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The influence of the interaction between electrons and phonons localized near a planar defect on 
the nonlinear electrical conductivity of small-size junctions is studied theoretically. It is shown 
that the normalized second derivative of the current-voltage characteristic of a point-contact 
junction (known as the point-contact spectrum) containing a planar defect exhibits singularities 
due to inelastic relaxation of carriers by interaction with such phonon states. In strong magnetic 
fields (such that r ,  <d, where r ,  is the cyclotron radius of the electron paths and d is the junction 
size) and also in the case of strong elastic scattering of electrons by a defect, the surface 
contribution predominates over the contribution of the bulk electron-phonon interaction to the 
point-contact spectrum. The quantum nature of carrier relaxation interacting with strongly 
localized phonons governs the contribution made to the point-contact spectrum by the effects of 
renormalization of the electron mass, giving rise to a specific "quantum background." The results 
obtained can account for anomalies of the point-contact spectra of tin associated with the 
electron-phonon interaction at a twin boundary, observed recently by Khotkevich, Yanson, 
Lazareva et al. [Sov. Phys. JETP 71,937 ( 1990) 1. 

INTRODUCTION 

The problem of the interaction of conduction electrons 
with macroscopic defects in metals is currently attracting 
much attention because of the discovery of enhancement of 
the superconductivity near twinning planes in tin.',* The 
observed effect can be explained in a natural manner by the 
special properties of the electron and phonon states near a 
defect. However, direct experimental studies of such an elec- 
tron-phonon interaction (EPI) localized near a grain 
boundary are difficult because of the smallness of the effec- 
tive volume occupied by defects in a metal. In this situation 
an important role is played by methods for local probing of a 
metal when the measured effect is due to the contribution of 
extremely small volumes of a conductor or to a small group 
of particular  electron^.^-^ One of these methods is known to 
be determination of the transport phenomena in point-con- 
tact junctions whose resistance is governed by the scattering 
of carriers within a small region ( d z  lo2-lo3 A)  in which an 
electric current is ~oncentrated.~.' Such a region has dimen- 
sions comparable with the size of a defect, which provides a 
unique opportunity for investigating the interaction of carri- 
ers with a single scattering object. 

This idea was realized in experiments carried out on 
point-contact junctions with tin and reported in Ref. 8: 
anomalies were observed in the point-contact spectrum and 
these were probably associated with the contribution of EPI 
near a twin boundary. 

The method of point-contact spectroscopy of macrode- 
fects required that the contributions of the local EPI at a 
defect be distinguished from the background of the EPI 
spectrum of a defect-free metal (representing the bulk con- 
tribution to the point-contact spectrum). The local contri- 
bution should be very distinctive because of the sensitivity of 
the effect to the electron transmission coefficient D of a de- 
fect and to the ratio of the electron A, and localized phonon 
x - ' wavelengths. An additional opportunity for separating 

the bulk defect contributions to the point-contact spectrum 
is provided by a study of the dependence of the intensity of 
such a spectrum on an external magnetic field. 

We shall develop a theory of point-contact spectrosco- 
py of the EPI localized near a planar defect. We shall use a 
model (Fig. 1) in which the planar defect intersects the 
point-contact junction and is oriented at right-angles to its 
axis, where the phonon states represent surface waves near a 
defect boundary. Since the depth x-' at which surface 
phonons are located is governed by their frequency w and 
increases in the limit w -0, the value of w controlled by the 
voltage applied to the point-contact junction determines 
whether the electron-phonon scattering at the defect is 
quantum-mechanical ( x  - ' 5. A, ) or classical ( x  - ' %A, ). 
In the quantum case the electron transport resembles the 
inelastic tunneling of carriers across a carrier, whereas in the 
classical case it resembles the classical electron-phonon re- 
laxation in point-contact junctions. A smooth transition be- 

FIG. 1 .  Model of a point-contact junction in the shape of a single-sheet 
hyperboloid of revolution with a vertex angle 28and an interfocal distance 
2b; d is the smallest diameter. A planar defect of transparency D i s  located 
in the central plane z = 0 or at a distance 5 z d  from it. Paths of electrons 
( 1 , 2 ,  and 3 )  interacting with surface phonons of frequency o ar~shown 
schematically. 
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tween these two qualitatively different cases of the inelastic 
electrical conductivity can be induced by varying the voltage 
across the junction. 

