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A solution is found for the problem of the motion of 2 0  electrons in microstructures with a 
smooth potential in a quantizing magnetic field. The conductances (in units of e2/h ) of two- 
poles, three-poles, etc., are generally rational numbers. The establishment of the chemical 
potential near the Fermi seas of the electrodes and in the sample itself is studied. 

I. We investigate the quantization of the resistance of 
microstructures with a smooth potential relief V(x,y) in a 
quantizing magnetic field under ballistic and quasiballistic 
conditions. The present study is based on the assumption of 
semiclassical dynamics for the center of the.electron orbit in 
the quantizing magnetic field.' If the length scale I of the 
potential variation is much larger than the magnetic length 
scale a = (cfi/eH) the motion of an electron can be de- 
scribed" as a drift of the center of the orbit along the con- 
tour lines of the potential V(x,y) at a velocity 

i= ( c l eHZ)  [ V V H ]  

The coordinates x,y are then canonical variables, and classi- 
cal motion occurs along contour lines of the potential 

Quantization within a single Landau band can be carried out 
on the basis of the Hamiltonian 

In principle, the Hamiltonian ( 1 ) can be used to find 
both the energy levels with semiclassical accuracy and the 
probability for tunneling between different semiclassical 
states. The Bohr-Sommerfeld rule implies quantization of 
the areas between neighboring contour lines: 

AS,, n+t=2na2, En,=V(x, y) + (N+'12) hax, 

where n specifies the particular sublevel of Landau level N. 
Finite contour lines determine the discrete spectrum, and 
infinite ones the continuum. Corrections to En, for tunnel- 
ing between semiclassical trajectories are found with the 
help of the Hamiltonian ( 1 ) in the usual way.2 

11. We consider a sample with several junctions. The 
current is carried through the junctions exclusively by elec- 
trons on contour lines which start from or end at the junc- 
tions (the direction of a contour line is determined by the 
drift velocity on this line). Each Landau level N has its own 
system of Fermi-level lines. Contour lines cannot intersect. 
We say that a junction is "ideal" if the electrons leaving it 
and going into the sample conserve the chemical potentialp 
of the bulk part of the electrode. A sample, on the other 
hand, is "ideal" if there is no mixing of electrons between 
different contour lines. The contour lines going into a junc- 
tion are infinite; i.e., they correspond to a continuous energy 
spectrum. Corresponding to an energy interval AE is a band 
of width AE/JVV(r) I at the point r. Multiplying it by the 
electron velocity c J  V V(r) I/eHand by the electron density in 
the Landau level (2n-a2) - I, we find the current from the 

energy band AE near the given contour line: 

c l V V ( r )  I AE 1 e 
AI=e -=- AE. 

eH ( V V ( r ) 1 2 n a 2  h 

For electrons leaving the junction, the width of the en- 
ergy band is determined by the chemical potential ,u of the 
junction. We can make use of this circumstance to formulate 
the following "Kirchhoff s laws": Contour lines of the Fermi 
level are unidirectional quantum conductors which connect 
nodes on a plane. The contour lines of the Fermi level for a 
given Landau level alternate in direction with any curve 
which intersects them. Each node is a point which current 
goes into and comes out of and which has its own potential 
pi = pi/e. The current on the line i -+ j  is determined by the 
potential of node i: 

where N; is the number of contour lines of the Fermi level 
which connect node i with node j and which correspond to 
Landau level a. The total current leaving node i is 

The number of contour lines emerging from a node 
must be the same as the number going into it: 

This condition means that the numbers of "right banks" is 
equal to the number of "left banks." We can now write I, as 

This result explicitly eliminates the origin of the energy scale 
and shows that the current is determined exclusively by the 
electrons in bands of width equal to the potential difference 
between junctions. 

A change in the sign of the magnetic field is equivalent 
to the replacement Nji (H) -+Nu ( - H). Generally speak- 
ing, we thus have Ii (H)  $. Zi ( - H ) .  Only in an axisymmet- 
ric arrangement would we have N,=Nji and 
Ii(H) = Zi( - H).  

This classical situation corresponds to Landauer's 
quantum-mechanical f ~ r m u l a , ~  in which the transmission 
coefficients are identically equal to either one or zero. Ac- 
cordingly, the conductances are quantized exactly. 
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FIG. 1. a-A two-pole. The closed contour line and the line 
which emerges from electrode 2 and goes back into it do not 
contribute to the conductance. b--A three-pole. General model. 
c-A long Hall sample with an ideal middle. All the contour 
lines emerging from junction 2 reach junction 3, and those com- 
ing from junction 5 reach junction 6. There are no contour lines 

c connecting 1 and 4; there are no "counterflows" 4-1, etc. d-A 
four-pole. A topological model of this four-pole is shown inside 

d it. Also possible is another model, symmetric with respect to the 
one shown, in which diagonal 2-4 is replaced by diagonal 1-3. 
e-A sample with a "bottleneck." Only the contour lines 2-3 
and 4-1 pass through the constriction. 

