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A theory ofthe phase transition from weak to strong electrolyte is developed, making it possible to 
explain anomalous variations previously observed in the conductivity of electrolyte solutions 
when their dielectric permittivity E changes. It is shown that as opposed to the usual Debye 
approximation for calculating fields acting on the carriers, it is necessary in principle to consider 
the interaction not only with free, but also with bound charges in solution. It was established that 
for realistic parameters, there exists a critical value E,, at which the degree of critical dissociation 
of electrolyte molecules changes discontinuously by more than an order of magnitude. The values 
found for E, agree well with experimental data. 

Study of the properties ofelectrolyte solutions, as a rule, 
is conducted using the Debye approximation Refs. 1-3. Un- 
til now, changes in electrolyte solution properties (solubil- 
ity,' carrier m~b i l i t y ,~  etc.) have been studied in detail as 
functions of electrolyte concentration. Thus solvent proper- 
ties enter essentially through the dielectric permittivity E:  

the electrolyte ionic interaction energy is E times smaller 
than in vacuum, where E is taken to be constant. In such an 
approach, the electrolyte-solvent system is completely anal- 
ogous to an ionized gas. However, the peculiarity of an elec- 
trolyte solution is that E of the solvent can be changed rela- 
tively easily and over broad ranges. (Experimentally, this is 
achieved, for example, by diluting the solution using a liquid 
with a different dielectric permittivity.) It is noteworthy 
that the dependence of the thermodynamic properties of an 
electrolyte solution on the E of the solvent has scarcely been 
studied theoretically, although rather extensive experimen- 
tal material has been gathered in this area.' 

In this work, the degree of electrolyte molecular disso- 
c ia t ion~ is studied as a function of the dielectric permittivity 
of the solvent. It is shown that when calculating fields, acting 
on a carrier, it is necessary to consider the interaction not 
only of the free, but also of the bound charges in solution. It 
is established that for realistic system parameters, there ex- 
ists a critical value E ,  at which the degree of dissociation of 
electrolyte molecules changes discontinuously by more than 
an order of magnitude. 

A symmetric binary electrolyte solution will be exam- 
ined. The static dielectric permittivity of the solvent is &, the 
number density of solvent molecules is N, and the degree of 
dissociation is x. The magnitude of x is determined by the 
law of mass action:* 

x2 v z+z- 
-=- u (x) eap [- v = - 
l-x 20 

7 (1) 

where the entropy factor v is of order R - ' (R is the radius of 
the ion); T is the temperature in energy units, z + , z _ , z,, 
are respectively, the numbers of possible states of positive 
and negative ions, and of electrolyte molecules per unit vol- 
ume. 

The dissociation energy takes the form 

where the &-dependent terms u, and u . represent the elec- 
trostatic parts of the internal energy of an electrolyte mole- 
cule and the ion pair that forms as a result of dissociation; u, 

includes the energy expended in breaking the chemical bond 
during dissociation, as well as the difference in the internal 
molecular and ionic energies arising from short-range forces 
of nonelectrostatic origin (hydration energy and so on).  For 
simplicity, we will assume that u, does not depend on E. 

The values of the energies u . are found by the usual 
method of electrolyte t h e ~ r y , ~  representing ions as vacuum 
spheres with radius R and with point charges f q at the 
center. The remaining part of the solution is viewed as a 
continuous medium with a dielectric permittivity equal to 
the actual value of E for the system. Free charges are de- 
scribed using the inverse Debye radius 

x= (8nq2xN/eT) ". 
Within the scope ofthis model, in the case of interest, that of 
a dilute electrolyte with KR < 1, we have 

Note that Eq. (3)  is the simplest expression for u * and 
its range of validity is limited. The question of the use of (3)  
is studied in detail in Ref. 6, where the error of this expres- 
sion is determined numerically for different system param- 
eters. The values of the parameters we used in studying 
phase transitions [see the discussion after Eq. (9)  below], 
fall in the area where, in accordance with Ref. 6, (3)  is accu- 
rate to 5-10%. This accuracy is found to be completely satis- 
factory inasmuch as the self-consistency of ( 1 ) introduces at 
least as much error in our computation. 

The first term in Eq. ( 3 )  represents the energy u,,,, of 
interaction with bound charges and the second the Debye 
energy u, of interaction with free charges in solution (in 
Ref. 3 where the dependence of x on the carrier concentra- 
tion was studied, only the u, term was taken into considera- 
tion). 

The calculation of the electrostatic part of the molecu- 
lar energy u, is completely analogous to the calculation of 
u , . The ratio of u, to u + is of order (p/qR , )2,  wherep is 
the absolute value of the dipole moment of the molecule. We 
specialize to the casep<qR. , in which u, is negligible in 
comparison with u . . (The calculation of u, does not pose 
major difficulties and does not change the qualitative form of 
the results obtained below.) 

Substituting expressions ( 2 )  and ( 3 )  into ( I ) ,  we ob- 
tain the following equation determining x: 
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The value of Wat w h i c h x ( ~ )  becomes multivalued, can 

3-x E 
(4)  be determined by solving Eq. (4) ,  as well as by using the 

where conditions 

Note that the second term in the right side of (4)  is 
obtained by transformation of the coefficient of the exponen- 
tial in Eq. ( 1 ) . The difference in the magnitudes of N / Y  and 
the dimensionless concentration n in (5)  causes the constant 
W to be renormalized slightly. 

