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We study observational manifestations of rotation in the class of spatially homogeneous shearless 
cosmological models. We show that pure rotation does not lead to causal anomalies and to 
parallax effects, nor to anisotropy of the microwave relict radiation. We obtain exact solutions for 
isotropic geodesics for a nonstationary model of the Godel type. We find that cosmological 
rotation causes rotation of the photon-polarization plane. 

1. INTRODUCTION 

The natural physical idea that the universe (metaga- 
laxy) is subject to global rotation in addition to expansion 
has repeatedly attracted researchers' interest.'-' Principal 
attention has been paid to the dynamic aspect of the con- 
struction of models with rotation, i.e., to a search of exact or 
approximate solutions of the gravitational equations. Much 
less studied is the kinematic aspect of such cosmologies, i.e., 
possible observational manifestations of cosmic rotation. 
Here the research was confined mainly to analysis of the only 
(but of fundamental importance) problem of the influence 
of the rotation on the anisotropy on the microwave relict 
radiation (MRR) .4.5sX39 SO far, however, only rotating mod- 
els with shear were always considered, so that observational 
effects of "pure" rotation could not be separated. 

We present here a detailed analysis of the kinematics of 
shear-free cosmological models with rotation. This task, 
which is also of independent interest, is a necessary prelimi- 
nary step in the construction of viable rotating cosmologies 
that do not contradict the basic observational data. The dy- 
namic realization of such models as solutions of gravitation- 
al equations with realistic material sources will be consid- 
ered separately. 

2. GEOMETRIC PROPERTIES AND METRIC OF SPACE-TIME 

In accord with contemporary observation data, we con- 
sidered the nearest expansions of standard Friedmann mod- 
els, with preservation of the main features-spatial homo- 
geneity and complete causality. We choose the space-time 
matrix in the form 

both "open" and "closed" models, and admits of various 
topological structures of the universe. 

Let us find, as usual, the main kinematic parameters of 
the model (2.1 ), determined for co-moving matter charac- 
terized by a 4-velocity up = 8:. For the rotation tensor we 
obtain 

I aopt=03 
R k m i j = - - ~ . i j n . .  (2.4) 
2 

the shear tensor is trivial a,,,. = 0; the volume expansion is 
8 = 3~ /R. Here 

The explicit form octhe structure constants C $, , of the 
non-holonomy objects C i ,  and also of l,,, and e(") , are 
given in Ref. 10. 

3. FUNDAMENTAL PHYSICAL PROPERTIES OF SHEAR-FREE 
MODELS WITH ROTATION 

It is known that in many models with rotation (for ex- 
ample, the classical Godel solution) there exist closed time- 
like curves that can lead to causality violation. Let us show 
that in the considered class of metrics (2.1) the condition 
that ensures a correct causal structure of space-time is that 
the matrix A,, be positive-definite. 

In fact, let the closed curve xp(s) ,  O<s<l, 
XI' (0 )  = XI'( 1 ) be everywhere timelike, i.e., for arbitrary s, 

dSZ=dt2-2Rn,&dt-R2yijdxidxj, (2' ) We choose a value of the parameters,, for which'' dt  /ds = 0 
where t is the cosmological time, R = R ( t )  is a scale factor, (such a point exists by virtue of the assumption that the 
xi are 3-space coordinates, curve is dosed). We now have for (2.1 ) 

Here p, , A,, , a, b = 1,2,3 are constants, (det A,, #O). 
We assume that the space-time (2.1 ) admits of a three- 

parameter group of motions that acts simply transitively on 
hypersurfaces t = const; e t a )  = ela'dxi are the correspond- 
ing invariant 1-forms, and their Lie derivatives with respect 
to Killing fields g/;,, are equal to zero; LC,,, e',' = 0. 

It is known that such manifolds are Bianchi-classified 
in accordance with the values of the structural constants in 
the commutator [g , , ,  g,,, 1 = C ~ , b ~ c c , .  

The class of models of (2.1 ) is quite extensive, contains 

This expression is always negative for A,, > 0, without con- 
tradicting the initial condition that xp (s) is time-like. 

In particular, for the classical Godel metric 

we have 

h,b=diag(l, --I/,, I ) ,  

and it is this which leads to the existence of time-like curves. 
It is important to emphasize that the presence or absence of 
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causality is not connected in any way with the presence or 
absence of cosmic rotation. 

