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The increased interest in Nd, CuO, arises primarily because this compound is the basis of a new 
class of high-temperature superconducting materials. Pure Nd, CuO, exhibits a whole sequence 
of phase transitions, including a structural one and a number of magnetic transitions. A 
symmetry approach is used in the present study to investigate the relationships between 
characteristics of the crystal structure and the magnetic ordering of this compound. The normal 
modes of homogeneous oscillations of the spin system are determined. The symmetry of the spin- 
lattice coupling is analyzed. A linear magnetoelectric effect of exchange origin is predicted. 

1. CRYSTAL SYMMETRY OF Nd,CuO, 

Below room temperature the crystal structure of 
Nd, CuO, can be described by the Fedorov group I4/mmm 
and is presented in Fig. 1. The Cu2+ ions occupy a-type 
positions and form a body-centered tetragonal lattice. The 
Nd3 + ions occupy a pair of positions of the e type. Accord- 
ing to Ref. 1, a continuous structural phase transition occurs 
at T = T, > 300 K and its result is the displacement of the 
copper ions, as shown in Fig. 2. 

Our standard group-theoretical analysis shows that 
structural distortions presented in Fig. 2 correspond to an 
active two-dimensional irreducible representation of the Fe- 
dorov group I4/mmm, which belongs to a two-ray K 13 star 
(point X in the Brillouin zone). The disymmetric phase be- 
longs to the Fedorov group P4,/mnm of the tetragonal sys- 
tem and has a primitive cell whose volume is four times as 
large as in the initial phase (Fig. 3). The main features of the 
group-theoretical analysis of the structural phase transition 
are given in the Appendix. 

Magnetic ordering occurs in Nd, CuO, in the disymme- 
tric crystalline phase. In the sections below we analyze the 
very unusual magnetic properties of this compound. We 
concentrate our attention on the question of the extent to 
which any particular magnetic property is related to crystal 
structure distortions. 

2. MAGNETIC ORDERING OF Nd, CuO, 

Neutron diffraction in~est i~at ions ' .~ revealed three 
types of antiferromagnetic ordering of the magnetic mo- 
ments of the copper ions in Nd,CuO,, two of which are 
presented in Fig. 4 and the third in Fig. 5. The ranges of 
existence of these phases on the temperature scale are shown 
schematically in Fig. 6. All these magnetic configurations 
are realized in the disymmetric crystal phase (and they cor- 
respond to identical magnetic and crystallographic cells). 
The magnetic symmetry and the magnetic class of each of 
the three phases are 

The magnetic moments of the neodymium sublattices 
were detected only in the AF-3 phase for T< 1.5 K. Assum- 
ing that the magnetic "polarization" of the neodymium sub- 
lattices is not spontaneous, but due to the influence of the 
magnetically ordered copper subsystem [this is the assump- 
tion used in determination of the magnetic symmetry groups 
given by Eqs. ( 1 )-(3) 1 ,  we find that the symmetry consider- 
ations make it possible to determine how the magnetic mo- 
ments of the neodymium ions are oriented. We can readily 
show that each of the three phases represents the x-y projec- 
tions of the magnetic moments of the Nd ions located along 
one and the same c axis; these moments are ferromagnetical- 
ly ordered and oriented in the same way as the spins of the 
copper ions on the same c axis (Fig. 1 ) . The z projections of 
the magnetic moments of the Nd ions have opposite signs for 

FIG. 1 .  Body-centered tetragonal cell of Nd,CuO, in the high-symmetry 
phase. 
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FIG. 2. Displacements of the copper ions as a result of a structural phase 
transition in Nd, CuO,. The dashed square represents a primitive cell of 
the disymmetric phase. X, Y and x, y are, respectively, the old and new 
Cartesian axes. 

the nearest neighbors along the c axis. The magnetic mo- 
ments of the copper ions are all oriented entirely in the basal 
plane. 

