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We show that penetration of an oblique field H = Hc, into a layered anisotropic superconductor 
should take place not in the form of individual vortex lines, but rather in the form of a chain of 
vortices. We find the equilibrium periods of these chains for various orientations of the field and 
degrees ofanisotropy. We investigate how a vortex lattice forms, along with the specific features 
of the magnetization curves for an oblique vortex lattice, and show that in an oblique field slightly 
greater than Hcl , the function M ( H )  is nonmonotonic: in addition to a maximum corresponding 
to the lower critical field, it has an additional maximum connected with the degree of anisotropy 
and the inclination angle of the external field. 

Layered high-temperature superconductors (HTSC) 
possess strongly anisotropic laminar electronic structures. A 
consequence of this is that their superconducting properties 
are also strongly anisotropic. The distinctive features of a 
system of inclined Abrikosov vortices in layered supercon- 
ductors derive from the fact that screening currents flow 
predominantly in the planes of the layers (for the HTSC, 
these planes are the Cu-0 planes), not in planes perpendicu- 
lar to the vortex axis as is the case for normal isotropic super- 
conductors. As a result, for anisotropic superconductors the 
physics of vortex penetration and formation of vortex lat- 
tices for arbitrary orientations of the external magnetic field 
differs strongly from that of isotropic type-I1 superconduc- 
tors. 

This paper is devoted to an investigation of the magnet- 
ic properties of anisotropic superconductors in a field in- 
clined to the anisotropy axis c. In Section 1 we consider the 
specific features of the penetration of inclined vortices in 
such systems. We show that, in contrast to isotropic super- 
conductors, the vortex penetration takes place in the form of 
vortex chains that lie in planes formed by the anisotropy axis 
c and the field H. This circumstance has been noted in a 
previous short communication.' In Sec. 2 we will discuss the 
formation of a vortex lattice in fields H > Hcl and its possible 
distortions at oblique orientations. In Sec. 3 we present mag- 
netization curves of an anisotropic type-I1 superconductor 
for various orientations of the external field with respect to 
the anisotropy axis, and discuss how these curves differ from 
magnetization curves for anisotropic superconductors. 

h is the local magnetic field, which satisfies the London 
eq~at ion:"~ 

h+h2ro t [~  rot h ]  =lboC 6 (r-r,) . 
t 

Here 1 is a unit vector along the vortex axis (i.e., the axis of 
the induction B);  and @, is the flux quantum. As usual, we 
have neglected the structure of the vortex core in accordance 
with our assumption that A $c. In Eqs. ( 1 ) and (2)  we also 
assume that the vortex cores do not intersect, i.e., that the 
distance between them satisfies d $  f .  This latter condition is 
violated only when we are close to Hc2. 

We will limit ourselves, in general, to the case of lami- 
nar anisotropies (Ma = Mb < Mc ). In analyzing the field of 
a vortex it is convenient to use an orthogonal system of co- 
ordinates with its z axis along the vortex axis 1, a y axis which 
coincides with the crystal symmetry axis b, and a new x axis 
which lies in the plane cl. In this new system, the compo- 
nents of the effective mass tensor appear as follows: 

where 8 is the angle between the anisotropy axis and the 
vortex axis. 

Going from Eqs. ( 1 ) and (2)  to a Fourier representa- 
tion with respect to the basis vectors of the vortex lattice: 

1 
h (r) = -z hkeik: hk= j h (r) ewikr d2r, 

S k 

1. PENETRATION OF VORTICES AND LOWER CRITICAL 
FIELD H,, where S is  the area of a unit cell containing one flux quantum 

The properties of anisotropic type-I1 superconductors Qo, we can rewrite the expression for the free energy per unit 
will be investigated here in the London limit. Following volume in the formzs3 
Refs. 2 and 3, we write the expression for the electromagnet- (9 
ic part of the free energy of the superconductor in the form F = +z (hk)., 8nS 

(4)  