The most important test in relativistic cosmology is the 
reliably established experimental fact that the MRR is iso- 
tropic. We shall consider this problem traditionally in the 
geometric-optics approximation, when the light rays are 
null-geodesic 

where k" = dxp (A)/dA, A is an affine parameter. 
The dependence of the radiation frequency on the rela- 

tive motion of the source and receiver is determined by the 
rad shift Z (Ref. 12) 

where the subscripts "e" and "0" denote respectively the 
space-time points of the source and observer. Assuming, as 
usual that the MRR has an absolute-blackbody spectrum,'" 
we obtain for the radiation temperature the equation 

In the general case, the recorded temperature To de- 
pends on the observation direction via Z [Eq. (3.3) 1, as 
noted indeed in Refs. 4, 5, 8, 9, and 12. In our present case, 
however, this is not so. Indeed, it is easily seen that the met- 
ric (2.1 ) has a nontrivial conformal Killing vector 

where the conformal factor is q, = 2R. 
Since, obviously 

k, & &,,= const 

is the first integral of Eqs. (3.2), we obtain immediately 

Consequently, 

Thus, the MRR is fully isotropic in the considered class of 
models with rotation, as also in the Friedmann cosmology. 

This result does not contradict in any way the conclu- 
sions of Refs. 4, 5, and 8, where cosmologic models with 
shear were considered. The result (3.5) above demonstrates 
clearly the qualitative difference between effects of "pure" 
rotation and shear: whereas the latter always leads to anisot- 
ropy of the MRR, arbitrary rotation (not generated by 
shear) has no effect whatever on the angular distribution of 
the MRR temperature. 

Note that the conformal Killing vector ensures also the 
absence of parallax effects that could impose, as shown in 
Refs. 14 and 15, serious restrictions on the size of the rota- 
tion. A recently provedI6 theorem states that the necessary 
and sufficient condition for the absence of parallax effects in 
cosmology is the existence of a conformal Killing vector pro- 
portional to the average 4-velocity up of matter. This condi- 
tion is satisfied for the metric (2.1 ) [see (3.4) 1. 

4. GODEL COSMOLOGICAL MODEL 

We have established in the preceding sections that the 
general geometric and physical properties of the class of met- 
r i c ~  (2.1 ) agrees well with the principal data of observa- 
tional cosmology. Namely, the universes described by (2.1 ) 
are spatially homogeneous and fully causal (for positive 
A,, ), they contain no parallaxes, and the MRR is fully iso- 
tropic. The class (2.1) is quite extensive: it includes the 
Biailchi models 11-IX, so that one can hope to construct a 
viable cosmology with rotation within the context of the 
considered approach. 

To discern other specific rotation effects in cosmology it 
is more illustrative to make (2.1 ) more specific and proceed 
to a detailed consideration of some particular case. In our 
opinion, one of the most interesting models is the Godel-type 
metric 

where m, a, k>O are constant parameters. This metric is a 
natural nonstationary generalization of the standard Gadel 
m ~ d e l , ~  and the condition k>O guarantees (see Sec. 3) the 
absence of closed timelike curves. 

The absolute magnitude of the rotation 

decreases as the universe expands. 
The three Killing vectors for (4.1 ) are 

and satisfy the commutation relations 

The metric (4.1 ) is therefore oftype I11 in the Bianchi classi- 
fication. 

It is interesting to note that if m is small the 3-geometry 
of the hypersurfaces t = const is close to the geometry of the 
Friedmann flat model (they coincide at m = 0). In the gen- 
eral case it is easily seen that the hypersurface t = const is the 
direct product ofa two-dimensional (xy) surface of constant 
negative curvature - m2 and a straight line (the z axis) 
[here R ( t )  introduces the scale for this product]. 

We choose at each point of the space-time (4.1 ) a local 
orthonormalized (Lorentzian reference (tetrad) h ; with 
components 

AS usual, gpv = h : /I  b,vab  9 where T a b  

= diag( + 1, - 1, - 1, - 1) is a Minkowski matrix. Here 
and hereafter a caret designates tetrad indices; 
a,b ... = 0,1,2,3. 

5. ISOTROPIC GEODESICS IN GODEL-TYPE WORLD 

Practically all the information we received in observa- 
tional cosmology consists of various forms of electromagnet- 
ic energy (in the optical, radiofrequency, x-ray, and other 
bands). Therefore the most important task is an investiga- 
tion of the structure of the isotropic (null) geodesics. Inte- 
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grating ( 3 . 2 ) ,  we thus obtain in fact exhaustive information 
on all the observable manifestations of global rotation. 

Integration of the equations of null-geodesics is made 
much simpler by the existence of the three Killing vectors 
( 4 . 3 ) :  we obtain directly three first integrals: 

q - k  i = l ,  2,3.  ( 5 . 1 )  where R, = R ( t o )  is the value of the scale factor at the obser- 
vation instant to. 

