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A nonlinear equation has been obtained, describing the dynamics of disturbances of small, but 
nonvanishing amplitude of a rigidly rotating gaseous system of nonuniform density. Both in the 
case of short-wave disturbances (of wavelengthil much smaller than the Jeans wavelength A,, 
i.e., il -&I, ) and in the opposite limiting case of long-wavelength disturbances2 %A, the equation 
reduces to the well-known nonlinear equation for Rossby waves with a vector nonlinearity i.e., the 
Charney-Obukhov (or Hasegawa-Mima) equation. The weak turbulence spectrum of this 
equation leads to known observable relations among the fundamental parameters of the gas 
population of our Galaxy, in particular to the star mass spectrum discovered by Saltpeter in 1955. 
Thestationary solution of this equation, due to Larichev-Reznik is obtained in the form of a 
solitary vortex (the modon) with a circular separatrix. The equation of two-dimensional 
gravidynamics derived here for the cases A &AJ and A < / I J  is analogous to the nonlinear equation 
which describes the dynamics of an incompressible fluid in theflplane with a rigid lid. This 

' nontrivial effect of theflplane is a consequence of a recently established [A. M. Fridman, Sov. 
Phys. Doklady ( 1989) ] analogy between the nonlinear equations for Rossby waves on theP 
plane with a rigid lid, and those in the f plane with a free surface [provided the conditions of the 
experiment described in Izv. AN SSSR, Ser. Fiz. atm. i okeana 23,170 ( 1987) are satisfied and 
viscosity is neglected]. The conclusion discusses possible observable manifestations of modons: 
double galaxies, double galactic nuclei, and double stars. 

1. INTRODUCTION p P  1 - I .  (2)  

The analogy between the fundamental equations for 
particles coupled by Coulomb interaction in a magnetic 
field-the Boltzmann-Vlasov equations-and the funda- 
mental equations describing particles interacting according 
to Newton's law-the kinetic equations (in a rotating coor- 
dinate system) and the Poisson equation, has served as a 
basis for the construction of a stability theory for gravitating 
systems (Refs. 1-3). The theory made ample use of the 
methods developed for collective processes in plasma phys- 
ics. If one can consider completed" the linear stability theo- 
ry of gravitating systems, the foundations of the theory of 
nonlinear wavesX and of turbulence" have been laid relative- 
ly recently. Until now the nonlinear theory was developed 
only for the model of an infinitely thin gravitating disk, i.e., 
for the case of large-scale disturbances, with sizes exceeding 
by much the thickness of the disk. In these first papers used 
was made of Jeans perturbations of nonvanishing amplitude 
and it was shown for the first time that these can propagate 
as solitons of the envelope.' The theory of weak Jeans turbu- 
lence9 was developed by analogy with Ref. 10, and the spec- 
trum E, a k - 7/4 was derived, a spectrum which coincides 
practically with the "proper" Kolmogorov spectrum (Refs. 
11, 121 .~)  

In a recent years numerous observational investigations 
of the turbulence spectrum of the gaseous component of the 
galaxy (see, e.g., Ref. 13) have noted a deviation of that 
spectrum from a proper Kolmogorov spectrum. T h u ~ ,  the 
dependence of the velocity u of the center of mass of a gas 
accumulation on the parameter I is the following:13 

and, correspondingly, for the gas density p the observa- 
tions13 yield: 

The deviations from a proper Kolmogorov spectrum 
(u a 1 'I' ) exceed the observation errors by so much that the 
observers speak with certainty of a spectrum which deviates 
from that obtained in Refs. 11 and 12. Moreover, in some 
theoretical papers in place of the hypothesis of Refs. 11, 12 
according to which the energy flux is constant across the 
spectrum, other assumptions are proposed. Thus, in Ref. 14 
two "fundamental hypotheses" are advanced: first, constan- 
cy along the spectrum of the flux of angular momentum of 
gas accumulations, which together with the second hypothe- 
sis that the characteristic time for the displacement of a gas 
accumulation coincides with the Jeans time, leads to a con- 
stant pressure P(1) =p( l )  u: = const. The authors of Ref. 14 
identify the observed dependence (1  ) with the spectrum 
E, a k -  ' , noting that it is shallower than the Kolmogorov 
spectrum E, a k - 5 ' 3 .  Not touching upon the two "funda- 
mental hypotheses" of the authors of Ref. 14, we point out 
the erroneous nature of their ensuing conclusions, consisting 
in the fact that in place of the relation E, a v: one must 
write:I5 

rn 

E, d k . ~  u:, 
h 

from which one gets the spectrumI6 

which is steeper than a proper Kolmogorov spectrum.".'2 
We show below how the spectrum (3)  is obtained from 

the original equations of hydrodynamics for a rotating gravi- 
tating compressible system, within the framework of the the- 
ory of weak turbulence. We restrict our attention to the deri- 
vation of a nonlinear equation (neglecting terms of third 
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order of smallness in the amplitude of perturbations), from 
which we obtain in the two-limiting cases ( A  %A,, A <A,, 
where A, is the Jeans scale of disturbances) a nonlinear 
equation for the gravitational potential Y and the density p ,  
respectively. 