F = & JjJ [h2+h2(rot h)b(rot h) ]dV,  ( where 

(9 0 where A = A, is the London penetration depth of the mag- (h.) * = 
h-2+ (q2+Q2) (I+ev,e) 

h ( q +Q2) (1+e) q2+ (14-ev:) Q2 ] (5 1 netic field along the crystal symmetry direction b; 6 is the 
reduced effective mass tensor, whose principal values for su- and k,  = Q, k,, = q, v, = cos 8. The dependence of the vor- 
perconductors with tetragonal symmetry are p, = Ma/ tex energy on its orientation is given by the expression3 
Mb = & I  + 1, pb = 1, andp,  = Mc/Mb = E + 1; Mi is the 11. 

effective mass of an electron along the i axis ( i  = a,b,c); and ( co.2 e +?sin* e) ln x (0). E.O=- 
(4nh) ' m~ 

( 6 )  
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where the ratio of effective masses is m,/mll = E + 1, and 
N (6)  is an angle-dependent Ginzburg-Landau parameter. 

For the case of an inclined vortex the plane cl is singled 
out: as we will show below, the configuration which pos- 
sesses minimum energy is not that of a solitary vortex but 
rather that of a vortex which is one component of a vortex 
chain lying in the plane cl. The energy of a vortex which is a 
component of such a chain with period a can be written in 
the form 

c th  (ZQ,/2) - 1 clh (dQ,/2) - 1 - 
Qz 

where ii = a/A and 

In Eq. (7)  we have separated out the interaction energy of 
the vortices in explicit form. By subtracting off the integral 
with respect to Q, we eliminate the logarithmic divergence 
for large values of k. It is clear from Eqs. (7)  and (8)  that for 
5% 1 the primary contribution to the integral (7)  comes 
from the small-q region. In this case for E% 1 we have 
Q, Q, and the interaction energy of the vortices at large 
spacings is determined primarily by the last term of (7):  

The expression under the integral sign is negative for small q 
(i.e., the interaction energy of the vortices is negative) and 
vanishes in the limit ii + w . On the other hand, it is obvious 
that for ii < 1 the vortices should repel and their energy of 
interaction should be positive. Therefore, the minimum in- 
teraction energy of the vortices should occur at finite ii. This 
conclusion agrees with the conclusions of Ref. 4 concerning 
reversal of the magnetic field of an inclined vortex at large 
distances. 

Minimizing Eqs. (7)  and (8)  numerically with respect 
to 6, we can find the equilibrium energy and equilibrium 
period ii,,,, of the vortex chain. The results of this calcula- 
tion for the case E = m,/mll - 1 = 25 (corresponding to 
YBa, Cu, 0, -, , see Ref. 5) are presented in Fig. 1. 

It is clear from the results we have obtained that the 
energy of a vortex decreases most strongly due to interaction 
in the region of angles 6=: 60"; however, this decrease is rela- 
tively small, since Eq. (6)  for E t contains a large logarith- 
mic factor In x which is not present in the difference 
E,, (8)  - E t (6) .  Nevertheless, this implies that in fields in- 
clined at an angle q, to the c axis, the lower critical field H,, is 
somewhat decreased in comparison to the value calculated 
in Ref. 3: 

FIG. 1 .  Angular dependence of the vortex interaction energy in a chain 
and equilibrium period of such a chain for the case m, /m,, = 1 + E = 26. 

Since the vortex penetrates into the superconductor almost 
parallel to the layers even when the angle q, between the 
anisotropy axis and the external field is small:3 

tg 8= ( ~ + l )  tg cp, (9b) 

the largest deviation of the lower critical field from the func- 
tion (9a) takes place for small angles (q,  5 arctan [ l / ( ~  
+ 1 ) ] ; for Y-Ba-Cu-0, q, 5 10"). The results of our calcu- 
lations are shown in Fig. 2. For comparison we show the 
behavior obtained according to the formulas (9)  as dashed 
curves. 