Differentiating ( 5 . 5 )  and using ( 5 . 6 ) - ( 5 . 8 ) ,  we obtain 
Hence, adding the isotropy condition, we have 

Substituting next ( 5 . 1 3 )  in ( 5 . 5 )  we obtain the first in- 
tegral of the system ( 5 . 6 ) - ( 5 . 8 ) .  With the aid of the last 
relation it is now easy to write the general solution. 

When q, = 0 ,  i.e., the initial directions are specified by 
angles that satisfy the condition 

sin 0 sin cp = - - ( k:,)"=. Using the fact that k (' = d t  / d A ,  we eliminate from Eqs. 
( 5 . 2 ) - (  5.5 ) the affine parameter il and change over to the 
variable t :  

the light-ray trajectories are of the form 

o'l, 

y =  {enp [-mt (?)sin 0 cos cp]- I}, ( 5 . 1 5 )  
m ( k + o )  

In the general case, for q,#O, it is easy to introduce a 
function @ ( r )  with an initial condition @ ( O )  = g, that satis- 
fies the differential equation 

To solve this system we must know the function Rk ". Note 
that it has already been defined by the isotropy condition 
( 5 . 5 ) ,  and consequently a general solution of the system 
( 5 . 6 ) - ( 5 . 8 )  can be obtained without integrating the equa- 
tions of the gravitational field [i.e., for arbitrary R ( t )  l .  In- 
deed, for any realistic law of universe evolution one can in 
fact change to a new temporal variable 

The solution of the system ( 5 . 6 ) - ( 5 . 8 )  can then be written 
t t  r  = j d t l / ~ ( t l )  

1, 

such that 

d d R - = -  
d t  d~ 

in the form 

e-mr = a"+ (k+o)  '" sin 0 sin @ 
( 5 . 1 8 )  

o'"+ ( k + o )  '" sin 8 sin cp 

sin 0 (cos @ - cos cp) 
Y =  m (a'"+ (k+a),Ih sin 0 sin rf) ' 

and consequently R is completely eliminated from ( 5 . 6 ) -  
( 5 . 8 ) .  

Before writing the exact solution of the system ( 5 . 6 ) -  
( 5 . 8 ) ,  we determine the initial conditions and introduce thus 
parametrization of null-geodesics passing through the ob- 
servation point. As usual, taking spatial homogeneity into 
account, we assume that the observer coordinates are 
P = ( t  = t,, x = 0 ,  y = 0, z = 0 ) .  It is now convenient to 
"number" the geodesics passing through the point P with 
the aid of the spherical angles 8 and p, which determine the 
light-ray direction in the locally Lorentzian basis of the ob- 
server at the point P. Let ka = h kp . Without loss of gener- 
ality we put 

Equation ( 5 . 1 7 )  can be integrated in terms of elementary 
functions and Q, is implicitly determined from the relation 

k  dm' 
(IS/ ( k + o )  )'" + sin 0 sin @' 

where the form of the integral depends on the relative values 
o fs ineand  [ a / ( k  

6. ROTATION OF POLARIZATION OF ELECTROMAGNETIC 
RADIATION 

In Sec. 5  we obtained the general structure of light rays 
in a Godel-type universe (4.1 ). We shall obtain important 
additional information on electromagnetic waves in a rotat- 

for t = t, and x = y = z = 0. The constants qi can now b, 
expressed in terms of the introduced angles. Using ( 5 . 1  ) and 
( 5 . 9 )  we get 
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ing world by investigating the behavior of the polarization 
vector along an isotropic geodesic. 

Polarization-rotation effects were previously investi- 
gated in detail for the case of ray propagation in the gravita- 
tional field of a rotating compact object"-'9 (see also the 
literature cited in these references). To our knowledge, an 
analogous problem has so far not been considered in cosmol- 
ogy with rotation. 

The polarization vector fp is defined in the geometric- 
optics approximation as a unit spacelike vector orthogonal 
to the wave vector k p .  It satisfies the equation of parallel 
shift along a geodesic 

It is not convenient to analyze the system (6.1 ) in the frame- 
work of the Newman-Penrose f ~ r m a l i s m . ' ~ . ~ ~ , ~ '  We define 
an isotropic tetrad in respect of the local Lorentzian basis 
(4.4) in the form 

As usual, we have 

l"l,=nan,=m"m.=iiiaiii,=O, 

l"n,=l, maiii,=-I. 