We first consider the nonlinear equation for the gravita- 
tional potential Y. It contains a so-called "vectorial nonlin- 
earity"" and is known in hydrodynamics as the Charney- 
Obukhov equation (Refs. 18-20), and in plasma physics as 
the Hasegawa-Mima equation (Ref. 2 1 ). In the linear ap- 
proximation this equation describes gravitating Rossby 
waves." We propose to name them "gravitating" because, 
in distinction from their analogs in hydrodynamics- 
Rossby waves (Refs. 23-2?~),~' and in plasma physics- 
drift waves (Refs. 27, 28), the existence of gravitating 
Rossby waves is due the perturbed gravitational potential. 

The equation which we derive for nonlinear gravitating 
Rossby waves describes both turbulent pulsations and sta- 
tionary dipole vortices. By means of known methods of weak 
turbulence theory (i.e., with the help of the kinetic equation 
for the waves, see, e.g., Ref. 29) an equation similar to our 
Charney-Obukhov (or Hasegawa-Mima) equation was in- 
vestigated in Ref. 30 and a turbulence spectrum was derived 
there. Here we have made use of this spectrum and have 
shown that it corresponds to the spectrum ( 3 )  and deter- 
mines not only the observable relations ( 1 ), (2) ,  but also the 
Salpeter spectrum of the stars with respect to their m a ~ s e s : ~ '  

where n is the number of stars with masses between m and a, 
per unit volume. 

A statioliary solution of the nonlinear equation ob- 
tained here for gravitating Rossby waves describes solitary 
dipole vortices. This solution is analogous to that obtained in 
Ref. 32 for dipole vortices in an incompressible fluid on the 
&plane. Below we prove the uniqueness of the solution ob- 
tained in Ref. 32 under conditions which are usually satisfied 
in real systems, and under the assumption that the separatrix 
of the dipole vortex is circular (see also Ref. 33). The forma- 
tion of solitary dipole vortices is natural in a medium de- 
scribed by an equation with only a vectorial nonlinearity. An 
exception is the case of one vortex considered in Ref. 34, 
when the center of the vortex is located on the line of tangen- 
tial discontinuity of the velocity, in the presence of two oppo- 
site flows. As was correctly noted by the authors of Ref. 34, if 
the direction of one of the flows is changed to its opposite, so 
that in accord with Ref. 32, the total flow becomes homoge- 
neous, then the direction of rotation of one half of the vortex 
is also changed. As a result one obtains a dipole vortex." A 
note on the possible observational manifestations of dipole- 
vortical structures in astronomical objects can be found in 
the Conclusion. 

The second nonlinear equation for the density obtained 
below is analogous to the first one (for the potential Y )-it 
also contains a vectorial nonlinearity. 

The plane of the paper is the following: In Sec. 2 the 
problem is formulated. Sec. 3 contains a derivation of the 
fundamental nonlinear equations. In Sec. 4 the stationary 
solutions of the two nonlinear equations are found from the 
basic solution in the two limiting cases A )A, and A (A,. 
The same section also contains the proof of the uniqueness of 
the solution describing the solitary dipole vortices. In Sec. 5 

the weak turbulence spectrum is represented. In the con- 
cluding Sec. 6 possible astrophysical applications are dis- 
cussed. 