It is of fundamental importance that the contributions 
of the local and bulk EPI depend differently on the elastic 
tunneling coefficient D of electrons crossing the defect. The 
quantum process of electron-phonon relaxation near a de- 
fect, like the inelastic tunneling effect, makes a contribution 
to the resistivity which is of order D, while bulk relaxation 
associated with the way in which a tunneling electron is scat- 
tered in the bulk and then creates a return tunnel current is 
proportional to D 2. We can therefore have a situation in 
which the contribution to the point-contact spectrum of the 
EPI localized at a defect is the dominant effect. Identifica- 
tion of this contribution is facilitated by a study of how the 
intensity in the point-contact spectrum depends on the ex- 
ternal magnetic field. The bulk and surface contributions 
then exhibit different asymptotic behavior in a strong mag- 
netic field (such that r,  S d ,  li; here, r ,  is the cyclotron 
radius of the carrier paths, li is the elastic mean free path of 
electrons, and d is the point-contact junction size), the spe- 
cific nature of which depends on the transparency D. 

Our results will be reported as follows. In Sec. 1 we 
formulate the model and find the general relationships gov- 
erning the elastic electrical conductivity and the conditions 
encountered in point-contact spectroscopy. We analyze the 
contribution made by the EPI at the defect to the point- 
contact spectrum (Sec. 2). This contribution is calculated 
using an effective boundary condition reflecting the quan- 
tum nature of the electron-phonon scattering during cross- 
ing of the defect boundary. We derive the boundary condi- 
tion for the electron distribution function (Appendix I ) .  We 
devote Sec. 3 to an analysis of the bulk relaxation processes 
in a point-contact junction containing a planar defect. A 
comparison of both contributions and a discussion of the 
conditions for the observation of the EPI at a defect is made 
in the Conclusions. 

1. FORMULATION OF THE PROBLEM AND BASIC 
RELATIONSHIPS 

If the size of a planar defect is comparable with the size 
of a point-contact junction, the defect has a fundamental 
influence on the electrical conductivity. A typical situation 
encountered in this case is shown in Fig. 1. The processes of 
elastic scattering of electrons limit the current across the 
junction and make an additional contribution to the resistiv- 
ity. In the absence of the inelastic scattering of carriers by a 
defect, a system of this kind represents a point-contact tun- 
nel junction whose transparency is governed by the elastic 
scattering of electrons on the defect plane. It is k n o ~ n ~ , ' ~  
that the transport properties of such a junction can be inves- 
tigated using the semiclassical approach based on formula- 
tion of suitable boundary conditions applicable to the elec- 
tron distribution function and describing elastic scattering 
as well as quantum passage of carriers across a defect. We 
assume that, in addition to the processes already mentioned, 
there are also inelastic channels of quantum transmission 
due to the interaction of electrons with surface oscillations 
(phonons or other Bose excitations) located at a distance 
x ' from the defect plane. When the localization length 
x - ' is small compared with the transport lengths of elec- 

trons, i.e., when x- ' <li, Iep, d (Iep is the electron-phonon 
relaxation length), the analysis of the inelastic scattering 
processes reduces to formulation of semiclassical boundary 
conditions applicable not only to the elastic but also to the 
inelastic processes of carrier scattering. In general, such a 
boundary condition is a relationship linking the distribution 
function f :is)_ pq of electrons traveling from the boundary in 
the jth half-space ( j = 1 or 2) with the analogous functions 
f h:LzA for carriers arriving from the interior of a metal at the 
defect (located in the plane a) :  

Here,pzj and p,, are the components (perpendicular and par- 
allel to the defect plane) of the momentum of an electron 
arriving at the defect from the jth bank of the junction; D is 
the effective transparency representing the probability of 
elastic transmission of electrons by a defect; the integral op- 
erator % corresponds to the inelastic scattering channels. 
Note that the energies of the incident and transmitted elec- 
trons satisfy the law of conservation which includes a possi- 
ble jump of the electric potential A Vat the junction: 

A rigorous derivation of the boundary condition ( 1) 
requires a consistent microscopic analysis. Such an analysis 
is given in the Appendix I. The presence of the term @ in 
Eq. ( 1 ) determines the specific nature of the problem under 
consideration and is responsible for the appearance of signif- 
icant contributions made to a point-contact spectrum by the 
EPI at a defect boundary. 

