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An analysis is made of various resonance phenomena in a two-dimensional electron system with a 
periodically modulated density. It is shown that a homogeneous exciting field can excite both 
cyclotron and plasma resonances. It is also shown that the ratio of the cyclotron and plasma 
resonance amplitudes gives information on the degree of modulation of the density of a two- 
dimensional electron system. The problem of the shift Aw, of a cyclotron resonance line is 
discussed. The reasons for the excitation of a resonance at twice the cyclotron frequency are 
considered for the case when the occupation factor v tends to zero. 

Excitation of a two-dimensional ( 2 0 )  electron system 
with a periodically modulated'' density n ( x )  by the applica- 
tion of a homogeneous electric field Ex ( t )  = E,,exp(iwt) 
oriented in the plane of the 2 0  system reveals a whole series 
of resonances of different origins.'-' They include harmon- 
ics of the plasma resonance w,, the cyclotron resonance w, 
in the presence of a magnetic field H normal to the plane of 
the 2 0  system, the double cyclotron resonance w,, , etc. Fig- 
ure 1 shows schematically the behavior of these resonances 
as a function of a gate or control voltage Vg, which can alter 
the average electron density and the degree of its modula- 
tion. Resonances along the line ABC represent excitation of 
magnetoplasma waves (fundamental harmonic). The line 
DD, represents the cyclotron resonance and the line EFrep- 
resents the double cyclotron resonance. There are also other 
peaks whose presence is not as important. The cases plotted 
in Figs. la-lc illustrate the sequence of events observed on 
gradual increase in the magnetic field intensity. For exam- 
ple, intersection of the lines AB and EF gives rise to a strong 
interaction between the double cyclotron and plasma modes, 
which lifts the degeneracy at the point where these lines in- 
tersect. We can clearly see also a tendency for an increase in 
the shift Aw, of the position of the cyclotron resonance line 
as the magnetic field intensity increases. The point B on the 
line ABC corresponds to the loss of continuity in the distri- 
bution of electrons [manifested by the appearance of zeros of 
the function n (x)  and formation of a system of quasi-one- 
dimensional electron channels in the range of voltages 
v, > VZI. 

Interpretation of the resonances shown schematically 
in Fig. 1 has been attempted in a number of papers, some of 
w h i ~ h ~ - ~  rely particularly on the experiments reported in 
Refs. 1-3. Other treatments7-lo are of general nature, which 
can be applied also to the case of interest to us. The nonmon- 
otonic dependence of the plasma frequency q, on V, is ex- 
plained fully in Refs. 4-6. The unresolved problem is the 

discussed in Refs. 9 and 10. However, it should be pointed 
out that the results of Refs. 7-10 must be "fitted" to the 
conditions of Refs. 1-3. 

Our aim is a critical analysis of the available theoretical 
results on resonance phenomena in a periodically modulated 
2 0  electron system. We propose a fairly simple (but not en- 
tirely rigorous) procedure for estimating the degree of mod- 
ulation of the electron density on the basis of the available 
experimental data on the cyclotron and plasma resonances, 
and we obtain an explicit expression for the screened period- 
ic potential t ( x )  which perturbs the motion of one electron 
in the 2 0  system. We use this information to obtain specific 
information on the shift Am, that follows from predictions of 

question whether the plasma frequency w, (H-0, V, - V:) , I ,  I I 
is finite, as would follow from the observations reported in  TO,^ - 4 4  -0,2 o 
Refs. 1-3, or whether it should vanish, as predicted by calcu- "g.4." 

lation' carried Out within the hydrodynamic ap- FIG. 1 .  Schematic representation of the behavior of various resonances as 
proximation f r a m e ~ o r k . ~ , ~  The problem ofthe shift Am, of a functions of the gate voltage V, applied in the presence of different mag- 
cyclotron resonance line of a 2 0  electron system with a peri- netic fields: a )  H = 0; b) H = 2.2 T; c )  H = 6.4 T. The line labeled ABCis 

odically modulated density is considered in ~ ~ f ~ .  and 8. a plasma resonance; DD, is a cyclotron resonance; EFis a double cyclo- 
tron resonance. The frequency w is given by the expression w = ZrcQ, 

Finally, the factors facilitating excitation of double cycle- where c is the velocity of light. The dashed line DD, in Fig. l c  represents 
tron resonance in a periodically perturbed 2 0  system are the unperturbed cyclotron frequency. 
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Refs. 7  and 8  for the situation described in Refs. 1-3. We 
consider coupling between the cyclotron and plasma motion 
in an excited 2 0  electron system with a periodically modula- 
ted density, and we propose a solution of the problem of the 
double cyclotron resonance in the limit when the population 
of the fundamental Landau level is low. Comments on the 
results obtained are given in the section headed Conclusions. 