2. THE MODEL. THE INITIAL EQUATIONS 

We consider a gravitating system rotating with con- 
stant angular velocity no, with nonhomogeneous density p; 
#O. (Stationary quantities will be denoted with the sub- 
script "0" and the accent denotes differentiation with re- 
spect to the radial coordinate r ) .  This is the way the central 
parts of galaxies and many polytropic rotating gas configu- 
rations are 

The basic equations are the equations of hydrodyna- 
mics in a coordinate system which rotates with angular ve- 
locity a,, (Ref. 1 S ) ,  and Poisson's equation 

* + p div v,=O, 
dt 

where 

and any function A can be represented in the form of a sum: 

In writing Eq. (S), use was made of the equilibrium 
condition for the system with respect to r (assuming that R,, 
is along the z axis) : 

The function x is defined in the following manner (the re- 
maining notation is commonly used15 ): 

Assuming that the gas is barot ropic ,~  = p ( P ) ,  the last term 
in Eq. ( 1 1 ) can be represented in the form 

I ap alp) 
--=- 
p(P) axi ax, ' 

where the function f(P) is determined from the equation 

Finally, we obtain from ( 11 ) and ( 12) 

x= Y +l (P) . (13) 

It follows from the form of the fundamental equations that 
we have restricted our attention to two-dimensional distur- 
bances situated in the ( r ,p)  plane transverse to the rotation 
axis (the z axis). 

3. DERIVATION OF THE FUNDAMENTAL NONLINEAR 
EQUATIONS 

Taking the cross product of Eq. ( 5 )  by e, =fldflo, we 
obtain 

2 Sov. Phys. JETP 72 (I), January 1991 V. V. Dolotin and A. M. Fridman 2 



; -;+-I 
1- % V I  3 

where I 

We substitute the expression ( 14) for Q, : 

Substituting the expression ( 14) into the latter equation, we 
see that it is proportional to a '. We omit this term, since 
weareinterestedonly in "slow" motions, ( l/fl,) ( d  /dt) -g 1. 
We note that 

d IZ/--<l; 
v, Podt 

consequently 

whence, 

Making use of Eqs. ( 15 ) and ( 19) we calculate div 0, and 
div 0, - 

div v,=O, (20) 

Substituting (20) and (21) into the continuity equation ( 6 )  
and making use of the Poisson equation (7 ); we finally ob- 
tain the fundamental nonlinear equation: 

where w; =4.rrGp, is the square of the Jeans length and 
key (a: ) ' =dw;/dr. 

We successively consider the two opposite limiting 
cases @ >?and @ d. 

1) @ This case corresponds to the existence of long- 
wave disturbances A %AJ, which is possible only for configu- 
rations which are sufficiently oblate along the rotation axis, 
with h (R (where h and R are the thickness and radius of the 
system, respectively), so that A, - h (Ref. 2). 

With the condition I) ,  Eq. (22) takes the form: 

where 

We note that in the special case of a cold cylinder of homoge- 
neous density rotating with angular velocity a, we have 
a = 1.' 

We investigate the linear approximation to Eq. (23). 
Setting 

we obtain the following expression for gravitating Rossby 
waves: 

Since in real systems (w; )'-PA < 0, the direction of the azi- 
muthal component of the phase velocity of gravitating 
Rossby waves depends on the sign of the difference a - 2: 
for a - 2 > 0 the velocity is directed along the direction of 
rotation ("eastward") and for a - 2 < 0 it is directed "west- 
ward." 

The necessary condition ( 17) is valid either in the case 
of an anisotropic spectrum, k, (k,, or in the case when the 
gravitating disk is at the boundary of a gravitational instabil- 
ity (which is true for galactic disks36 as well as for some 
planetary rings6 ) . 

2) @ & This condition is more universal than the pre- 
ceeding one, since it is valid for short-wavelength pulsations, 
A 4 A J  which exist in a system of arbitrary geometry. It is 
obvious that the turbulence in gas clouds can be created only 
by disturbances with A &,.In the a model of accretion 
disks (Ref. 37, 38) a fundamental role is attributed to such 
disturbances with R 5 h -A, in the creation of turbulent vis- 
cosity. 

Under the condition 2) the equation (22) takes the 
form 

In the linear approximation, assuming that? has a form anal- 
ogous to Eq. (25 ), we obtain from Eq. (27 ) 

k, d l n  po 
a = - 2 P o  -- 

kL2 dr ' 
which is an expression for the frequency of the Rossby wave. 
We note that since in real objects d In p,/dr < 0, the azi- 
muthal component of the phase velocity of (short-wave- 
length) Rossby waves in rotating gravitating systems is di- 
rected in the direction of motion (to the "east"). 

As we see, the equations (23) and (27) obtained from 
the fundamental equation (22) in the two opposite limiting 
cases (A %A, and R <A, ) differ only in the coefficients. 