The electron transport outside a planar defect can be 
described using an approach which is normally employed in 
point-contact spectroscopy. We give the principal relation- 
ships which will be needed later. The distribution functions 
f i J )  are found from the Boltzmann transport equation con- 
taining the integrals of the elastic (Ii ) and electron-phonon 
collisions (I, = ) in a metal: 

(2)  
Equation (2 )  together with the boundary condition ( 1) 
should be supplemented by conditions representing the elas- 
tic scattering of electrons on the surface of a metal'' and by a 
condition representing the spreading of the current in the 
interior of a conductor Lf;" ( r  - co ) = n,, where n, ( E ,  ) is 
the Fermi function]. The electric potential p ( r )  
(E = - Vp) is found from the equation of electrical neutra- 
lity and satisfies the condition 

cp(r+w) ='/,V sign z. 

A static magnetic field is assumed to be oriented along the 
junction axis [H = (0, 0, H) 1. 

The traditional treatment of point-contact spectrosco- 
py involves an allowance for the inelastic carrier scattering 
processes on the basis of perturbation theory. The relevant 
condition applying to the bulk scattering is'' 
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where L is the effective spreading length of an electric cur- 
rent, equal to the junction size d in weak magnetic fields 
(r, > d )  and to dli/r, in strong magnetic fields (r, < li,d). 
A similar condition in the case of spectroscopy of the surface 
inelastic scattering processes is 

where I, is the characteristic mean free part of electrons in 
the case of inelastic ~cattering~by surface oscillations near a 
defect. In this case the term T. in the boundary condition 
( 1 ) can be allowed for using perturbation theory. 

The elastic electrical conductivity of a point-contact 
junction is found by solving the transport problem to lowest 
order in the parameters (3)  and (4): 

f$ ( r )  = a t )  ( r )  nF+ + [ I-ay) ( r )  ] nF-, (5  

The quantity aij' ( r )  represents the probability that an elec- 
tron with a momentum p reaches a point r from the right- 
hand bank of a junction %nd it satisfies Eq. (2) subject to the 
condition ( 1 ) for I,, = W, = 0. At the banks of a junction, 
we have 

the analysis of the "elastic" electrical conductivity can be 
reduced to the analysis of the process of carrier diffusion:I2 

( j )  
a a c j )  $ao' 

a, ( r )  = a')' (r) - V,T~ - + Ti [ (-u.+~r~v.)-- 
a 2  I + ( Q s ) ~  ax 

where r i  = li/vF, vF is the Fermi velocity, and is the Lar- 
mor frequencyAof electrons in a field H. After substitution in 
Eq. ( 1 ) with W, = 0 of the expansion (7) ,  we find that the 
effective boundary conditions for a planar defect becomegsL3 

dll  da") -- = a ( l )  ( r )  - a(') ( r )  1 rea, 

I D  dz 
where 

3 ( D l n , l )  
l o = -  

4 <Dn,'> 

is the barrier scattering length, n, = v,/v, , and the angular 
brackets (...) denote averaging over the Fermi surface. 

For D = 1, the boundary-value problem described by 
Eqs. (8)  and (9)  is identical with the contact problem con- 
sidered in Ref. 12 using a model of an aperture in an imper- 
meable screen. This model is of general interest because, as 
shown below, the description of an extended junction in the 
limit of strong magnetic fields reduces to this model. 

We consider a point-contact junction in the form of a 
single-sheet hyperboloid of revolution characterized by a 
vertex angle 8 (Fig. 1 ), which governs the effective length of 

the junction b(0)  = d /2 sin 8. Equation (8) can be solved 
directly by compressing the coordinate system along the z 
axis so that 

which converts Eq. (8)  to the Laplace equation. Then, in the 
new coordinate system this junction surface is again a hyper- 
boloid but with an effective length 

b ( H )  =dl2 sin B', tg 0'=tg @ [ I +  (!hi)2]'". (11) 

We can see that in the limit H- w the effective vertex angle 
8 ' of the hyperboloid tends to 7~/2 and the solution becomes 
identical with that obtained using the aperture model. In 
general, for D = 1, we obtain 

a"' ( I )  = 6 ( a )  - sign 10 ( x,  y, z ) (12) 
[I +(Qs)Z]'" 

(13) 
The dependence of the junction resistance on the magnetic 
field is 

(p is the resistivity of the junction material). For H+ , the 
asymptotic behavior of the dependence R (H) is identical 
with that found in Ref. 12 using the aperture model. This 
behavior seems natural because in a strong field the lines of 
flow of the current concentrate along the z axis (Fig. 1 ) and 
the spreading pattern becomes very insensitive to the size of 
the junction, but is governed solely by the shape of its small- 
est cross section. 