1. CLASSICAL ANALYSIS 

A. The first question which needs to be discussed is how 
to describe a perturbation of the electron density in a 2 0  
system. In principle, we can solve the relevant electrostatic 
problem of the distribution of the density in the 2 0  electron 
system when a periodically bent metal screen kept at a poten- 
tial V, is located in the vicinity of this system. However, the 
experiments reported in Refs. 1 and 2  show that modulation 
of the electron density in a 2 0  system also occurs even when 
Kg = 0. Therefore, we assume that an equilibrium density in 
a 2 0  electron system is set up in advance and is given by 

n(x) =no+ni sin kx, k=2nla, 6=n,lnO<'l2, ( 1 )  

where a is the perturbation period and 13 is the degree of 
modulation. The dependence of the coefficients n, and n, on 
V, is found directly from the experimental data1.* by a meth- 
od which we shall discuss at the end of the next subsection 
( B ) .  

B. The classical solution of the problem of excitation of 
a 2 0  modulated electron system at zero absolute tempera- 
ture by a homogeneous electric field Ex ( t )  = E, exp ( iwt)  
reduces to the analysis of the following system of equations: 

d 
io6n + - [n (x) v.] -0, 

ax 

Here, n ( x )  is the equilibrium density of electrons from Eq. 
( 1 ); f i  and p are oscillations of the density and potential on 
excitation of plasma oscillations in the system; v ( x )  is the 
local density of electrons; o and w,  is the frequency of oscil- 
lations and the cyclotron frequency in a magnetic field H; 
m* is the effective mass of an electron; 7~ is the permittivity of 
the medium surrounding the investigated 2 0  electron sys- 
tem; and E, is the amplitude of the exciting oscillatory elec- 
tric field. The condition ( 5 )  represents the dynamics of the 
system in the absence of screening electrodes. 

If we assume that 

FI=E, cos kx, v (x) =vo+ui sin kx, (6)  
cp (2, z )  =cpiekkZ cos ks , 

and use the smallness of the degree of modulation 
6 = n, /no & 1 and, consequently, the smallness af, /v,  & 1 ,  
we can reduce Eqs. ( 1 ) - ( 5 )  to equations for v, and v,  : 

ioe 
@#La' e - 

m* Eo, ( 7 )  

2ne2nik 
(a,'+apl-a2) ui = - vo, 

xm' 
(8 )  

where 

2ne2no 
op2 0 - k. 

xm' 

It follows from Eqs. ( 7 )  and (8)  that the homogeneous 
field E, excites two types of resonances: the usual cyclotron 
resonance at a frequency 

and a magnetoplasma resonance at a frequency 

mp2 (H) =op2+oel. ( 1 0 )  

In the range I V, I > I V,* 1 there is no homogeneous motion of 
electrons at the velocity v, and it is not possible to observe 
any "pure" cyclotron resonance. 

The result of Eq. ( 10) provides a qualitatively correct 
description of the dependence of the magnetoplasma reso- 
nance frequency on the voltage V,. In fact, the average den- 
sity n, of electrons in the investigated 2 0  system decreases as 
V, increases. This results in the experimentally observed'-3 
reduction in w, ( V , )  as a function of V, in the range 
I V, ( < I V,* 1 .  This problem is discussed in greater detail in 
Refs. 4 and 6 .  In the cyclotron resonance case the classical 
response given by Eq. ( 9 ) ,  w,  = const, identified by the 
dashed line in Fig. lc, is insufficient to interpret the available 
data. Moreover, the hydrodynamic approach fails to predict 
also the resonance at the frequency w  = 2.3,. 