The role of the rare-earth subsystem in the formation of 
the magnetic properties of Nd, CuO, can be identified only if 
we have information on the nature of the quantum states of 
the Nd3 + ions in the crystal field. Unfortunately, such infor- 
mation is not yet available. Naturally, an explicit allowance 
for the magnetic subsystem of neodymium has no effect on 
the results of the symmetry analysis. However, at sufficient- 
ly low temperatures there are additional branches in the 
spectrum of the spin excitations and these are associated 
with the rare-earth sublattices. We allow implicitly for the 
rare-earth magnetic subsystem via renormalization of the 
constants of the spin-spin and spin-lattice coupling of the 
copper ions. 

3. SYMMETRY OFTHE SPIN-SPIN INTERACTIONS IN 
Nd,CuO, 

We are interested only in homogeneous states of the 
magnetic subsystem, i.e., states with k = 0. The Hamilto- 

FIG. 3. Distribution of the symmetry elements of the space group 
P4, /mnm.  The positions of the copper ions in a primitive cell of the 
disymmetric phase are shown. 

FIG. 4. Four types of planar exchange-noncollinear magnetic structures. 
According to Ref. 1, Nd,CuO, exhibits the phases r, (AF-I) and 7, 

(AF-2). 

nian of the spin-spin interactions can then be represented by 
a sum of the exchange and relativistic terms 

where the exchange contribution Z~'' to the energy of the 
spin-spin interactions is 

The index tt labels the magnetic sublattices of copper and, in 
accordance with Fig. 3, it has four values. The last term in 
Eq. ( 5 ) describes a biquadratic exchange, which is of funda- 
mental importance for the compound under consideration. 

In this and subsequent sections we investigate the 
ground states and homogeneous oscillations of the spin sys- 
tem. As a preliminary step, we represent the Hamiltonian of 

FIG. 5. Two equivalent collinear antiferromagnetic structures. Accord- 
ing to Refs. 1 and 2, these phases occur at temperatures T< 1.5 K. 
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Eq. (4)  in a form which makes the symmetry of the system 
as clear as possible. 

Following the standard procedure, we replace the spin 
moments of the individual sublattices S, ( x  = 1, 2, 3, 4) 
with their linear combinations which realize irreducible rep- 
resentations of the group of transpositions of the atoms, i.e., 
we adopt the following ferromagnetic and antiferromagnetic 
vectors: 

A=SI+S2-Ss-SL, C=Si-S2-Sa+S~, 

AF-3 AF-1 AF-2 AF-1 Paramagnet~c Pararnagnet~c 

The transformation properties of the vectors of Eq. (6) 
are given in Table I. This table gives the distribution, in 
terms of the irreducible representations of the group D ii, of 
the quantities which are quadratic functions of the spins and 
also of the components of the strain tensor and of the electric 
polarization vector. All of them will be needed later. 

In our calculations we employ the usual normalization 
(equal-magnitude) conditions: 

or in the equivalent form: 

A2+B2+CZ+Fz=16 S2, 

phase FIG. 6. Sequence of phases exhibited by Nd,CuO,, 
I*/mmm shown on the increasing temperature scale.'.2 I 

where J, and J, are the constants of the exchange interac- 
tion which is a quadratic function of the spins, whereas D is 
the biquadratic exchange constant. Equation (9)  does not 
include the exchange invariant C2, because its inclusion in 
accordance with Eq. (8  ) simply renormalizes the constants 
J, and J,. Here and below we assume that the spin-spin 
interactions of different types are linked by the inequality 

0 7,5 30 70 245 "c TK 

phase 

P42/mnrn 

where J,  D, and a are, respectively, the quadratic exchange, 
biquadratic exchange, and anisotropy constants. 

