z 2 
(EHo) i.t 

G,=- 
b 

a 
(ih + ~(4. sin x )+ - sin x sin 2$ 

2c 
is (EEo) 

x ( 2  - + L,. sin 28 ctg 2$) ---- , 
X2 a 

z3 
p=2se- - -zz- - .rz 1 - - 

3 
'b2 ( 
2 

%), qO=Tz, 
xZ 

hz YI ea 
xFT-, 2t z = ( t )  . x=>(nq), 

1 W 
h=cosx---sinx, h = Z Z ( n q ) ,  

x 

1 'h 

c = [t (1 - COS 2B COS 2 $ ) ]  , 

ht zht 
x1=b2 - sin x cos 29, x2=4bc - 

h hz"' ' 

J, (x, ) and J', (x, ) is a Bessel function and its derivative. 
The sum overs in (7)  is lifted if in the superposition (2)  

a circularly polarized wave is present, since for 4$ = rrg, 
X ,  = 0, J, (0) = a,,. 

Equation (7)  permits the study of the interesting ques- 
tion on the contributions to the correction to the electron 
mass in the field (2) caused by transitions of the electron to 
intermediate states without and with spin flip (terms pro- 
portional to and Sc, - c .  respectively). 

For b = 0 we obtain from (7 )  after summation over 5.' 
the amplitude for elastic scattering of an electron in a con- 
stant crossed field,l%nd for a = 0 we have the amplitude for 
elastic scattering in the field of a plane electromagnetic 
waveI4 (see also Ref. 4). ForP = 0 the summation over J ' in 
( 7 )  gives results obtained previously in Ref. 12. 

4. ANOMALOUS MOMENTS OF THE ELECTRON 

The amplitude for elastic scattering ofthe electron in an 
external field determines its mass change Am in that field: 
Am = - q,T/m. We shall represent Am in the form 
Am, f Am,, where in Am, only terms proportional to 5.E" 
and l;.H, appear. We shall write in the rest frame 
Am, = - plI;.Ho - p2I;.Eo. The addition Am, to the mass 
of the electron in the external field (2)  results from the inter- 
action of the anomalous magnetic moment of the electron 
with the constant magnetic field and the anomalous electric 
moment with the constant electric field. 

It therefore follows from (7)  that the anomalous mo- 
ments of the electron p, @,-magnetic, p,--electric), due 
to second order radiative effects and interaction with the 
external electromagnetic field (2),  are determined by the 
expression 

iz 
Q t = ;, + cbL,. sin x, 

b s 
Q, = - 2c sin x sin 2$(2i - +L,. sin 28 ctg 2$ 

5 2  

This expression is a rather involved function of all the pa- 
rameters that characterize the superposition (2),  namely: 
the frequencies, amplitudes, and polarizations of the electro- 
magnetic wave, and the intensity of the constant crossed 
field, and also the electron parameters. If P= 0; + n-/2; 
+ a ;... [the condition of "orthogonality" of the crossed and - 

wave fields in the superposition (2)  1, and if a plane wave of 
circular polarization is present in the superposition (2), 
then the anomalous electric moment vanishes. Indeed, for 
4$ = n-g, x ,  = 0, J, (0)  = S ,,, J,,. (0) = 0, L,, = 0 and 
@, = 0. 

We consider next several special cases corresponding to 
limiting values of the external field (2) .  For a plane wave of 
weak intensity b 4 l and for low intensity of the constant 
crossed fieldx 4 1, after expansion in (7)  keeping terms pro- 
portional to x', x', x2, b ', b I, b ,, x b  ,, and ignoring terms 
proportional tox2b we can express the electron elastic scat- 
tering amplitude in the following form [I; = (<,,(,, 0 )  ] : 

Here 

is the change in the electron mass due to the constant crossed 
field 

is the electron radiation probability in the constant crossed 
field, and 

is the anomalous magnetic moment in the constant crossed 
field. 