Explanation of the observed deviations of the cyclotron 
resonance goes beyond the above hydrodynamic descrip- 
tion. Nevertheless, the classical solution of Eqs. ( 7 )  and ( 8 )  
is very useful for analyzing the details of the experimental 
data. In particular, the solution makes it possible to estimate 
the degree of modulation of the 2 0  electron density from the 
experimentally determined amplitudes of the cyclotron and 
plasma resonances Tc and T, [Eq. ( 1 1  ) applies to estimates 
of all the Fourier components of the expansion of the density 
n  ( x )  described by Eq. ( 1 ) 1 : 

TplTc=nilno. ( 1 1 )  

Figure 2  shows the relevant information on the ratios of 
n l / n o  for various values of H based on the experimental 
results of Ref. 1. 

The definition of Eq. ( 1 1 )  requires some comment. 

FIG. 2. Dependences of the following quantities on V,: a) average den- 
sity n,, [deduced from the dependence w, on V, given by Eq. (8)]; O), 
A ) ,  A )  degree of modulation S = n ,  /n,, in fields H = 2.2, 2.9, and 6.4, 
respectively. The arrows identify the scale used. The point represents 
the position of quasi-one-dimensional channels. 
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1 Metal 
FIG. 3. Schematic representation of the relative positions of the 2 0  elec- - tron system and the metal gate electrode. 

-------------------- x 
D 20 system 

This is necessary because the proposed solution describing 
the excitation of a 2 0  electron system postulates that the 
exciting factor is simply a homogeneous electric field E,. In 
fact, only the electromagnetic field incident on the gate elec- 
trode is homogeneous along the direction x; the electrode is 
bent periodically along the x direction as shown in Fig. 3. 
The existence of this geometric perturbation by the gate elec- 
trode results in modulation of the equilibrium density in the 
2 0  system when a gate voltage V, is applied between the 
electrode and the 2 0  system. However, this geometric mod- 
ulation of the electrode shape leads unavoidably to the ap- 
pearance in the transmitted wave not only of a homogeneous 
component Eo of the electric field, but also of a coordinate- 
dependent correction E l  (x,t) = E l  sinkxexp(iwt), which 
participates together with Eo in the excitations of the 2 0  
system (Fig. 3). The properties of this additional field, 
which influences in particular the relationship ( 1 1 ) , is dis- 
cussed in the Appendix. Its influence on Eq. ( 11 ) can be 
ignored for no 4 (n,, ), where ( n ,  ) is the average 2 0  density 
of electrons in the gate electrode, which is assumed to be 
satisfied. 

2. QUANTUM CHARACTERISTICS OFTHE CYCLOTRON 
RESONANCE 

A. A quantum theory of the cyclotron resonance cover- 
ing in principle the effects of interest to us was developed by 
Chaplik7 and by Aizin and Volkov.' If the one-electron mo- 
tion is perturbed by a one-dimensional potential 

V ( x )  = ~ r n  sin kmx, V m t  A o c .  

the electron spectrum in a magnetic field becomes 

x exp (-'/,ZE2km2) sin (Irr2qkm). 

where 

v o - ~ l ~ ~ n o ,  AOlm=Aom-Aim, 
hlm=VmLl ( 1 / z ~ ~ 2 k m 2 )  eXp ( -1 / , z~2km2) .  

Each term in the sum of Eq. ( 14) makes a contribution to the 
conductivity in the form of a double-humped fork with 
maxima at the following frequencies: 

Therefore, the problem of the cyclotron resonance line pro- 
file reduces to an estimate of the Fourier components 7, of 
the screened potential. 