For a sample having the form of an ellipsoid of rotation 
with an axis coinciding with the anisotropy axis c and a de- 
magnetization factor along this axis n, the angles of inclina- 
tion of the vortex 8 and the external field p in a field equal to 
the first critical field 

FIG. 2. Angular dependence of the lower critical field and angle of pene- 
tration of vortices into a superconductor, taking into account the penetra- 
tion of vortex chains. The dashed curves indicate the dependences calcu- 
lated in Ref. 3. 
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are related by the expression 

As a result, for angles g, corresponding to Oz 60", at a field 
H = Hcl we should expect the appearance of vortex chains 
that are spaced very far apart with a period a - U [see Fig. 
1; for YBa, Cu, 0, - , we find A, =A, =: 3W500 A (see Ref. 
611. 

The necessary condition for the presence of an attrac- 
tive force between vortices in a uniaxial semiconductor is the 
fulfillment of the inequality E >  0 (so that this effect will 
never be observed in quasione-dimensional superconduc- 
tors). Note that we are considering only straight-line 
oblique vortices here, i.e., we will not treat other possible 
configurations, e.g., in which modulation of the inclination 
angle of a vortex is present. 

In concluding this section, let us touch briefly on the 
situation in a biaxial superconductor. As in the case of a 
uniaxial superconductor investigated above, this system can 
also support chains of vortices in a field H = H,, lying in the 
plane formed by the c axis (i.e., the axis along which the 
effective mass is a maximum) and the vortex axis. This situa- 
tion corresponds, e.g., to organic superconductors. In the 
orthogonal system of coordinates x, y, z, with the z axis along 
the vortex axis 1, they axis coinciding with the crystal sym- 
metry axis b, and a new x axis lying in the plane cl (we will 
consider a case where the vortex lies in one of the principal 
planes), the effective mass tensor can be written as 

The interaction energy of the vortices in the chains can 
once again be written in the form (7 ) ;  however, Q, and Q, 
are now roots of the biquadratic polynomial 

In Fig. 3 we present the results of calculations of the 
equilibrium value of the vortex interaction energy for a chain 
and the period of this chain for a case corresponding to the 

FIG. 3. Angular dependence of the vortex interaction en- 
ergy in a chain and the equilibrium period of such a chain 
for s = 2499, E ,  = 224 in cases where the chain lies ( a )  in 
the plane ac and (b)  in the plane bc. 

organic superconductor (TMTSF) , ClO, , for which mea- 
surement of the anisotropy of the upper critical field H,, 
implies H z2 :H f2 :H  :, = 15: 130  (Ref. 7 ) .  It is noteworthy 
that in this case the plane in which the gain in energy due to 
attraction of vortices in the chain is largest is the plane of 
maximum anisotropy ac, while the maximum in the angular 
dependence of the energy with increasing E ,  shifts towards 
the region of small angles 0. 

2. FORMATION OF A VORTEX LATTICE 

In fields somewhat larger than H,, , systems of parallel 
chains appear: to first approximation the period of these 
chains a,, does not change, but the spacing between chains 
L is determined by the force of their mutual repulsion. The 
contribution to the free energy due to the interaction of vor- 
tex chains is 

If we first carry out the summation with respect to q in Eq. 
( 14), by using the Poisson formula we obtain the increase in 
energy (for a single chain) due to the interaction between 
chains: 

This expression is valid in the asymptotic limit L&a2/AJ. 
Note that for simplicity we have assumed a square lat- 

tice in deriving ( 15); however, since the difference between 
triangular and rectangular lattices is vanishingly small in 
this limit by virtue of the fact that the lattice is very widely 
spaced along the crystal symmetry axis b ( L s a ) ,  Eq. ( 15) 
also gives a correct description of the situation for a triangu- 
lar lattice, a configuration which is realized in uniaxial su- 
perconductors as well. 

Using ( 15), it is easy to show4 that the magnetic induc- 
tion B in fields which slightly exceed H,, is 

Note that for isotropic superconductors B cc ln - 
[(H-H,,)] (seeRef. 8) .  