In the low-transparency limit of the tunnel barrier for 

we find that the boundary condition (9) becomes13 
da") -- 
az (16) 

and the solution of the boundary-value problem for a junc- 
tion in the form of an aperture (9 = 7~/2) can be written 
down similarly to Eq. (12), whereas the function @(r)  is 
given by 

The resistance of the contact is then given by 

where RT = 2pli/rdl, is the tunnel resistance of the barrier. 
An increase in the magnetic field allows us to go from the 
case of low transparency of the tunnel barrier 
[I, 4 min (Ii ,r, ) 1, when its resistance predominates, to the 
case of a junction with direct conduction (r, <l,,li) when 
the main contribution comes from the region through which 
the current spreads in the banks of the junction with longitu- 
dinal size L = dl,/?, and transverse sized (Ref. 13). In this 
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case the presence of the tunnel barrier has practically no 
effect on the electrical conductivity of the point-contact 
junction. 

The above solution of the elastic boundary-value prob- 
lem governs the inelastic corrections to the point-contact 
junction current. We shall analyze these corrections in the 
next sections. 

2. POINT-CONTACT SPECTRUM OF INELASTIC ELECTRON 
SCATTERING BY A PLANAR DEFECT 

The allowance for the interaction between electrons 
and surface oscillatio~s localized near the defect is related to 
retention of the term W ,  in the boundary condition ( 1 ). The 
distribytion functions f iJ' occurring in the "collision inte- 
gral" it; are the functions oLEq. (5 )  represenLing the zeroth 
approximation. The term W,{ f :A', f ::')= W,. (p,p) in the 
boundary condition then corresponds to a source concen- 
trated in the defect plane p w .  The corrections to the distri- 
bution function fg' can be calculated using the Green's 
function of the transport problem in the elastic limit. In ac- 
cordance with the transformations given in Appendix 11, the 

- - 

correction to the point-contact junction current associated 
with the contribution of the surface oscillations at a planar 
defect can be represented in the form 

Here and later we use a system of units in which f i  = 1. Since 
the size x - ' of the zone where surface phonons are genera- 
ted is generally comparable with the de Broglie wavelength 
of electrons (inelastic relaxation under quantum transmis- 
sion conditions), the transport current is governed not only 
by the processes of emission or absorption of real phonons, 
but also by the appropriate renormalization of the electron 
spectrum. We can therefore distinguish two contributions to 
the "phonon correction" to the current: the contribution 
I:" corresponding to real scattering processes, and the con- 
tribution I j2) related to the processes of virtual transitions of 
electrons under the action of a "phonon" perturbation. The 
term I j" governs the point-contact spectrum of the EPI at a 
defect, whereas I;" corresponds to the presence of a "quan- 
tum background" in the relevant point-contact spectrum in 
the frequency range w > w, (w, is the maximum frequency 
of surface phonons). We shall now estimate these contribu- 
tions separately. 

a) Point-contact spectrum of the surface electron-phonon 
interaction 

Using the actual form of the collision integral ob- 
tained in the Appendix I, we can represent a point-contact 
spectrum (which is the normalized second derivative of the 
current I j l )with respect to the voltage) in its standard form 

where 
dZ s ( x )  = -(L) 
dx2 ex-$ ' 

T is the absolute temperature 

The point-contact function of the interaction with surface 
phonons G, (w) includes an integral with respect to the two- 
dimensional vector q = pi\ - pi of the generated phonons, 
whereas the value of the momentum Ap, transferred by elec- 
trons is not limited (in contrast to three-dimensional phon- 
ons) by the condition Ap, 5 q.  Therefore, the EPI function 
for surface phonons characterized by q < p ,  contains in addi- 
tion to the bulk EPI function, a large factor of order 
p, /q> 1. The transport form factor for the surface inelastic 
scattering process [K, (p,pl) ] is governed by the probabili- 
ties of the classical motion of electrons and by the processes 
of quantum scattering near a defect: 

x d2p a?) P,,,P,,  ( P ,  -H) [ag: ,pz , (~3  H) - &I:,pzI (P, 1 .  
P e a  

(22) 
The effective probability for scattering W:j' by a barrier is 
calculated in Appendix I [Eq. (I. 14) I .  The general expres- 
sion (22) simplifies in two limiting cases of barriers charac- 
terized by high and low transparency. For D g  1, the model 
of a 6-function barrier2' yields 

8 x-' 
Kd (n, n') = - -- 8 (n,) 8 (n,') (n,n,') [R' - (nz-nr')2] 

3 d 

where 

and x ' is the depth of penetration of a surface oscillation 
with a two-dimensional momentum q = pi, - pi(. 