B. The problem of the screening properties of an inho- 
mogeneous 2 0  electron system in a magnetic field has been 
discussed quite thoroughly in the literature, mainly in con- 
nection with the behavior of the electron-density of states 
under the conditions of the quantum Hall effect. A qualita- 
tive analysis demonstrating the strong influence the screen- 
ing properties of a 2 0  system in a magnetic field exert on the 
density of states of the magnetized 2 0  system can be found in 
the work of LuryI1' and of Shklovksii and Efros.I2 Descrip- 
tions of the screening properties of the magnetized 2 0  sys- 
tem based on numerical calculations in the final stage were 
proposed by Labbe" and by Gerhardts and his colleagues.14 
In spite of the large number of papers on this topic, quite 
general methods for solving the nonlinear problem have not 
yet been proposed. We therefore briefly discuss the problem 
of nonlinear screening of the potential V(x) in the usual 
random-phase approximation under the specific conditions 
of the experiments described in Refs. 1-3. The structure of 
the potential V(x) is not known with the exception of infor- 
mation on its periodicity and the period a of the perturbation 
of the gate electrode. The explicit form of V(x) is probably 
not very important in the case of qualitative treatments of 
the behavior of the cyclotron resonance. However, mono- 
chromaticity of this potential [i.e., the existence of just one 
harmonic in the expansion of Eq. ( 12) ] is also unlikely. 

An electron system of this kind largely screens the po- 
tential V(x). For example, in classical electrostatics in the 

Here, 1 = &/eH is the magnetic length, L, (x)  are the La- absence of a magnetic field such screening is complete, be- 
guerre P ~ ~ Y ~ ~ ~ ~ ~ ~ ~ ,  = mk, and x0 = is the cO- cause the classical condition for eauilibrium of a 2 0  system 
ordinate along the cyclotron orbit axis. ." 

The appearance of magnetic minibands whose width 
depends on the Landau level number disturbs the initially V (5 )  +ecp ( x )  =const, 
equidistant nature of the electron spectrum in a magnetic 
field and thus complicates in particular the cyclotron reso- 
nance line profile. According to Ref. 8, when an exciting 
electric field is directed normally to the modulation axis and 
the 0- 1 transition is excited, the real part of the conductiv- 
ity of our 2 0  system is 

where p ( x )  is the screening potential. 
Under quantum conditions (low temperatures, strong 

magnetic fields, reduction in the period of the one-dimen- 
sional potential, etc.) the condition of Eq. ( 16) is no longer 
obeyed and we have 

e20  V (2) = V ( x )  +ecp (x) Zconst, 
Y O  (17) 

R ~ ~ - ( ~ )  = x ( A o l m )  2- f i z  (o-ac) 21t1, (14) 
rn so that the one-electron motion in the 2 0  system begins to be 
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disturbed by the potential T(x). The relationship ( 17) then 
couples the initial potential V(x) , the screening potential ep, 
and the effective perturbing field t ( x )  of Eq. ( 12), which 
occurs in the theory of Refs. 7 and 8. Assuming that the 
combination t ( x )  of Eq. ( 17) is small in the sense that 

we can solve the problem of deformation of the one-electron 
spectrum using perturbation theory, which gives the result 
of Eq. ( 13) for E ,  ( q )  or, in the limit kl,  ( 1, which applies to 
the situation in Refs. 1 and 2, the corresponding result is 

This representation of the electron spectrum is typical of the 
Thomas-Fermi approximation. Its use simplifies greatly the 
subsequent treatment. Moreover, the Thomas-Fermi ap- 
proximation is not subject to the condition ( 17a). The am- 
plitude of the potential t ( x )  can be arbitrary relative to the 
energy kc. 

The next step is determination of the equilibrium elec- 
tron density in terms of the perturbed electron spectrum. In 
the Thomas-Fermi approximation of Eq. ( 18 ) , we have 

where 

where T is the absolute temperature and p is the position of 
the chemical potential. Substituting the definition of n (x )  of 
Eq. ( 19) into the Poisson equation, we obtain a nonlinear 
equation for p (x ) ,  which is the main equation in the theory 
of screening of a magnetized 2 0  system. A fairly simple solu- 
tion of this equation is possible only in the linear approxima- 
tion~3,~4 if 

V (x) <T. (20) 

Unfortunately, the limiting case represented by Eq. (20) is 
insufficient to consider all the details of the cyclotron reso- 
nance problems that arise from the experimental data re- 
ported in Refs. 1-3. 