In higher fields, where the lattice becomes rather dense 
(S-A 2),  Eq. (15) cannot be used; in this case, in order to 
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FIG. 4. Dependence of the ratio of parameters of the unit cell a/L of a 
vortex lattice on the angle 0 for various values of the area of a unit cell S: I )  
S =  120A t ,  2) 60R :; 3) 301 i; 4) 10A :; 5 )  5A i. The dashed curves de- 
note the function (17) .  In the inset we show a unit cell of a triangular 
vortex lattice. 

reveal the structure of the vortex lattice, it is necessary to 
minimize the free energy ( 14) numerically with respect to a 
for a fixed vortex direction and density of vortices (i.e., the 
area of an elementary cell of the vortex lattice S )  for various 
types of vortex lattice. 

For a square lattice, the summation in (14) is taken 
over the reciprocal lattice vectors 

while for the case of a triangular lattice (see the inset in Fig. 
4) ,  the reciprocal lattice vectors can easily be found: 

Figure 4 shows the results of these calculations.'' We note 
that, in all cases investigated, the triangular lattice was 
found to be preferred; however, for vortices oriented at an 
angle 8 ~ 6 0 "  to the anisotropy axis and S >  A the difference 
in energy between a triangular and a square lattice is 
I (ED - EA )/EA I z 10 - 6; recall that for isotropic super- 
conductors this parameter is almost four orders of magni- 
tude larger.4 From the data shown in the figure it is clear 
that in our case the angular dependence of the ratio of the 
two vortex lattice parameters is quite nonmonotonic. From 
this we see that in the low-field region H Z  H,, , the presence 
of chains can significantly distort the vortex lattice. 

With increasing field these distortions disappear, and 
for a dense lattice (S<  A 2 ,  we are led to previously known 
results" which do not depend on the value of the external 
field: 

(see the dashed curves in Fig. 4).  
Note that the triangular lattice is apparently preferred 

for all uniaxial superconductors. It is interesting to note that 
for biaxial superconductors a result was obtained in Ref. 11 
suggesting a transition to a rectangular lattice at 8 ~ 6 0 "  for 
certain values of the effective mass ratio. However, it is not 

yet clear whether or not this transition is a general property 
of all biaxial superconductors or appears only for certain 
values of E ,  . This question is important for HTSC that pos- 
sess small anisotropy in the basal plane and requires a more 
detailed in~estigation.~' 

3. MAGNETIZATION CURVES OF ANISOTROPIC 
SUPERCONDUCTORS 

The field dependence of the magnetic moment was pre- 
viously discussed in Refs. 12-14 for anisotropic supercon- 
ductors; however, the behavior of the magnetization for 
fields close to H,, was not analyzed there. The distinctive 
features associated with penetration of oblique vortices dis- 
cussed above for anisotropic superconductors in the imme- 
diate vicinity of the lower critical field cannot be reflected in 
the magnetization curves. 

Let us consider the Gibbs free energy of such a system 

where the first term is a sum of the energies of individual 
vortices, the second term is the vortex-vortex interaction en- 
ergy, and the third term is the interaction energy of the vorti- 
ces with the external magnetic field. Note that the sum over 
Q in (18) is easily performed and the tedious calculation of 
the double sum can be avoided: 

@O (7. sh (zQzl2) "'"' = w ( T [ Q 2  [ch ((7.Q2/2) - (- I)"] 
annh q=- 

L 

- cos2 0 sh (zQ112) 
q2 sin2 0 - oos2 0 (Q,  [ch (nQ1/2) - (- I)"] 

where Q, and Q, are defined by Eqs. (8 )  and 
qmax = 2rAm,,/L is the maximum value included in the 
sum over reciprocal lattice vectors (n =0 ,  f 1, * 2,..., k nmaX 1. 

In order to find the relation that connects the induction 
B (or, which is the same thing, the area of the unit cell S and 
the inclination angle of the vortex axis to the anisotropy axis 
0 )  and the external field H, we should seek a minimum of 
( 18) with respect to the variables S, 0, and a/L in a given 
field H. It is not possible to carry out this program analyti- 
cally; therefore, we have performed numerical calculations 
for various external field inclination angles q, and the anisot- 
ropy constant E = 25. Based on the results presented in Sec- 
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tion 2, we have assumed the vortex lattice to be triangular in 
this case, with a < L. 