In the exchange approximation, when the conditions 

J,<O, J,, D>O (11) 

are obeyed, the ground state of the spin system is character- 
ized by a noncollinear (canted) but coplanar magnetic 
structure 

AB=O, A2=B2=8S2, (12) 

whose orientation in the spin space is determined in turn by 
the anisotropic relativistic interactions A?:"'. Using the data 
in Table I, as well as the conditions (8)  and ( lo) ,  we find 
that XI"' is described by the following expression: 

Using the data of Table I and the normalization condi- 
(13) 

tions of Eq. (8) ,  we obtain the following expression for the Thus the orientation (in the spin space) of the exchange 
exchange part (5 )  of the Hamiltonian of Eq. (4): magnetic structure [Eq. ( 12) ] is described by four indepen- 

dent parameters, which are second-order anisotropy con- 
% . ( e ) = ~ , ( ~ z + ~ 2 )  +J ,F~+D(A~-B~)~,  (9)  stants. Note that inclusion of the contribution A ,2 + B,Z to 

TABLE I. Transformation properties of spin and macroscopic variables under 
transformations of the symmetry group P4,/mnm-D:4, of the paramagnetic 
phase ( 2  is the strain tensor and p is the electric polarization vector). 

- 
As - Ba 

FC, AB 
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dt;":"' reduces to renormalization of the terms already writ- 
ten down, so that the corresponding term is omitted from 
Eq. (13). 

If even one out of four constants a,  in Eq. ( 13) is nega- 
tive, then in the ground state the magnetic moments of the 
copper sublattices are in the basal plane. Four inequivalent 
antiferromagnetic configurations are then possible (their 
stability ranges are indicated in parentheses) : 

72: A,=B,,=~~s, P4zIm'n'm' (azcO, a,, as, a,), (14) 
7': A , ,= -B~=~S ,  ~4,Im'nrn (a,<O, az, ae, a,), ( 15) 
T ~ :  A,=-B~=)I~S, P4,'/m'nfrn (a,<0, az, a,, a,), (16) 
T,: A,,=B~=~SS, P4,'lm'nmf (a,<O, a,, a,, a6). (17) 

They are shown in Fig. 4 as projections on the basal plane. 
However, if all these four constants are positive, 

the sublattice magnetizations of copper are tilted out of the 
basal plane and one of the mixed (irreducible) magnetic 
configurations is realized. According to the authors of Refs. 
1 and 2, this situation does not occur in Nd, CuO, . 

Ordering of the magnetic moments of the copper ions 
lying in the same xy plane is governed by the antiferromag- 
netic exchange interaction between the nearest neighbors in 
this plane, i.e., by the exchange parameters J,, = J,, < 0 of 
Eq. (5).  The simplest "chessboard" antiferromagnetic or- 
dering is then established in thexy planes. The mutual orien- 
tation of the spins in the neighboring xy planes (i.e., in the 
planes separated from one another by c/2) is governed by 
the much weaker biquadratic exchange. This is because the 
interplanar exchange interaction, which is a quadratic func- 
tion of the spins, is fully canceled when the ordering within 
the planes is of the chessboard type. In other words, the 
exchange parameters J, ,  = J, ,  = J,, = J2, of Eq. (5) ,  rep- 
resenting the interplanar exchange interaction, do not occur 
in the expression for the energy of the magnetic configura- 
tions characterized by F = C = 0. This reason alone allows 
us to represent the investigated magnetic structures as a su- 
perposition of two weakly coupled antiferromagnetic sub- 
systems with the antiferromagnetic vectors 

L,=S,-S,='/, (A+B), Lz=Sa-S,='/z (A-B) . ( 19) 

In the exchange approximation the mutual orientation of the 
vectors L,  and L, is due to the biquadratic exchange interac- 
tion: 

In principle, we can assume that the anisotropic relativistic 
interactions of Eq. ( 13) could be comparable in magnitude 
with or even exceed the interplanar biquadratic exchange 
interaction of Eq. (20). In this case it is the relativistic inter- 
actions that determine the orientation of the vectors L,  and 

angles between the corresponding sublattice magnetizations 
are the same in all of them. 