When the relationship between v (x )  and Tis arbitrary, 
we can estimate the screened potential v (x )  using the fol- 
lowing considerations. As pointed out earlier in comments 
relating to Eq. ( 1 1 ), it should be possible to estimate experi- 
mentally the degree of modulation of the electron density as 
a function of V,. Assuming therefore that the electron den- 
sity n (x)  is described by Eq. ( I )  and that the ratio 
6 = n , /no is given by Eq. ( 1 1 ), and also bearing in mind 
that the information on S can be obtained, as in Ref. 2, in 
strong magnetic fields when the occupation factor is 
Y = rl &no 5 1, we represent p ( x )  as a function of n(x)  us- 
ing the definition of n (x)  given by Eq. ( 19) : 

where 

n (x) = ( i  + .sin kz)n0, xla2n (x) ti. 
Tc 

Data on no and S as functions of V, are presented graphical- 
ly in Fig. 2. 

- Knowing t ( x ) ,  we can now calculate the components 
vm : 

i.e., we can obtain information on the value of A;" from Eq. 
( 14). Obviously, in calculating F,,, described by Eq. (22) 
the actual dependence of p on V, is not important, because 
by the definition of t ( x )  in Eq. (21) the combination 
p - 1 / 2 h ,  drops out of the integral of Eq. (22). When 
several Landau levels are filled, this particular simplification 
is lost. 

The coefficients of vm described by Eq. (22) are calcu- 
lated and the subsequent summation in the definition of a,, 
of Eq. ( 14) is performed numerically, because the structure 
of v (x )  of Eq. (21) is fairly complex. Nevertheless, it is 
obvious that the screened potential F(x)  of the magnetized 
2 0  system is sensitive to V,, because the intensity n(x)  
changes under the action of v,. Moreover, the degree of 
screening depends on the magnetic field intensity. In the de- 
finition of t ( x )  of Eq. (21) this is manifested by the fact 
that, for example, if n-lin, + 1/2, then the potential v (x )  is 
minimal, but it rises strongly as no -+O. Such nonmonotonic 
behavior of the degree of screening was naturally known ear- 
lier (see Refs. 11-14). 

In commenting on the result given by Eq. (21 ) it is 
interesting to note the difference between the structure v ( x )  
of a magnetized 2 0  system and the corresponding quantity 
for a 2 0  system in the absence of a magnetic field. If the 
Thomas-Fermi approximation is valid, it then follows from 
Ref. 15 that 

The definition t ( x )  of Eq. (23) naturally generalizes the 
equilibrium condition of Eq. ( 16). Comparison of the defini- 
tions of t ( x )  of Eqs. (2 1 ) and (23) shows that in the former 
case the potential p ( x )  may differ from a constant only for 
T #O, whereas in the latter case the temperature is unimpor- 
tant - and it disappears completely from the definition of 
V(x) given by Eq. (23). 

C. Using the definitions of v ( x )  given by Eq. (21 ) and 
ofu:, ( a )  given by Eq. ( 14), as well as the experimental data 
on the behavior of a cyclotron resonance line, we can analyze 
the capabilities of the theory of Refs. 7 and 8 in explaining 
the shift Aw,. The experiments reported in Refs. 1 and 2 
demonstrate that Aw, increases and there is a corresponding 
reduction in the electron mass m* as the magnetic field in- 
creases. For example, according to Refs. 1 and 2, for 
V, = - 0.2 Vand H = 2.19, 2.88, 6.4, or 9.87 T, the cyclo- 
tron mass assumes respectively the values 
m*/m, = (7.2; 7.1; 6.99; 6.97). 10W2, where m, is the 
mass of a free electron. However, the theory does not predict 
a reduction in Aw, with increasing H. In fact, the potential - 
V(x) of Eq. (2 1 ) increases no faster than logarithmically 
when H i s  increased. The shift Aw, = A,, /fi of Eq. ( 15) is 
characterized by the fact that in addition to PI there is a 
factor Lo (x)  - L, (x)  =x where x = 1/2k 21 i g  1 
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(a=5x10W5 cm, 1 , ~ 1 0 - ~  cm when H = 5  T and 
kl, = 27rlH/a = 1.26- 10 - I). Consequently, the combina- 
tion described by 

is a decreasing function of the magnetic field, which disa- 
grees qualitatively with the observations of Refs. 1 and 2. 