2 3 

111. Let us consider the conductances of some very sim- ea 
11' = - [NU - . Nzi (Ndsz+NsN~z) 

ple arrangements. k N2J'm-NzN3 ] (w-c), 
a )  ~ b r  a two-pole (Fig. l a ) ,  

where N is the number of contour lines connecting the junc- 
tions. 

b) For a three-pole (Fig. lb) ,  

If junction 3 is disconnected (I3 = 0), we have 

and the two-point conductance is 

The replacement of H by - H interchanges i and j. In the 
particular case of "one-armed" junction (i.e., a single con- 
tour line goes into and comes out of each Landau level) 
which are identical in the sense that at equilibrium they have 
identical numbers of filled Landau levels N, the potential p, 
is equal to rp, or p, , depending on the sign of H, and we have 
GI, = e2N/h. Here and below, the theory is linear; i.e., 
Pi - pj < f i w ~ .  

C )  For a Hall sample (Fig. lc)  which is also long, the 
interjunction distances L,, and L,, are much larger than the 
width of the sample, W. The numbers of contour lines are 
N,, = N,, = N,, = ... = N. We then have 

d )  For a four-pole (Fig. Id), electrodes 2 and 3 are 
"potentiometric" (I, =I3 = O), and we have G23 = I , , /  
(rp2 -rp3). 

To determine how the conductance of a four-pole de- 
pends on the magnetic field, we need to specify the nature of 
the potential in the structure. There can evidently be at least 
three saddle points of the potential in a sample; these points 
are bifurcation points for the contour lines (three cuts are 
sufficient to disconnect all the junctions from each other). 
For definiteness we place these points at junctions 2 and 3 
and between them: Vd2, Vd3, and Vd . 

If the Fermi level is higher than all the saddle points, 
and if the current junctions are identical, we have 
N,, = N2, = N3, = N,, = N (and otherwise Nu = 0). In 
this case we have 

We assume the following hierarchy of saddle points. 
Vd2 < Vd3 < Vd < h H .  As H is increased, the contour lines 
4 - 1, 2 + 3 are first "short-circuited" to 4 - 3 and 2 + 1, so 
we have N, = N -  1, N,, = N -  1, and N,, = N2, = 1. In 
this case we have 

and 

AfurtherincreaseinH [Vd, > p  - ( N +  1/2)fiw,> Vd2] 
leads to short-circuiting of the lines 4 - 3 and 3 - 4 to 4 + 4 
and 3 - 3; G2, becomes infinite, while I,, does not change. 
This pattern repeats itself when the next Landau level 
crosses the equilibrium Fermi level p. 
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e)  A particular case of a four-pole is a "bottleneck" 
between two identical Fermi seas (Fig. le).  From (5)  we 
find the known expression4 

We wish to call attention to two circumstances. ( 1 ) The 
conductances are generally not multiples of e2/h, but they 
are rational numbers. (2)  The conductance of a sample de- 
pends on the presence of potentiometric electrodes. For ex- 
ample, even in the case of a three-pole the conductance is 
described by (4)  instead of simple expression (3)  for a two- 
pole. The reason is a mixing of the chemical potentials of the 
contour lines in a junction. If contour lines with different 
chemical potentials do not go into a junction, the presence of 
this electrode will have no effect on the conductance. A po- 
tentiometric electrode is "connected" to the corresponding 
current junction. 

The expressions derived in this section of the paper con- 
tain an implicit dependence on the magnetic field through 
the numbers No. In samples with a regular potential, the 
result is determined unambiguously if the contour topology 
is known. If the potential has no extrema, No may be related 
to the number of filled Landau levels in different parts of the 
sample. If the potential is random, i.e., has a weli-developed 
structure, one must resort to percolation arguments. 

IV. Let us examine the conductance of a two-pole with a 
random potential (Fig. 2a). If the range of this random po- 
tential is w <h,, the dependence G(p ) consists of repeat- 
ing series of jumps of magnitude e2/h. Figure 2b shows a 
dependence of this sort, corresponding to the potential in 
Fig. 2a. The filling of each successive Landau level leads to 
an upward shift of the series as a whole by e2/h. 