4. SOLITARY DIPOLE VORTICES 

We subject equations (23) and (27) to a series of trans- 
formations of the independent variables. First, we transform 
to a local Cartesian coordinate system: 

8 - a  i a - a  
-=- 9 --=-. 
dr  ax r acp ay 

(29) 

Assume now that in the system of three variables x ,  y, t the 
last two are related by the following condition: y = 7 + ut. 
In terms of such a system of two independent variables (let 
these bex and q = y - ut), the equations (23) and (27) take 
the form 

Here we have introduced the notations: 
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It is easy to see that the equation (30) can be written in the 
form 

where J is the Jacobian. The last equation can be rewritten 
as: 

where F is an arbitrary function. 
We are interested only in local solutions, i.e., f i  -0 for 

q- w for arbitrary x. In a neighborhood of the point at in- 
finity in q (for q-  w ) it follows from Eq. (34) that 

Consequently, the function F in Eq. (34) must be linear in a 
region sufficiently remote from the point x = q = 0. We 
choose this function to be linear in the whole (x,q) plane: 

where k > 0, p > 0. The meaning of splitting the x, q region 
into the interior and the exterior of a circle of radius a cen- 
tered at x = q = 0 will be explained later. 

Introducing polar coordinates r, p (x = r cos p, 
q = r sin p) we get in place of Eqs. (36) and (37) 

The last equation turns out to be homogeneous, since we 
must require f i  -0 as r-t oo . This condition implies 

We look for the general solution of Eq. (38) in the form 
f = + g * (weomit thesubscriptsi henceforth, where f *is 
a particular integral and 5 is the general solution of the ho- 
mogeneous equation, which is well known: 

E (I, (P) =x (Am cos mq+Bm sin mq) lm (kr) , r<a. 

We look for a particular solution of the nonhomogeneous 
equation (38) in the form 

p'=r (a sin rp+b cos cp) . (41 

Substituting (41) into (38), we obtain: 

Finally, we find the general solution of Eq. (38): 

where J ,  ( z )  is a Bessel function of the first kind. 
The general solution of Eq. (39) has the form - 

E l r  = (Cm cos mq+D, sin rnq) K,,, (pr)  , r>a, ( 4 4 )  
m=O 

where K ( z )  is a Macdonald function (modified Bessel func- 
tion). 

The continuity equation and the equation of motion 
contains the first derivatives of p and v with respect to r, 
which must be continuous for r = a. It follows from Eqs. 
(5)-(7) and ( 15) that {and its first two derivatives must be 
continuous with respect to r.4' This is why one can write 
Eqs. (36) and (37) so that the left-hand and right-hand 
sides contain homogeneous functions F and f which are 
continuous at the point r = a: 

Subtracting the first equation of (45) from the second 
we obtain at the point r = a 

Since we have required before p > 0, k > 0, it follows from 
(36), (371, and (46) that: 

EI(a, cp) = E r r ( %  cp) =Ua cos cp. 

Substituting the solutions (43) and (44) we find that 
B,  = D m  = 0 for all m; A, = C,  = 0 for all m except 
m = l :  

A,=UAa/k2J, (ka) , C,=Ua/K, (pa). 

Thus, we finally obtain: 

We have made use of the fact that according to Eq. (32) 
U, = nu.  [Thus, Eq. (47) describes E2; g, differs from it 
by a factor (a - 2) / ( a  - I ) . ]  

From Eq. (14) we get v, = v, + v; (here and in the 
sequel the "tilde" over v will be omitted for simplicity); from 
Eq. ( 17) we obtain (u, I % lv; I, consequently v, zv,.  From 
Eq. (15) we obtain v, = [e,,V,%]/2R0, i.e., 

Let R denote a characteristic length scale for the variation of 
the stationary parameters (the size of the system) in a direc- 
tion perpendicular to the axis of rotation, and a/R < 1. Then 
in the solution (47) the quantity A can be considered con- 
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stant to accuracy a/R 4 1, and one obtains from (47) and 
(48): 

A Jl ' (kr) 
[I-JI-ka-)]ucosq, r c a ,  

277, = 
Jl (ka), 

(50) 
K1'(pr) u cos q, Pa - r>a. 
Kl (pa) 

It follows from Eq. (49) that the continuity of v, at r = a is 
automatic. The continuity of v, at r = a is valid at those 
points z,= ka which are roots of the following equation (re- 
call that p is fixed: p2 = - A) : 

Here we have introduced the notation s F p a .  After elemen- 
tary transformations we obtain:" 

This equation has a countable set of positive roots 
z,, = z,, (so), n = 1,2 ,... . The first three roots (n = 1,2,3) 
z,, = z,, (so) are shown in Fig. 1 (Ref. 39). 