Further analysis of the cyclotron resonance data for a 
2 0  system with a modulated density must include a discus- 
sion of the nonparabolicity effects which influence the cyclo- 
tron resonance line position also in the case of homogeneous 
2D~ystems. '~~" However, the band nonparabolicity exhibit- 
ed by GaAs is known to increase the effective cyclotron mass 
of an electron when the applied magnetic field is increased, 
i.e., allowance for this effect simply magnifies the difficulties 
encountered in explaining the observed behavior of the cy- 
clotron mass in the experiments reported in Refs. 1 and 2. 

3. COUPLING OF THE CYCLOTRON AND PLASMA MOTION 

Qualitative difficulties in applying the formalism of the 
treatments in Refs. 7 and 8 encountered in explaining the 
shift Aw, observed experimentally'-' make it necessary to 
look for additional ways to explain Aw,. One such explana- 
tion may be the coupling between the cyclotron and plasma 
motions which occurs when a 2 0  electron system is excited 
with a periodically modulated density. An investigation of 
this effect, carried out below on the basis of the classical 
equations of motion, shows that such a coupling does indeed 
exist. Consequently, the general picture of the influence of a 
periodic perturbation on the one-electron motion that fol- 
lows from the discussions in Refs. 7 and 8 must be modified 
in the case of 2 0  electron systems with a finite density. 

A. We can solve the problem by a number of refine- 
ments in Eqs. (2)-(5). However, it is initially desirable to 
consider the auxiliary problem of the excitation of a cyclo- 
tron resonance in the classical one-electron problem in the 
presence of an additional periodic potential t ( x ) ,  which dis- 
turbs electron motion. Its solution makes it possible in par- 
ticular to reproduce the results of a quantum analysis in the 
limiting case kl, 4 1. The initial equations of motion are 

e e m'zj. = - v,H+V1 ( x )  + eE., m'v,= - - 
C C 

v d .  (25) 

Obviously, if the amplitude { ( t )  of the cyclotron mo- 
tion of an electron is sufficiently small, so that 

X = X ~ + E  ( t ) ,  EexoGa,  us=!$, v,= ( io , lo)v=,  (26) 

the nonlinear system of equations (25) can be simplified to 

1 ioe [a: + - vn (xo)  -ma] v. = E ~ .  m ' 

Here x, is the center of the electron orbit. 
The cyclotron frequency w, is then shifted by an 

amount 

which depends on the coordinate x,. The shift Aw, is largest 

and positive at minima of the potential F(x)  and negative at 
its maxima. In reality an electron should be in the vicinity of - 
one - of the minima of the potential V(x) where 
V(x) =: Vo + 1/2Kx4, so that in the one-electron problem 
the shift Aw, is positive: 

Ao.='I2oo2/oe, oo2=Klm*. 

The result given by Eq. (28) for Aw, reproduces the 
predictions of the quantum theory described by Eq. (24) in 
the limiting case kl, 4 1, which makes it possible to provide 
a simple classical explanation of this effect. The cyclotron 
frequency shifts because in the vicinity of extrema of the 
potential F(x) the effective characteristic frequency of an 
electron is the combination w2 = wf + mi, which is typical 
of the motion of a magnetized electron in an additional para- 
bolic potential V= Vo + 1/2Kx2. 

B. We now consider the possibility of the appearance of 
a shift Aw, of the form Eq. (28) in a many-electron problem. 
We must begin with a discussion of the equilibrium proper- 
ties of a 2 0  electron system perturbed by a potential V(x). If 
T #O, then 

where p ( x )  is the equilibrium electrostatic potential of a 
system of electrons which screens the external potential 
V(x), T is the characteristic momentum relaxation time, and 
D is the diffusion coefficient related to the mobility po of an 
electron by the Einstein relationship. 

At absolute zero the condition for an equilibrium 
j (x)  = 0 reduces to the requirement [by analogy with Eq. 
(16) I 

V' ( x )  = V1 ( I )  + ecp' ( x )  =0, (30) 

i.e., the Coulomb field of electrons screens the external po- 
tential V(x) entirely. In this case the dynamic equation of 
motion is given by Eq. (2) .  