The nontrivial tetrad components of the Weyl tensor are 

From this we obtain for the spinor components 

This means that in accordance with the Petrov classification 
the metric (4.1 ) is of type D. 

The spin coefficients for (4.1 ) in the gauge (6.2) are 

where the asterisk labels a complex conjugate. 
It is interesting to note that in the gauge (6.2) the sca- 

lars (specified by p )  that determine the expansion and rota- 
tion of zero congruence are directly connected (respective- 
ly) with the volume expansion 8 and the space-time rotation 
w (4.2). 

Following Refs. 18 and 20, we note that at each point of 
a null geodesic there is defined a pair of vectors 

where l p  = h Ela ... . These vectors are spacelike in con- 
struction and are orthogonal to one another and to kp : 

They can therefore be used to specify (at each point) a polar- 
ization basis 

In this basis the polarization vector is resolved in the form 

f"= (cos q )  E," (sin q )  EZw, (6.9) 

where the angle 7 depends on the position on the geodesic. 
Direct calculation shows that 

i.e., the polarization-vector rotation angle [assuming 7 = 0 
at the point P ( t  = to, x = y = z = 0)  1, on an arbitrary null 
geodesic at a point with a third coordinate z (and arbitrary x 
and y) ,  is determined by the cosmic rotation w. 

7. CONCLUSION 

Our analysis has shown that there exists an extensive 
class of cosmological models with rotation, whose properties 
do not contradict the basic observational data, viz., isotropy 
of the microwave background radiation, and absence of 
closed timelike curves and of parallax effects. It is important 
to note that these conclusions are independent of the magni- 
tude of the cosmic rotation. 

The results on the structure of isotropic geodesics con- 
tain complete information on the motion of light and permit 
calculation of all the corresponding observational effects of 
cosmology with rotation, for example standard cosmologi- 
cal tests: m - Z (the visible quantity is the red shift) and 
N - Z (calculation of the number of sources), etc. We em- 
phasize especially the promise offered by observations of an- 
gular variations of the polarization properties of electromag- 
netic radiation. Equation (6.10) predicts the effect of 
rotation of the plane of polarization of light on the path be- 
tween two points in space (with different z coordinates). 
Using the Kristian-Saks expansion technique,'*." we can 
rewrite (6.10) in the form 

q=or  cos O+O(ZZ) (7.1) 

where r is the distance to the source, 0 the angle between the 
direction of the cosmic rotation and the position of the object 
on the celestial sphere, and Z is the red shift. It can be shown 
that in this form the effect of polarization rotation takes 
place not only for a model of the Godel type (4.1 ), but also 
for the entire class of metric with rotation (2.1 ) . 

Such an effect can be observed by using data of polariza- 
tion observations of extragalactic radio sources. It is known 
that, in accordance with universally accepted synchrotron 
theory of radio  source^,^^.^^ their radiation is partially lin- 
early polarized, and the direction of the polarization vector 
is determined by the magnetic field of the object. Assuming 
as usualz4 that the magnetic field is as a rule parallel to the 
principal axis of an elongated source, the observation of po- 
larization rotation can be reduced to measurement of the 
difference A between the position angle of the magnetic vec- 
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tor and the position angle of the principal axis of the radio 
source. 

B i r ~ h ~ ~ , ~ ~  has recently analyzed a selection of 132 ob- 
jects (from the catalogs 3CR and 4C) covering practically 
the entire celestial sphere, and established for A the presence 
of dipole anisotropy of type (7.1 ). The most probable expla- 
nation of the obtained anisotropy is assumed in Refs. 25 and 
26 to be metagalaxy rotation, but there are no quantitative 
estimates. The theory developed above permits, for the first 
time, to determine on the basis of the observations of Refs. 25 
and 26 the direction and magnitude of the cosmic radiation. 
We present a preliminary estimate: using least squares, Eq. 
(7.1) yields for the observations of Refs. 25 and 26, for the 
rotation direction in galactic coordinates 

and 

where H = (R /R), is the present-day value of the Hubble 
constant. It is remarkable that even the rather rough esti- 
mate (7.2) agrees well with the direction obtained for the 
large-scale metagalaxy anisotropy obtained by other groups 
from independent (unconnected with polarization) obser- 
va t i on~ .~ ' .~~  

We have purposely confined ourselves to the kinematic 
aspect ofthe problem of constructing a cosmology with rota- 
tion, taking into account the fundamental character of the 
principal observational data. Note that several exact solu- 
tions for Godel-type cosmological models are already 
known in general relativity t h e ~ r y . ~ ~ . ~ "  
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