The statistics of G is determined by percolation argu- 
ments. We assume a square sample of side L$I but with 
L<L,  =IT,", wherer, = (lp- V,l/w)-",v= 1.33, V, 
is the percolation level in the random potential, and LC is the 
correlation radius at the level V(x,y) = p .  For such a 
square, the contour lines of V(x,y) = E, where E is found 
from the condition I( lE - V, l/w) - " > L, are percolative. 
The mean value of the percolation threshold in a finite L X L 
square is 

V L = V c f ~ ~ L ,  ITL-'=L. 

The quantity + WT, determines the times at which percola- 
tion arises and disappears and therefore the width of the 
series. The number ofjumps in each series is of order unity. 
This conclusion follows from the similarity of a square of 
size L < LC and an infinite square, in which there is a single 
infinite contour line. The fluctuations in the width of the 
series are on the order of the width itself, since the fluctu- 
ations of the percolation threshold in a finite system of size L 
are on the order of rL (Ref. 5 ). 

For a two-pole in the form of an interlayer between tv 
Fermi seas (the width is WSL), the picture changes. The 
number of contour lines intersecting an interlayer of this sort 
is approximately W/L, since each L x L square can be treat- 
ed independently. A contour line going into a square will, 
with a probability -- 1/4, emerge at the opposite side. With 
the same probability, it will reach a neighboring square 
through its lateral face. Consequently, the probability for the 
appearance of a contour line which traverses a distance 
much greater than L in the interlayer is exponentially small. 
The number of jumps in a series is thus W/L $ L and has a 
dispersion of order ( W/L) 

In the opposite case of a highly elongated neck ( W< L ), 

FIG. 2, a-Intersection of the random potential V ( x , y )  with an 
x = const plane; b--conductance of a two-pole, in units of e2/h,  
as a function of p. 
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the probability for a contour line to pass through the neck 
from one electrode to the other is exponentially small. How- 
ever, the edge contour lines are conserved. We are thus left 
with exclusively regular jumps on the G(p)  curve. 

V. We now drop our earlier assumption that the junc- 
tions and the sample are ideal, and we consider a more gen- 
eral case. 

1. We first consider the establishment of the chemical 
potential in the junctions. It is frequently assumed that junc- 
tions are "dirty," i.e., that the mean free path in them is 
comparable to the magnetic length scale.4 In this case, the 
model of a motion along contour lines is itself incorrect. 
Since motion along contour lines is ballistic, and since the 
effect of the magnetic field inside a junction can be ignored, 
that approach is in a sense equivalent to the flow of gas out of 
an aperture into vacuum. In this case there will evidently be 
a jump in the chemical potential in the junction itself, and 
the conductance of the electrode will differ from the ideal 
conductance given by expression (2) .  Actually, the bridge is 
usually made of the same material as the junction region 
itself. Consequently, the picture of a motion along contour 
lines is also valid in this region. 

Nevertheless, hops between contour lines may occur 
(and may be either elastic or inelastic). We introduce a 
mean free path of an electron with respect to such hops, 1,. 
The motion is quasiballistic if I, )I. The chemical potential 
is established over distances - I,. Far from the percolation 
threshold, the length of a contour line is on the order of the 
distance between its ends. The chemical potential in an elec- 
trode equalizes in a region of area - a l i ,  where a is the 
vertex angle of the junction cone. 

The number of states in this region which are participat- 
ing in a "mixing" with states which are going into the junc- 
tion through contour line j- i can be estimated in the follow- 
ing way. The number of closed contour lines in this region is 
-a1 ;/I 2. Their total perimeter is a l i / l ,  while their areasis 
determined by the energy width of the band AE for the elec- 
trons participating in the establishment of the chemical po- 
tential (i.e., in the mixing) : 

Here AE = Ipi - p, 1 if Ipi - pj 1 ) T, or AE- Tin the oppo- 
site limit ( Tis the temperature in energy units). The number 
of states is then 

The number of states on contour line j- i in the mixing re- 
gion in band AE is IPIAE/2.rra2w. The increment 
[ (pl - pi ) j  ] in the chemical potential of electrode i as a 
result ofmixing with states on contour linej-iis determined 
by the relative number of these states: 

i.e., by the ratio of I, to the perimeter (total length) of the 
mixing contour lines in the junction. We see that the change 
in the chemical potential of the junction is small if 1 /I, 4 1 
(fora-1).  