For T # O  it follows from Eqs. (29) and (29a) that the 
requirement j (x)  = 0 is equivalent to 

Tnl/n+V' ( x )  +ecp' ( x )  =O.  (31) 

In other words, the combination 

V' ( x )  = V' ( x )  +ecp' ( x )  =-Tn' ( x )  /n ( x )  (32) 

differs from zero and it may occur in the equation of motion 
as an additional periodic potential F (x ) ,  exactly as in Eq. 
(25). It is interesting to note that the classical potential 
V(x) of Eq. (32), which perturbs the one-electron motion, is 
analogous to the quantum definition F(x)  of Eq. (2 1 ) in the 
limiting case v = TI ;no 4 1. 

The equation of motion replacing Eq. (2)  is now 

sin k r + e ~ . ) ,  1 1 1 ~  I .  (33) 
no 

Then, by analogy with Eqs. (26) and (27) and assuming, as 
before, that 

E=Z, cos kx, v ( x )  =vo+vi sin kx, cp=qef" cos kx, 

we find that Eqs. (7)  and (8)  become 
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ioe 
(0:-02) U O  = - k2nI 

Eo-T - (sin2 kx>vl,  
rn m'no 

It follows from the system (21 ) that when a periodical- 
ly modulated electron system is excited we can expect cou- 
pling between the plasma mode and the cyclotron motion, 
which leads to renormalization of the cyclotron w, and plas- 
ma wp frequencies: 

Unfortunately, the shift Aw, based on the definition of 5, of 
Eq. (35) decreases, as before [see the definition of Am, given 
by Eq. (28) 1, when the magnetic field is increased, so that 
we cannot identify this shift with that observed and reported 
in Refs. 1-3. On the other hand, it is obvious that the self- 
consistent shift Aw, of Eq. (35) considered for a system of 
interacting electrons differs considerably from an analogous 
shift of Eq. (28) in the one-electron problem and in particu- 
lar we no longer have the splitting of the cyclotron resonance 
line given by Eq. ( 15). The result of Eq. (35) shows directly 
that the cyclotron resonance line shift should be A/w, > 0. 

4. RESONANCE AT TWICE THE CYCLOTRON FREQUENCY 

The experiments reported in Ref. 1 demonstrated a ten- 
dency for the ratio T2,/TP to be independent of the average 
density no of a 2 0  electron system when no is reduced (here, 
T,, and Tp are the amplitudes of the double cyclotron reso- 
nance and of tGe plasma resonance, respectively). This be- 
havior of the ratio T2,/TP is difficult to explain on the basis 
of the current ideas on the cause of the double cyclotron 
resonance, when the relative amplitude T2, /Tp is governed 
by nonlocal effects in a degenerate magnetized 2 0  sys- 
tem:9,'0 

TZC k2vp2 m'vpZ n?iZ 
-a- = -  

' 2 rn' 
no. Tp o," 

Here, u, is the Fermi velocity in a 2 0  electron system, no is 
the average density of electrons, and k is the wave number 
representing the spatial variation of the exciting electric 
field. Clearly, the ratio T2, /Tp of Eq. (36) should decrease 
as no is reduced, which was not observed experimentally1 at 
relatively low values of no .  

In the absence of the dependence of T2, /Tp  on no the 
double cyclotron resonance may appear because of direct 
electron transitions at the frequency 20 ,  caused by a spatial- - 
ly - varying hf electric field with a potential V(x) 
= Vo cos kx. The corresponding matrix element [general- 

izing the definition of Eq. ( 13) ], 

(IqlV, cos kxllIql>,  

differs from zero for arbitrary indices 11, , which label the 
Landau levels. The relative amplitude of this double reso- 
nance is then controlled by the ratio 

which is independent of no. 

CONCLUSIONS 

We now draw some conclusions. A qualitative analysis 
has been given of the experimental data on the excitation of 
various resonances in a periodically modulated 2 0  electron 
system. These resonances are of interest not only in connec- 
tion with the problems in the physics of collective phenome- 
na in 2 0  electron systems, but also in connection with the 
development of new diagnostic possibilities in studies of spa- 
tially inhomogeneous electron systems. The following state- 
ments and results are relevant to the physics of collective 
phenomena in 2 0  charged systems: 

a )  The excitation of a weakly modulated 2 0  electron 
system is basically due to a homogeneous electric field 
E ( t )  = Eoe"*', whose presence may excite both the cyclo- 
tron and plasma resonances. 

b)  The plasma resonance frequency decreases with V, 
because of a reduction in the average density no of the 2 0  
electron system. The behavior of these resonances as a func- 
tion of V, can be used to determine the dependence of the 
average density of the 2 0  electron system on V,, as is done in 
Fig. 2 on the basis of the data reported in Ref. 1. 