In principle, the magnetic structures of Eqs. ( 14)-( 17) 
can exist also in the absence of the spontaneous distortions of 
the crystal structure which appear below T,. However, we 
can easily show that in this case the magnetic configurations 
T2 and r6 are equivalent (are domains), and this is true of 
the magnetic configurations 7, and 7,. It follows that only 
two out of the four anisotropy constants in Eq. (13) are 
independent: 

The equilibrium and hf magnetic properties of a system with 
this symmetry had already been in~estigated.~-~ 

We now consider the collinear antiferromagnetic struc- 
ture of Eq. (3)  shown in Fig. 5a. A structure of the A, type is 
equivalent to an antiferromagnetic structure of the B, type 
shown in Fig. 5b (they are both domains). Moreover, these 
two structures are characterized by the same magnetic sym- 
metry group Pnnm', so that neither of them can be realized 
in its pure form: they should always accompany one another. 
The latter follows also from the invariance of the bilinear 
form AXBY.  Nevertheless, the low-temperature phase AF-3 
can be nearly collinear. In fact, if we use the hierarchy of Eq. 
( 10) for the spin-spin interactions, we find that the magnet- 
ic structures shown in Fig. 5 are realized 

In the exchange approximation they are exactly collinear, 
but if we allow for the relativistic interactions we find, in 
accordance with Eqs. (13) and (20), that there are two 
equivalent solutions for the ground state: 

The proximity of these magnetic structures to collinearity 
may be due to two independent factors. First, it may be due 
to predominance of the biquadratic exchange interaction 
over the relativistic contributions. Second, according to Eq. 
(21 ), the difference a, - a, in Eq. (23) is due to spontane- 
ous distortions of the crystal structure. If the role of these 
distortions is slight, we may indeed find that 

We conclude this section by noting that an explicit 
allowance for the rare-earth subsystem is needed to go be- 
yond the framework of the pure symmetry approach in an 
analysis of the magnetic properties of the low-temperature 
phase. Because of the absence of reliable experimental data 
this is not yet possible. Therefore, in the next section dealing 
with the spin dynamics we consider only the phases AF-1 
and AF-2. 

'J2. 

We now return to the antiferromagnetic structures de- 4. HOMOGENEOUS OSCILLATIONS OF THE SPIN SYSTEM 

scribed by Eqs. ( 14)-( 17) and shown in Fig. 4. First of all, We begin with the assumption that at moderately low 
we note that the geometry of these structures is described by temperatures the role of the rare-earth magnetic subsystem 
Eqs. ( 14)-( 17) exactly, irrespective of whether the inequal- reduces to renormalization of the parameters of the spin 
ities of Eq. ( 10) are satisfied or whether the equal-magni- Hamiltonian of the copper magnetic subsystem. In this case 
tude conditions in Eq. (8)  are obeyed. All four structures are the exchange-noncollinear (canted) phases of Eqs. ( 14)- 
characterized by the same exchange energies, because the ( 17) are each characterized by four antiferromagnetic reso- 
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TABLE 11. Classification of homogeneous oscillations of the spin system and of 
components of the strain tensor f i  and of the electric polarization vector p under 
irreducible representations of the unitary subgroup D4 of the point group of the 
magnetic symmetry of the T, (AF-1) phase. 

nance modes of which one is an exchange mode and the other 
three are acoustic. The structure and the symmetry of all the 
normal modes of homogeneous oscillations of the spin sys- 
tem are described in Tables 11-V. The frequencies of these 
modes are given by the following expressions. 

The exchange mode (in all the phases T, - T, ) has the 
frequency 

D4 I I sx  

The acoustic mode frequencies are as follows: 

Normal 
modes 

o4,=8S[2 (a,-a,) (Io-I,) ]Ih, 

phase TZ: 
( 2 6 )  

O ~ ~ = O , ~ = ~ S [ U ,  (210-I,) ]Ib, ( 2 7 )  

I I I I 

04,=8S[2 (a,-a,) (I0-],) I"*, 
phase T,: ( 2 8 )  { 04a=043=8S(a. (210-1,) ]Ih, ( 2 9 )  