It might seem that the situation would change radically 

if the chemical potential p were near the percolation level 
(T* & 1). In this case the contour line would be of a fractal 
n a t ~ r e ; ~  i.e., the length along a contour line, Y ,  would in- 
crease far more rapidly than the distance between its ends, L 
(or far more rapidly than the mean diameter, in the case of a 
closed line). For L 9 LC we have 

The area of the electrode region in which the mixing occurs 
depends on the relation between I, and Yc = I(L,/I)~J. If 
I, Y,, the size of the mixing region is found from the con- 
dition 1, = Y c L  /LC. In this case we have LC <L&l,. A s p  
approaches Vc,  the condition 1, ) 9, is of course violated. 
We then find from (8)  

L=l(lp/l) " d t ~ ~ , ~ l p .  

The total length of the contour lines of the Fermi level in 
Landau level N is found on the basis of the following argu- 
ments. This length is the perimeter of all finite clusters for 
which the condition V(x,y) + ( N  + 1/2) Fiu, = p  holds. 
We know from lattice problems of percolation theory7 that 
at the percolation threshold x,  the mean perimeter p, of a 
cluster of s nodes has the behavior ( 1 - xc )s/x,. For a con- 
tinuous random potential we would have 

vc 

x. = 1 F(V)1V,  
- m 

where F( V )  is the distribution function of the values of V. In 
two dimensions we would have x,  = 1/2. The total perim- 
eter of finite clusters in a volume L (d  is the dimensionality 
of the space) is P = L dB,p,n,  ( n ,  is the number of clusters 
of s nodes per lattice site). For P we find P = L d(  1 - x, ) . In 
our case we find P = +l(L /1) 2. Consequently, the relative 
number of edge states is 

We see that the behavior I, - p  prevails only for df > 2, and 
this condition cannot hold for d = 2. Consequently, elec- 
trons can be injected into a sample with a chemical potential 
equal to that of the electrode except under the condition 
1, 51. 

2. We now consider the establishment of the chemical 
potential in a quasi-1D sample. Clearly, the equalization of 
chemical potentials within a sample is particularly impor- 
tant in long structures. Let us assume that the potential V 
has a flat bottom and steep walls and depends only on the 
transverse coordinate. In this case the distance between con- 
tour lines in one direction is much smaller than the distance 
between contour lines going in different directions. An equi- 
librium is established between contour lines which are spa- 
tially close together. The system is then characterized by 
only two chemical potentials, which vary along the sample 
as a result of transitions between lines going in different di- 
rections. This change is described by the equations 
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with the boundary conditions 
(0) - (0) 0  = p O  p2 - ~ ~ ( 0 )  =pl - ecp. 

Solutions are 

In this case we have 

For potentiometric probes we have 

and for Hall electrodes G,,,, = eZN/h. In a sample with an 
irregular potential, the length 2' of the contour line plays 
the role of L. 

These expressions describe the transition from the bal- 
listic regime to the ordinary Drude regime. Strictly speak- 
ing, this situation is realized at high temperatures, at which 
the hopping processes are inelastic. 

What happens at low temperatures? If an electron expe- 
riences an impurity potential (which is not necessarily 
smooth) in addition to the potential V ( y ) ,  then all states of 
the electrons in a long sample will be localized in the absence 
of a magnetic field. The reason for this localization is the 
well-known divergence of the quantum-mechanical correc- 
tions to the conductance in 1D systems. Imposing a magnetic 
field suppresses the quantum-mechanical corrections at 
fields greater thans Hc = 3"2hc/(eWL) and disrupts the 
localization. 

In a 1D system without a magnetic field, the highly lo- 

calized case can also occur, if the Fermi level intersects the 
bottoms of the quantum-size subbands. The pronounced lo- 
calization occurs because the density of states becomes infi- 
nite, since the mean free path decreases, and the condition 
p,l, 1 is violated. The imposition of a weak magnetic field 
cannot disrupt the pronounced localization (as follows from 
the small value of the change in the Gell-Mann-Low func- 
tion f l  under the influence of a weak magnetic field and from 
the negative value of f l  in the case of pronounced localiza- 
tion). The situation apparently remains the same as the mag- 
netic field is strengthened. Unfortunately, it is not clear to us 
at this point whether weak localization occurs in a quantiz- 
ing magnetic field in a 1D system. In particular, we cannot 
rule out the possibility of a situation in which regions of 
localized and delocalized states alternate in energy, as in the 
2 0  case.9 

We wish to thank Z. D. Kvon for stimulating discus- 
sions. 

" A more precisecondition for the applicability of thedrift approximation 
for electrons in Landau level N is I V V I <mu:,  r,, where o,, = eH /mc 
and r ,  = a ( N  + 1/2) ' I2, according to Ref. 1 .  
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