- C )  A method for reconstructing the effective potential 
V(x), which quantizes the one-electron motion in a modula- 
ted 2 0  system, has been proposed. It involves the use of Eq. 
(21) for t ( x ) ,  where the information on the electron den- 
sity n (x)  is obtained from Fig. 2 and from Eq. ( 1 1 ). 

d)  The explicit form of t ( x )  of Eq. (2 1 ) has been used 
to analyze the problem of interpreting the observed cyclo- 
tron resonance shift Aw, on the basis of the theory of Refs. 7 
and 8; however, the results are negative because the theory 
predicts a reduction in the shift on increase in the magnetic 
field, whereas the experiments demonstrate the opposite 
trend. Moreover, the problem is not solved either by the 
modification proposed in Sec. 4, which demonstrates the ex- 
istence of a coupling between the cyclotron and plasma mo- 
tion in a periodically modulated 2 0  system. 

e)  The cause of the resonance at double the cyclotron 
frequency have been analyzed when the occupancy factor v 
is small. The proposed mechanism for exciting this reso- 
nance is independent of the occupancy factor and should 
therefore be dominant in the limit y-10. 

In the opinion of the present author a feature of interest 
from the point of view of diagnostics of 2 0  inhomogeneous 
electron systems is the ability to estimate the degree of mod- 
ulation of the electron density from the amplitudes of the 
cyclotron T, and plasma Tp resonances [see Eq. (1 1) and 
the comments following it]. The above results show that 
modulation of the electron density in the experiments re- 
ported in Refs. 1 and 2 is governed not only by the presence 
of V,, but also by additional factors associated with the pre- 
liminary modification of the 2 0  system. Consequently, the 
observed modulation is fundamentally different from those 
obtained on the basis of the estimates relying on the geomet- 
ric shape of the gate electrode and on the potential difference 

v,. 

APPENDIX 

We consider a 2 0  electron system covered by a metal 
gate electrode characterized by weak corrugations (Fig. 3 ) .  
If a gate voltage V, is applied between the conducting 
planes, the two-dimensional electron density n, (x) ' in the 
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metal is modulated so that 

n, ( x )  =(n,>+n,(l) sin kx,  k=2n/a. (A1 

It is assumed that the average electron density ( n , ,  ) in the 
metal plate is much higher than the average density no of Eq. 
( I) ,  which applies to the 2 0  electron system located below 
the gate electrode. 

An incident electromagnetic wave excites a current j, in 
the metal. It is natural to assume that this current satisfies 
the condition div j, = 0. If j, is represented in the form 

j,= ((n,)+n,(') sin k t )  (vo+v,  sin k x )  =const, (A2) 

where vo and v ,  are the amplitudes of the average uo and 
oscillatory u ,  electron velocities in a metal plate, we find that 
to first order in v ,  /uo ( 1 ,  the results are 

The velocities vo and v ,  correspond to electric fields Eo 
and El : 

eEo=iwm*vo E,  ( x )  =E,  sin kx, E,=-Eonm(')/<n,),  (A4) 

the average electron density in the gate electrode should be 
considerably higher than the average density of our 2 0  elec- 
tron system so that in the range of frequencies of interest to 
us the incident electromagnetic wave does not excite intrin- 
sic plasma frequencies of the gate electrode plate. 

I '  A 2 0  electron system was formed in the experiments described in Refs. 
1-3 employing a single heterojunction made of GaAs and using a gate 
electrode with a periodic corrugation (Fig. 3). The data on the average 
density of electrons in the 2Dsystemand on thedegreeof its modulation 
are given in Fig. 2. A typical temperature was T z 2  K. The modulation 
period was a Z 5 x  1 0 '  cm. 
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