We investigate the structure of the vector field v,.  For 
this purpose we calculate curl, v, for r < a. We substitute 
into the equation 

I a 1 av, 
curl, v, = - - (rvw) - - - 

r dr r dq 

the expressions for v, and v, from Eqs. (49) and (50) for 
r < a. As a result we obtain 

curl, /v, = - 1 [ l,"(kr) + - 111 (kr) 
21, (ka) kr 

1 - - 1, (kr)] u cos q 
kZP 

or, after simplifications: 

I2 

----- 

----- 
6 

Y -----. 
Yl'uuLlluurLuruL zun E 47 I 10 6 la0 

FIG. 1. The first three roots ( n  = 1,2,3) of the equation ( 5  1 )  in the form 
of the function z,, = z,, (so). 

FIG. 2. The structure of the solitary dipole vortex (modon) in the case of 
a circular separatrix. 

It follows from Eq. (52) that curl, v, changes sign when r 
varies in a circle of radius a, i.e., for r <a,  at the points where 
J, (kr) = J, (2) = 0;  the roots of this equations are (Ref. 40) : 
z , z 4 ,  7, 10 ,... ( k =  1, 2, 3 ,... ). Sincer<a,z,  <z,,. If, for 
some reason, a root z,, of the equation (5 1 ) is preferred over 
the others (obviously, in such cases the selection is made by 
Nature-we discuss this problem in the conclusion), then 
the inequality z, <z,, <z  (see Fig. 1)  can be satisfied only 
for k = 1. Consequently for r < a, J l  (kr)  can undergo only 
one sign change: at the point z = z,. This corresponds to the 
structure illustrated in Fig. 2. We note that compatibility of 
equation (40) and the condition p > 0 is realized only for 
A, = A I f o r u > 0 , i f a < 2 a n d u < O i f a > 2 ; f o r A ,  =A, itis 
realized for u < 0. Under these conditions the structure rep- 
resented in Fig. 2 represents a solitary dipole vortex (a  mo- 
don). It is also called an isolated vortex, since the amplitude 
of the vortex decays exponentially for r >  a [since it is de- 
scribed by the modified Bessel function (Macdonald func- 
tion) K, ] .  

In order to discuss the opposite cases: A, = A, for u < 0 
if a < 2 and A, = A2 for u > 0 if a > 2, one must change the 
sign of the right-hand side of Eq. ( 37 ) 

The solution of this equation no longer depends on the Mac- 
donald function K,, but on the cylinder function of the sec- 
ond kind (called the Neumann function N, by some and the 
Weber function Y, by others), which decays like r - '" as 
r-+ GO. Such a solution was known for a long time (Refs. 24, 
25); in this case the dipole vortex does not behave like an 
isolated vortex (Ref. 26) but like a long-range "force cen- 
ter" (compare with the Hertz dipole). 

To conclude this section we make some remarks. First, 
we call attention to the fact that the solution (47) obtained 
by us is the unique solution of the equations (36) and (37)  
obtained from the general solutions (43) and (44) by junc- 
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FIG. 3. Shapes of separatrices: a--circular, b--loop-shaped 

tion along a circle of radius a under the assumption that the 
function and its first derivatives are continuou~.~) Second, 
one can now understand the reason for the decomposition of 
the ( x , ~ )  plane into the two regions: the interior one ( r  < a )  
and the exterior one ( r  > a ) .  The linear dependence of the 
functions [i - Ux and A, (i + UAx proved in Ref. 39 on the 
basis of the finiteness of the solution defines an equation 
involving cylinder functions. Since the general solution of 
this equation becomes infinite either at the point r = 0 or for 
r -  CO, the requirement of boundedness of the solutions 
forces us to split it into two parts, in each of which the solu- 
tion is that cylinder function which remains bounded in that 
region. From here follows the expression of the linear depen- 
dence in the form of the two equations (36) and (37). Final- 
ly and third, comparing our equation (33) with Eq. (4)  of 
Ref. 32, equation which describes dipole vortices in an in- 
compressible fluid in theP plane with a rigid lid, we see their 
complete analogy. 