It is clear from the data shown in Figs. 5 and 6 that 
penetration of the magnetic field into an anisotropic super- 
conductor possesses a number of important peculiarities 
connected with the absence of screening of the field compo- 
nent parallel to the layers. This latter fact implies that start- 
ing with the field H = Hcl (p) only the component of the 
magnetic moment Mli parallel to the layers begins to de- 
crease (Fig. 6b), while the other component of the magnetic 
moment M, (Fig. 6a) continues to grow until a certain value 
of the external field H = HM > H,, is reached. The quantity 
H, depends on the inclination angle of the external field, 
and also the degree of anisotropy. From this we see that the 
field dependence of the magnetic moment within the region 
of fields H,, < H < H, is quite nonmonotonic: at the lower 
critical field the curve M(H)  has the logarithmic singularity 
implied by Eq. (16), followed by an almost linear increase 
associated with the increase of M, (H) until H = H,. For 
H %  H, the magnetic moment decreases l~garithmically:'~ 

where p is a constant of order unity. 
In connection with the shape of the magnetization 

curves, we should also mention that when the angle p of 
inclination of the field to the anisotropy axis is small, the 
singularity in the magnetization at the field is only weakly 
expressed, while the peak at H = H, is very similar to the 
characteristic logarithmic singularity of the magnetization 
curves of isotropic superconductors at H = H,, . From this 
we see that for small p (e.g., for imprecise orientation of the 
field) the field H, can be mistaken for the lower critical 
field, i.e., determination of H :, from a magnetization curve 
can lead to very serious errors. 

When the external field is inclined at large angles to the 
anisotropy axis, the maxima in the magnetization for Hcl 
and H, are widely spaced, and we can be confident that for 
this particular range of angles conditions for observing simi- 

FIG. 5. Magnetization curves for various angles q, of inclination of 
the external field to the anisotropy axis for the case 
m,/m,, = 1 + E = 26. 

lar singularities in the curves M ( H )  are optimal. 
An important feature of the penetration of magnetic 

flux into anisotropic superconductors is that by increasing 
the external field we change not only the absolute value of 
the magnetic moment M, as in the isotropic case, but also its 
direction. As the external field increases, the vortex lattice, 
which at first (for HZ H,, ) is directed almost parallel to the 
layers, aligns itself with the direction of the external field H 
(see Fig. 6) .  If the external field is directed at an angle 
p < 60°, then as the field increases the vortex lattice lies with- 
in the range of angles discussed in Sec. 1, i.e., 8 ~ 6 0 " .  In this 
case characteristic features appear that are connected with 
the fact that as the system attempts to lower its energy, the 
vortices are "confined" within this region of angles. This 
effect results in a significantly nonmonotonic field depend- 
ence of the lattice parameter a (i.e., the period of the lattice 
in the plane ac) for small fields HzH,, when the angles of 
inclination of the external field to the anisotropy axis (see 
Fig. 7)  are small. This unusual behavior is perhaps detect- 
able by "decoration" methods, magneto-optic methods or 
neutron diffraction. 

Note that for real samples the external magnetic field 
A?, which does not coincide with the internal Maxwell field 
H, is connected with it for a sample in the form of an ellipsoid 
of rotation by the expressions 

1 HL=- 
l -n (%L-nB,), 

2 l -n  
~ 1 1  = =(%,I - B ~ ~ )  

where we have used the fact that for an ellipsoid of rotation 
with two equal axis (a, = a, #a, ) the demagnetization fac- 
tors n, = n, along x and y are related to the magnetization 
factor n, = n along the z axis by n, = (1  - n)/2. For this 
case all the features discussed above will be observed for 
directions of the induction close to 60". 

Note that magnetization curves similar to the ones dis- 
cussed here were observed in the experiments of Ref. 15, and 
that the field dependence of the inclination angle of the vor- 
tex lattice to the anisotropy axis, which we obtain in this 
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paper, is in qualitative agreement with the experimentally 
observed dependence in Refs. 15 and 16. The difference is 
apparently connected with irreversible effects which were 
not taken into account in our calculations. 