04,=8S[2 (a,-a,) (Io-I,) ]Ih, 

phase s,: ( 3 0 )  
oa2=was=8S[aa (210-I$) ]I1', ( 3 1 )  

oal=8S[2 (a,-a,) (lo-I,) I", 
phase T,: ( 3 2 )  

oaz=oaJ=8S[as (21,-1,) 1%. ( 3 3 )  

The above expressions for the frequencies are derived 
using the inequalities of Eq. ( 10) .  The degeneracy of the 
acoustic modes a2 and a3 is exact in all the phases. The un- 
usually low frequency we of the exchange mode, which is 
related to the role of the biquadratic exchange interaction in 
the formation of magnetic structures, is also noteworthy. An 
analogous situation occurs also in UO, (Ref. 6 ) .  

The last column in Tables 11-V gives the classification 
of the homogeneous oscillations of the spin system in accor- 
dance with irreducible representations of the unitary sub- 
group of the magnetic symmetry group of each of the phases 
T, - r,. The rest of the notation in Tables 11-V is identical 
with the notation used in Table I. The first column in these 
tables gives the symbol of the irreducible representation. The 
second column lists the irreducible combination of the sub- 
lattice magnetizations. The third and fourth columns of Ta- 
bles 11-V give the transformation properties of the compo- 
nents of the strain tensor 2 and of the electric polarization 
vector p, relative to the transformations from the unitary 
subgroups applicable for magnetic configurations. These ta- 
bles describe the structure of all the antiferromagnetic reso- 
nance modes and allow for the method of excitation of each 
of the modes. 

We now give a specific example. It follows from Table I1 
that an acoustic magnon a  1 in the T2( AF- 1 ) phase is asso- 

TABLE 111. Same as Table 11, but for the r4 phase. 

I I I Normal 
modes 
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AI 

-4% 

BI 

4 

A - B X  

Ax+ B , ,  F z  

A,+ Bx ,  C, 

Ax- B ,  

{k*  {::* {-2 

"zz* "a+ U y y  
- 

Uxx-  "yy 

"xu 

{-::: 

pz 
- 
- 
- 



TABLE IV. Same as Table 11. but for the 7, ~ h a s e  

I a l p  Normal 
Sx modes 

ciated with oscillations of the spin variables A, - B, and F,. 
This magnon can be excited by an oscillating magnetic field 
Hz or by an oscillating electric field E,. Degenerate acoustic 
magnons a2 and a3 are excited in the same phase by a mag- 
netic field Hlz, by an electric field Elz, and by transverse 
sound accompanied by the strains u,, or u,. Finally, an 
exchange magnon e can be excited only by transverse sound, 
accompanied by the strains u, - u,. Similar information 
on the phases T,, T,, and T, can be found in Tables 111-V. 

5. SPIN-LATTICE INTERACTION AND TENSOR PROPERTIES 
OF MAGNETICALLY ORDERED PHASES 

It is well known that the presence of a magnetic order 
can alter qualitatively the macroscopic (tensor) properties 
of a crystal. In particular, the spin-lattice coupling may give 
rise to such phenomena specific to magnetically ordered 
crystals as the linear piezomagnetic or magnetoelectric ef- 
fects, etc. The symmetry of the tensor properties is deter- 
mined uniquely by the magnetic class. In particular, the 
magnetic symmetry groups of all the antiferromagnetic 
structures listed in Figs. 4 and 5 admit the existence of the 
linear magnetoelectric effect. The exchange noncollinear 
structures of Eqs. ( 14)-( 17) are of particular interest from 
this point of view. In such cases the linear magnetoelectric 
effect is of exchange origin and, consequently, can be par- 
ticularly large. According to Table I, the following invariant 
is responsible for the exchange magnetoelectric effect: 

TABLE V. Same as Table 11, but for the T, (AF-2) phase. 