5. THE WEAK TURBULENCE SPECTRUM 

In Ref. 30 is was shown that equations of the type (23) 
and (27) describe the Kolmogorov power spectrum of weak 
turbulence first derived in the papers of Zakharov in 1965 for 
a compressible weakly dispersive fluid (for references see 
Ref. 10). Under the assumption of practically one-dimen- 

i* 

FIG. 4. The structure of a modon for the case of a loop-shaped separatrix. 

sional disturbances, k, > ky , the following spectral depen- 
dences were obtained in Ref. 30 for the energy density 

There arises the question of the dependence of the tur- 
bulence spectrum Wk of the Rossby waves on k,. When 
Rossby waves are generated in shallow water, the absence of 
such a dependence seems natural, on account of the shallow- 
water approximation. However, drift waves in a plasma of 
size L along the z axis which are much larger than the trans- 
verse dimension d (i.e., L > d )  have a similar dispersion law. 
It follows from the theory of generation of drift waves (Ref. 
48) and from experiments (Refs. 49-5 1 ) that: 1 ) k, 4 k,, 
(recall that we have assumed that ky < k, ); 2) there is prac- 
tically no dependence of the turbulent diffusion coefficient 
on the z coordinate. Let us explain the last fact, since in this 
case this is very important. In order to determine the mecha- 
nism of the diffusion across a magnetic field, in Ref. 5 1 oscil- 
lograms were taken of the density oscillations in plasma col- 
umn and of the current of the measuring device. In the 
absence of any instability (small oscillation amplitudes) the 
current was small in magnitude and constant in time. In a 
developed instability the current of the measuring current 
had the form of peaks which were correlated with the density 
oscillations, and the current maxima were observed to be in 
phase with the density maxima. Thus, the plasma flow 
across the field had the character of "gushes." The "gush" 
occurred practically simultaneously along the whole plasma 
filament (i.e., there was no phase shift at different points of 
the z axis) as it propagated along with the wave in the azi- 
muthal direction. Since the diffusion coefficient was close to 
the Bohm value, a turbulent diffusion was observed. 

Thus, according to Refs. 48-51 (at  the limit of applica- 
bility of the theory, for k ,  - k,  = k,  ) we obtain 

-(ar+ol) -a3 
Wk'=k l  k, , 

where a, <a,, a , .  Going to spherical coordinates in k-space 
k ,  = k  sin 0, k ,  = k cos 8, we obtain 

where 

f (0) = (sin 0) - (a~+a2) (COS 0) -aa. 

Integrating W, with respect to the angle 8 from 8,, to n/2, 
where 0,, is determined from the condition of applicability of 
drift theory,4x cot 8 ,,,,,,,, -- k ,  / k ,  ,,,,, , k  ,,,,,, -w , /Vn  ,is the 
thermal velocity of the ions, and w, is the drift frequency, we 
obtain 

According to Eq. (53), it follows that 

We note that the spectra (53) agree with two out of the 
three obtained in Refs. 44-46 for the case of short-wave- 
length Rossby waves. (It  is explained in Ref. 30 why the 
third spectrum obtained in these papers cannot be realized.) 
Earlier, the second spectrum in Eq. (54) was derived in Ref. 
47 by dimensional estimates for Rossby waves in the f i  
plane. Obviously Eq. (54) should be understood as 
Wk a k y ,  where y~(3.5,4 .5) ,  i.e., yz4.  Indeed, the numeri- 
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cal solutions of equations of the same type as the one ob- 
tained in the present papers, Eqs. (23), (27), have shown 
(Ref. 43) that the shape of the spectra is similar to this for 
y-4. 

6. ASTROPHYSICAL APPLICATIONS 

6.1. The observed relations between the parameters of gas 
structures and the Salpeter mass spectrum16 

We define the function E (k )  from the condition 

E (k)  dk=W,kZdk. (55) 

According to Ref. 15 

whereR- l/k.Since W, a k - 4 ,  itfollowsthatE(k) ~ k - ~ ,  
we obtain from Eq. (56) (Ref. 16) 

Comparing the dependence we have obtained with the ob- 
served one (1 ), we see that they are completely identical: 
exactly such a spectrum is observed in rotating gaseous 
gravitating systems (Ref. 13). We now utilize the Navier- 
Stokes equation assuming that all its terms have the same 
order of magnitude: vVv- VY or v: /A -Rq /R  4.rrGp,. 
Making use of the spectrum (57) we obtain 

Comparing Eqs. (58) and (2)  we see that we have obtained 
the observed dependence (2)  of the density of a gas element 
of size A (Ref. 13). From the Navier-Stokes equation we 
obtain in order of magnitude uVu-AP/p, or v:/R 
-P,/p,A. Making use of Eqs. (57), (58), we obtain P, 
E n, m, vf, = const ( m, is the mass of a gas element of size 
A, n, is the number of such masses per unit volume). From 
the last equality we obtain, taking account of m -pA 3-R 2 ,  

i.e., A a m"', that 

which coincides with the observed Salpeter mass spectrum 
(4)  (Ref. 3 1 ). The theoretical spectra (54) also explain the 
derivations from the average (i.e., m - ma ) of the distribu- 
tion of the numbers of starts with respect to masses, Eq. (4), 
for the region of small (m <ma ) and large ( m  %ma ) 
masses (for details see Ref. 16). 