In anisotropic superconductors, the noncollinearity of 
the external field and the magnetic moment gives rise to the 
appearance of a mechanical twisting moment 

T= [MH] , (21) 

this was investigated previously in Refs. 5, 14 and 16 in the 
region of fields H,, ( H ( H , , .  In this interval of fields the 
magnetic moment depends on the magnetic field logarithmi- 
cally [see Eq. (19)], while the twisting moment (per unit 
volume in this calculation) is almost linear in the field and its 
dependence on the angle q, takes on a universal character:I4 

o (e+i)"'$HcI' Ts- 
(8nn2) H ( i + e  cosZ cp) Ih ) ( l + e  esin cos2 2cp ( P ) ' ~  

. (22) 

FIG. 6. Field dependence of the components of the magnetiza- 
tion vector M = (MI,  ,M, ) for various angles of inclination q, of 
the external field to the anisotropy axis for the case 
m,/mll = 1 + E = 26. 

FIG. 7. Field dependence of the period a of the vortex lattice in the plane 
acfor various angles q, of inclination of the external field to the anisotropy 
axis for the case m,/ml, = 1 + E = 26. 
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FIG. 8. Angular dependence of the mechanical twisting moment for var- 
ious values of the external field: I )  H = 2H f, ; 2 )  0.9H f ,  ; 3) 0.5H :, . 

Our results show that in the neighborhood of the lower criti- 
cal field both the angular and the field dependences of the 
twisting moment depart significantly from Eq. (22); in par- 
ticular, although the point where the function T ( q )  is a 
maximum is not at all universal, it is a function only of the 
anisotropy of the superconductor, while the way in which 
the magnitude of the twisting moment increases as a func- 
tion of field differs significantly from linear (see Fig. 8). 
These differences are related to the rotation of the magnetic 
moment vector toward the c axis and the nonmonotonic 
character of the magnetic moment discussed above within 
this range of fields. From this we see that the twisting mo- 
ment is given by Eq. (22) only in the range of fields 
HM &H< H,, , and the anisotropy constant can be obtained 
correctly from magnetomechanical measurements only in 
this interval of fields 

4. CONCLUSIONS 

In this paper we have shown that the penetration of 
inclined Abrikosov vortices into an anisotropic supercon- 
ductor at H = H,, takes place not in the form of individual 
vortex lines but rather in the form of vortex chains with 
period a -1. Our calculations show that attraction between 
the vortices within a certain range of angles is a general prop- 
erty of all anisotropic type-I1 superconductors with E > 0 
(including biaxial ones) and the features discussed above, 
i.e., magnetic flux penetration and creation of vortex lat- 
tices, should be observed in these as well. Note that the small 
anisotropy in the ab plane which is observed for 
YBa, Cu, 0, - , ( E ,  = 0.2, Ref. 17) does not alter the results 
presented here significantly. Magnetic flux penetration in 
the form of vortex chains rather than in the form of individ- 
ual vortices can perhaps be observed by magnetomechanical 
experiments. 

The presence of vortex chains significantly distorts the 
form of a unit cell of the vortex lattice in small fields. The 
presence of these distortions may perhaps be observable us- 
ing magneto-optical methods or by decoration methods. 

The magnetization curves presented in Section 3 differ 
significantly from analogous curves for isotropic supercon- 
ductors in the nonmonotonic shape of the function M ( H )  
for fields that are somewhat larger than the lower critical 
field, and a number of the features of magnetic flux penetra- 
tion in layered superconductors-in particular, the subse- 
quent growth of the magnetic moment and the nonmonoton- 
icity of the period of the vortex lattice-may perhaps be 
experimentally measurable. 

In connection with this, there is also interest in studying 
the twisting moment for fields close to H,, , as well as com- 
paring data obtained from magnetic and magnetomechani- 
cal measurements of single crystal samples of the layered 
superconductors. 

In conclusion, we are grateful to A. A. Abrikosov and S. 
Senoussi for useful discussions, and also to A. A. Zhukov 
who read through this paper in manuscript form. 

"We have recently been made aware of similar results derived by the 
authors of Ref. 18. 

*'We should also mention Ref. 19, which contains additional results of 
calculations of the energies of various oblique lattices. 
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