It follows then that in a constant crossed field the con- 
tribution to the mass correction due to electron transitions 
into an intermediate state without spin flip is larger than the 
contribution from transitions with spin flip for 

3" 15 
C+ln->-. 

X 8 
The following notation was introduced in Eq. (9):  
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Am,,  the electron mass change due to the electromagnetic 
wave with the effect of the constant field taken into account, 
is of the form 

w,, the electron radiation probability in the field of the plane 
electromagnetic wave with effects of the constant field taken 
into account, is given by the relation 

cos 2$ 2h2-l-3A+2 
+xT[ 2(h+l)'  

1 
- -In (l+h) ] [ (GH.) cos 28- (6E.) sin Bg 1. 

h 

1(3h+2) 1 cos 2$ 2h2+9h+6 
N2 = - 8(l+h)2 +-ln(i+h)-Xr[ 2 2(l+h)s 

p f ,  the addition to the anomalous magnetic moment of the 
electron due to the presence in the superposition (2)  of the 
electromagnetic wave, is given by 

h2(3h2-2) h2(h2-5) j ---- I - ln - cos 2~ cor alp [-+ g, 
2 ( ~ ~ - 1 ) ~  ( ~ ~ - 1 ) ~  

k2(h2+3) + h"3h2+1) 
1 2  = - 

3 
2(h2-1)' (A2-1) 

ln + cos 2p cos 2lp[- g1 a 

p,b, the anomalous electric moment induced by the plane 
wave is given by 

I d a pzb = -- 1 
rlb = - pob2sin 28 cos 2lp [( -g, 

2 d/3 2n hZ 

The quantities gv(v = 1,2) are determined by the Spence 
functions F ( x )  : 

We give the values of the anomalous electron moments 
in the limiting cases A 4 1 and A $ 1. 

1.A41. 

1 d pzb = - - ah2 1 
k ~ ~ ~ = p ~  - b2 In - sin 28 cos 29 (56c,t-+6t,-r,). 

2 dB 8n h 

We note that these formulas are asymptotic and valid in the 
region where In( l/A) ) 1. 

2. A> 1. 

31nh 
+ - h 

[ln h - E] cos 2$ cos 2B6t,-r9}, 

ab2 
=-PO - In h[In h6t,c,+ (3 In h-8) 6t,-tvlsin 28 cos 2$. 

2nhZ 

In the other limiting case, when b< 1, ~ $ 1 ,  the elastic 
scattering amplitude is given by the expression (I;.n # 0 )  

h2b2 2v (10) 

/ 

3 d ( 3 ~ )  -"a 1 
P2=--- pl=-apoh2b2 --- r ( 3 ) ~ 2  sin 28 cos 29, 

2 d8 24.3" 

w=- I($) ( I  + $)+ rz(3X)-% 27% 

sin 28 cos 2$]} , 

T+= [13+ ( i n )  '1 6r, t~+S1~6t ,  - r e ,  ~z='/z6t, t~-~/26r. -r.. 

Thus, with increasing intensity of the constant crossed 
field the anomalous electron moments in the field (2)  tend to 
zero for b g  1. 

We also call attention to the oscillatory dependence of 
the anomalous electric moment of the electron on the angle 
/3 (/3 characterizes the relative orientation of the fields). 
This serves to emphasize the fact that the anomalous electric 
moment is induced exclusively by the field of the electro- 
magnetic wave and its appearance is connnected to the viola- 
tion of axial symmetry for an elliptically polarized wave. 

We note that for x, 1 (b  < 1 ) the anomalous magnetic 
and electric moments of the electron depend on a power of 
X-the characteristic parameter of the constant crossed 
field-with p, ccX-213 andp, ax-'I3. 
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These calculations show also that in the region of limit- 
ing values of the parameters b and X, expanding up to terms 
of order b 'x, accurate up to a constant, the anomalous elec- 
tric moment can be obtained as the product of the anomalous 
magnetic moment and the angle P. For x 4 1 this constant 
equals 1/2, for X$ 1 it equals - 3/2. However, if higher- 
order terms are included in the expansion this relation is 
violated 
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