There naturally arises the question of the possible gen- 
eration of a quasi-two-dimensional spectrum in interstellar 
clouds, which are three-dimensional objects. According to 
observations (Refs. 52, 53), the mean rotation time of a mo- 
lecular cloud is -- 7 X lo6 years, which is much smaller than 
the lifetime of the cloud (over its life the cloud makes z 30- 
50 revolutions). Consequently, the hypothesis of "fast" ro- 
tation (17) can be satisfied, which implies the equation for 
quasi-two-dimensional Rossby waves (22). 

6.2. Possible observable manifestations of the generation of 
rnod0ns5~ 

Making use of the results of Sec. 4, we compare the 
direction of the velocity u, of the motion of the modons 
(solitary dipole vortices) with the y-component u p , ,  of the 

phase velocity of Rossby waves in two limiting cases: R %A, 
and R <A,. In the calculations we shall take into account the 
fact that in all observable systems the density decreases with 
the radius. We consider the two limiting cases. 

0 ugh,"=-= - - =  
>O for a>2, 

k ,  a-2 kL2 (60) 

<O for a>2, 
urn={ >O for a(2 

From Eqs. (60)-(63) it can be seen that in both limiting 
cases 

The physical meaning of the latter condition is the fol- 
lowing. The modons, being stationary structures, cannot 
lose energy by radiating Rossby waves (on account of a 
Cherenkov resonance). The condition (64) ensures that this 
is 

In order to determine the sign of the difference a - 2 
along the equatorial radius of a rotating gas cloud, in Ref. 55 
a series of models of rotating axially symmetric polytropes 
was calculated for the values of the polytrope exponent 
n = 0.5, 1.0, 1.5. The distribution of a - 2 turned out to 
depend only on n and the ratio of the rotation velocity a, to 
the critical angular velocity a,, (i.e., the limiting value for 
which the effective gravitational acceleration at the equator 
falls to zero; when this velocity is exceeded an outflow of 
matter starts at the equator-Ref. 35). It was shown in Ref. 
55 that there always exists a radius r, at which the quantity 
a - 2 changes sign (with a - 2 > 0 in the interior region of 
the cloud, r < r,, and a - 2 < 0 in the exterior region). The 
quantity ro/R, where R is the radius of the cloud, is a mono- 
tonically decreasing function of the ratio R,/a,, . For 
(RO/R,,),,, = 1 we have rO/R = 0.83, 0.73, 0.63 (for 
n = 0.5, 1 .O, 1.5, respectively). For RO/R,, < 1 the values of 
ro/R are larger than the listed values. 

Thus, one may assert that the direction of the azimuthal 
component of the phase velocity of gravitating Rossby waves 
in the main part of the system coincides with the direction of 
the analogous component of ordinary hydrodynamic 
Rossby waves (namely in the direction of rotation, i.e., to the 
"east"). The velocity of the modons points in the same direc- 
tion in the internal region ( r  < r,,) of the rotating system. 

In conclusion we recall that in the analytic method of 
obtaining stationary solutions describing modons we have 
used two assumptions. The first is the circular form of the 
separatrix, r = a. The second is that only the first root of Eq. 
(5  1 ) is realized in nature, leading to only one change of sign 
of curl v, for r < a (i.e., the dipole structure of the solitary 
vortex). As follows from Fig. 5,6' such forms are actually 
observed in different experiments in rotating shallow water. 
The reason of the appearance of such selection rules is one of 
the problems for future investigations. 

Until now the astrophysical literature has discussed 
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FIG. 5. a-The generation of a modon in a device with rotating shallow water in a vessle with paraboloidal bottom.'" The rotation of the vessel is 
counterclockwise ( to  the "east"). Two modons can be seen: one moves in the direction of rotation ("eastward") with almost vanishing speed (it is 
situated near thedriving disk-the whitecircle). The second modon propagates against thedirection of rotation of the vessel, with speed I ) , , ,  > tS, (11 ,  i h  

the Rossby velocity ); b-the generation of mushroom-like dipole vortices in a rotating basin with shallow water, produced by a jet of air which is not re- 
lated to the rotating system;" similar structures occur when a counter-current short-duration waterjet is injected." In Ref. 7 3  it is proved that there 
structures are Larichev-Reznik m ~ d o n s ; ' ~  c-mushroom-shaped vortex structures in the ocean. 

monopole vortices (Refs. 26, 56-60), whose observational 
discovery has either stimulated the development of the theo- 
ry (e.g., the article 56), or was itself the result of verification 
of laboratory and theoretical investigations (such as the re- 
cent paper 60) ." 