As is evident from Eqs. ( 1 )-(4), the main contribution 
to the dependence X ( E )  is made by changes of the energy 
u,,,, of interaction with bound charges as E is varied (since 
ufield /uD - (xR) - > 1 ) : AS E increases the energy u,,,, de- 
creases and x increases. It is evident that this effect is most 
noticeableifat small& ( E Z  1)  the electrolyteis weak ( x g  1).  
In this case, in some range of values of E (up to x 4 1 ) x grows 
exponentially with E and for E>) 1 the electrolyte becomes 
strong (x  z 1 ) . 

These monotonic changes in the dependence X ( E )  oc- 
cur when the Debye contribution u, can be neglected. The 
situation changes qualitatively if the quantities u, and u,,,, 
cancel each other out to a significant degree and their differ- 
ence is of the same order as u,. In this case, it can be signifi- 
cant that as x grows the energy u, increases (due to the 
interaction of ions with the Debye cloud), which in turn 
leads to a further increase in x. The positive feedback arising 
due to this under favorable conditions can lead to a discon- 
tinuous jump in x at some value of E: a first-order phase 
transition occurs in the system, in which x changes more 
than an order of magnitude. The permittivity of the solution 
grows correspondingly. This transition can be called a weak 
electrolyte-strong electrolyte phase transition. 

A quantitative examination of equation (4)  for various 
choices of n, A,  W shows that at large values of Wand fixed 
values of A and n, the dependence of x on E is monotonic. As 
W decreases below some value W *, the dependence ofx on E 

becomes S-shaped (see Fig. 1 ) .  As usual, this is evidence 
that a first-order phase transition is occurring in the system. 

for which the multivalued portion of the X ( E )  phase curve 

( 5 ) degenerates to a single point. The values of x, and E, , satisfy- 
ing this condition are x, = 0.44, E, = 0.24An - "! Substi- 
tuting them into (4)  we find W * and also conditions for the 
parameters Wand n for which this phase transition is possi- 
ble: 

W<6,63-lnn-4,20n-'t8. (7)  

In order to study in more detail the phase transition that 
takes place when condition (7)  is satisfied (in particular, for 
determining the critical dielectric permittivity E, ), it is nec- 
essary to construct the free-energy functional. The free ener- 
gy of the system in the calculation is given by the expression 

X 

F=Fo + j u ( x )  dx-TS,  
(8 )  

0 

where 

and F, is the free energy of the system in the absence of 
dissociation (x  = 0).  

The solution is assumed to be dilute 
(xN4.z + ,z- ;N - xNgz,),  so the entropy of the system is 
determined by the independent distribution of x N  positive 
and negative ions in the z + and z - states and the distribu- 
tion of N - x N  electrolyte molecules in the z, state. Using 
Stirling's formula (In y!  = y  In y  - y )  we obtain 

Note that the law of mass action ( 1 ) , as usual, follows from 

FIG. 1. Dependence of the degree of dissociation of the elec- 
trolyte molecule on inverse dielectric permittivity of the sol- 
vent at A = 200, W = - 5 and at various values of dimen- 
sionless concentration n: I-n = 2.3.10 '- 2, 2-2.0.10 2,  

3-1.7.10 *, 4--1.5.10 '. Phase transitions are indicated 
by arrows, bold lines indicate physically realized states. 
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the condition dF/dx  = 0. 
For W <  W* there is a region of E where Eq. (4)  has 

three solutions for each value. The maximum and minimum 
values of x  in the multivalued region for a fixed value of E 

give local minima of the free energy F ( 10). The intermedi- 
ate value corresponds to the maximum free energy. At some 
value E = E, the values of F, corresponding to the local mini- 
ma become equal. For E < E, the phase with a low ion con- 
centration is stable, while for E > E, the phase with a high ion 
concentration is stable. Thus E, determines the point of the 
phase transition. There the concentration changes discon- 
tinuously by more than a factor of ten. 

In Fig. 1 the characteristicsx(~) are shown for different 
values of the dimensionless concentration n and fixed 
W  = - 5 and A = 200 (the minimum value of the dimen- 
sionless concentration n,,, at which a phase transition is 
possible, in accordance with (7 ) ,  in this case is equal to 
1.9.10 2) .  When inequality ( 7 )  is satisfied (curves 1, 2),  a 
first-order phase transition occurs (indicated in the figure by 
an arrow). At n = 2.10 2, the critical value of the dielectric 
permittivity is equal to E, = 12.58, and at n = 2.3- 10 - 2, 
E, = 11.98. Thus, the phase transition is possible at reasona- 
ble values of the physical parameters. If the inequality ( 7 )  is 
not met (for values of the dimensionless concentration less 

than n,,, ), x grows monotonically with E,  but, in the region 
E-E,, sharp growth in the degree of dissociation x is ob- 
served. 

Similar changes in the carrier concentration when the 
dielectric permittivity of the solvent was changed were ob- 
served in the experiment for LiCl dissolved in a mixture of 
methanol and dioxan. 

In conclusion, note that when E is close to the critical 
value E, and other parameters of the system are varied, e.g., 
the temperature T, anomalous changes in the degree of dis- 
sociation are possible. We did not consider temperature-de- 
pendent phase transitions, since this would require more de- 
tailed information regarding the dependence of E on T. 
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