Normal ~ k i  I S X  I I I modes 

pxFA+ p,FB. (34) 

Linerization of the spin part of Eq. (34) with respect to 
small deviations from the ground state gives the following 
expressions for the phases r, - T, : 

phase ~ e :  vgS(p$=+pfl,), (35) 

phase r,: I ~ s  (pJv-p,~.), (36) 

phase T*: ~%S(pJz-pf lv) ,  (37) 

phase r,: 1% S (pJ,+pJ=). (38) 

We must stress once again that the magnetoelectric effect 
occurring in these phases is determined by the strongest ex- 
change part of the spin-lattice coupling. 

In the collinear phase (Fig. 5) the interaction of Eq. 
(34) also induces the linear magnetoelectric effect, which is 
of exchange origin. However, in this case the exchange effect 
is due to breakdown of the equal-magnitude condition of Eq. 
(8).  At low temperatures equal-magnitude condition of the 
rare-earth magnetic subsystem should be disobeyed, so that 
the influence of the rare earth is in this case dominant. 

It is important to stress that the magnetoelectric effect 
in all the magnetic structures mentioned above is also due to 
the existence of spontaneous distortions of the crystal struc- 
ture that appear below T,. In fact, in the absence of such 
distortions, we would expect antitranslations in the antifer- 
romagnetic structures shown in Figs. 4 and 5. We recall that 
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TABLE VI. Matrices of the irreducible representation responsible for the structural phase tran- 
sition at T = T , .  

I I I I I I I I 

the occurrence of antitranslations in the magnetic symmetry 
group is incompatible with the linear magnetoelectric and 
piezomagnetic effects.' 

The authors are grateful to A. S. Borovik-Romanov, V. 
V. Eremenko, V. I. Ozhogin, and L. A. Prozorova for valu- 
able discussions and encouragement. 

APPENDIX. GROUP-THEORETICAL ANALYSIS OF A 
STRUCTURAL PHASE TRANSITION IN Nd,CuO, 

The structural phase transition which occurs in this 
compound below Tc is characterized by a two-dimensional 
irreducible representation of the Fedorov group IVmmm, 
which belongs to a two-ray star K 13 with the following rays: 

Here, e, are the Cartesian unit vectors; i, is the operation of 
rotation by an angle 7r/2 about the z axis; bi are the recipro- 
cal lattice vectors (the notation adopted here is basically the 
same as that used in the handbook of Kovalev8 ). The same 
irreducible star is responsible for the structural phase transi- 
tion reported for La,CuO, in Ref. 9, but in contrast to 
La, CuO,, a two-ray transition channel applies in the case of 
Nd, CuO, . Consequently, the translation symmetry of the 
disymmetric phase Nd,CuO, is governed,by the following 
triplet of the primitive translations that form the simple te- 
tragonal lattice: 

where ai are the primitive translations of the initial base- 
centered tetragonal lattice. 

It should be noted that in the case of the phase transi- 
tion characterized by the two-beam channel of the star K 13 
the disymmetric phase unavoidably suffers also from distor- 
tions corresponding to a one-ray star K 15 with a single ray 

where as usual the symbol 4 = 9 means equality of the wave 
vectors (apart from the reciprocal lattice vector). However, 
in the case of the phase transition in Nd, CuO, it is found 
that the distortions corresponding to the star K 15 do not 
occur in the mechanical representation of the crystal, i.e., 
they do not result in displacements of the ions. 

Table VI lists the matrices of the irreducible representa- 
tion responsible for the structural phase transition at Tc . The 
operations g of the Fedorov group IVmmm correspond to 
elements of the zeroth block. The basis functions $, and $, , 
transforming in accordance with the first and second rows of 
the matrix D ( g ) ,  correspond to the wave vectors k, and k, 
from Eq. (A1 ). The copper ion displacements shown in Fig. 
2 correspond to the solution 

The corresponding Fedorov group of the disymmetric phase 
is P4,/mnm, described in Fig. 3. Throughout this paper, 
with the exception of Eqs. (A1)-(A3) and Table VI, the 
Cartesian coordinate axes x and y are parallel to the primi- 
tive translations a; and a; of the disymmetric phase. 
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