At the same time, at least in the last three decades, the 
same astrophysical literature contains numerous examples 
of observations of pairs of nearby objects. The hierarchy of 
such objects with respect to their scale is extremely wide: 
pairs of galaxies (Refs. 6 1,62), double galactic nuclei (Refs. 
63-66), double stars.31 The determination of the direction 

of rotation of spectrally double stars is a problem, which is 
not solvable in the near future. An analogous problem for 
eclipsed double stars is now being planned jointly with the 
Special Astrophysical Observatory (USSR Academy of Sci- 
ences) and the Shternberg Observatory (Moscow State Uni- 
versity). 

We note that the most active among the stars are close 
by pairs. A remarkable example of such a pair is the object 
SS433.67 It was already noted in the literature (Refs. 68- 
70), the properties of the SS 433 system remind one in minia- 
ture of those of active galactic nuclei. As regards the deter- 
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mination of the direction of rotation of pairs of galaxies and 
double galactic nuclei, in all cases when these directions are 
determined they are substantially more often opposite to 
each other. Figure 6, taken from Ref. 64, shows the picture 
of isodenses for the galaxy Markaryan 266 with two nuclei 
rotating in opposite directions. Two-dimensional analogs of 
the above-mentioned objects may be solitary vortices in lab- 
oratory experiments in shallow water26s71 and in the ocean72 
(Fig. 5 ) ;  The structure and dynamics of vortices may differ 
substantially as a function of the conditions of the experi- 
ment.73 

In conclusion we express our sincere gratitude to A. M. 
Balk, V. E. Zakharov, V. D. Larichev, A. B. Mikhaflovskii, 
S. S. Miseev, M. V. Nezin, and G. M. Reznik for discussion 
of some aspects of the theory, and to A. I. Ginzburg, B. V. 
Komberg, A. R. Petrosyan, A. V. Tutukov, E. E. Khachi- 
kyan, A. M. Cherepashchuk, and B. M. Shustov for a discus- 
sion of the astrophysical applications. 

"In addition to the creation of the stability theory of isolated rotating 
figures (Refs. 1-6), there has been great progress also in the construc- 
tion of a linear theory of embedded figures of r ~ t a t i o n . ~  

"Following Ref. 10, we understand by Kolmogorov spectrum any power- 
law spectrum of turbulence derived from the assumption of constant 
flow of energy along the spectrum. We designate as "properly" Kolmo- 
gorov the spectrum E, a k -"',derived in Refs. 11,12 from dimensional 
estimates making use of the mentioned hypothesis of constancy of the 
energy flow. 

"These waves were investigated by Margulis in 1893 and then by a series 
of authors before the publication of the Rossby paper (for references, see 
Ref. 26). One of the authors of the present paper (A.M.F.) first heard 
about the same dispersion law for Rossby waves and drift waves from M. 
A. Leontovich in 1965, long before the publication of the papers by the 
Japanese authors on this theme (see also Ref. 26). 

4'This constitutes the distinction between a gravitating compressible me- 
dium with A,Y = 4 ~ G p  from the case of an incompressible nongravitat- 
ing where the second derivative (vorticity) may have a finite 
discontinuity. 

5'For the first time the uniqueness of the solution for the two-layer flow 
was considered by a different method in Ref. 33. The case when the 
separatrix is not a circle r = a (Fig. 3a), but a loop (Fig. 3b) is shown in 
Fig. 4 (Ref. 41). The case of discontinuous conditions on a separatrix is 
considered in Ref. 42. 

FIG. 6. The isodense picture of the galaxy Markaryan 266 with 
two nuclei, rotating in the opposite  direction^.'^ 

"The photographs in Fig. 5 have been kindly provided by M. V. Nezlin 
and A. I. Ginzburg. 

''Monopole vortices, in distinction from dipole vortices, are described by a 
fundamentally different equation-with a so-called "scalar" nonlinear- 
ity (we recall that the modons are described by an equation with a vec- 
torial nonlinearity ). Such as, e.g., the Korteveg-de Vries equation. 
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