We note two important circumstances that follow from 
Eq. (23). Firstly, the intensity in a point-contact spectrum is 
independent of the tunnel barrier transparency, of the trans- 
port electron relaxation lengths, and of the applied magnetic 
field, but is governed (to lowest order in D< 1) simply by 
barrier relaxation of electron states which are in 
local equilibrium in each of the junction banks 
(f id' = n, [&p + ( - 1 )eV/2 I). Secondly, when the reci- 
procal of the depth of localization x of a phonon perturba- 
tion is considerably greater than the momentum of the scat- 
tered phonons Ip, - p: I, the relaxation processes occur in 
the quantum vicinity of a barrier ( -A, ) and the sign of the 
point-contact spectrum is negative, like the sign of the corre- 
sponding correction to the point-contact junction resistance. 
In this sense the result obtained resembles inelastic scatter- 
ing of electrons across a boundary. However, the analogy is 
not complete. We can easily see by analyzing the point-con- 
tact spectrum in the case x < Ip, - p i  I that the scattering of 
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FIG. 2. Dependence of the averaged (over the momentum components 
perpendicular to the plane of the defect) K, factor on the reciprocal of the 
damping distance of surface oscillations x = ,?A,. 

electrons occurs near their semiclassical motion and can be 
regarded as retardation of the electron flux because of a - 
change in the momentum component pi, parallel to the bar- 
rier. Figure 2  shows the result of a calculation of the average 
form factor 

1 I 

K. (n, n') = dn, dnz' K. (n, n') 

as a function of x .  It is clear [see also Eq. ( 2 3 )  ] that in the 
limit Z - 0 we have E, - 0, and in general we must include in 
Eq. ( 2 2 )  the next terms of the expansion in D. These terms 
govern the correction to the point-contact spectrum that de- 
pends on the applied magnetic field: 

9 l n h ~  
fiK,(n,n')= -- 0 (n,) 0 ( n Z ' ) ~ A 2  (n,--n,') 

2n2 d2 

We note that Eq. ( 2 5 )  does not include a term describing the 
scattering-induced change in the component of the momen- 
tum p, perpendicular to the defect whose absolute value is 
conserved on reflection and tunneling of electrons apart 
from corrections of order A,x < 1. In weak magnetic fields 
( Q r i  < 1 )  the form factor of Eq. ( 2 5 )  is positive, as in the 

FIG. 3. Dependence of the averaged (over the Fermi surface) form factor 
K, on the applied magnetic field (represented by the parameter nr,), 
plotted for different distances 6 = dx of the planar defect from the central 
plane of the junction in the case when D,-1 ( 0  = 1~/4); 
F ( H )  = ( (K,(H))) / ( (K,(O))) .  

case of the scattering by bulk phonons, and it is proportional 
to the barrier length I,. The sign of SK, (p,pl) changes as the 
field H  increases (nr, > 1 ). This reflects the fact that the 
scattering of electrons characterized by a change in the mo- 
mentum component p,, parallel to the boundary (and per- 
pendicular to the vector H )  favors spreading of the electric 
current and reduces the resistance. 

We now consider those defects which reflect electrons 
weakly ( D  -, 1 ). This case should clearly be encountered in 
the case of low-angle and twin boundaries in metals. We can 
easily see [see Eqs. (7),  ( 12), and ( 13) 1 that if the planar 
defect is located at the center of the junction (in the z = 0 
plane), the inelastic scattering processes make no contribu- 
tion to the point-contact spectrum ( d a O ' / d x  = a a ( j ) / a y  
= 0 at z = 0). However, this corresponds to a random de- 

generacy associated with a high symmetry of the model. 
Since we are dealing with an asymmetric case, we shall re- 
gard the defect plane as shifted relative to the center of the 
junction by an amount { (Fig. 1  ). The form factor of the 
surface contribution of the defect to the point-contact spec- 
trum considered in this geometry is 

9 l j A B  0' 0(n,)0(nzf) 
K,(n,  nf)=  ctg - 

32s d" [ I + ( Q T ~ ) ~ ] ' ~  

where x = ( 2 { / d )  sin 8 ' and the angle 8 ' is given by Eq. 
( 11 ). The validity of Eq. ( 2 6 )  is limited to the range of fields 
in which point-contact spectroscopy can be performed [see 
the inequality of Eq. ( 3 )  1. It follows from Eq. ( 2 6 )  that for 
H = 0, the point-contact spectrum is positive for any value 
of Z. This difference from the situation D< 1  discussed above 
is associated with a considerable difference between the elec- 
tron states representing in the limit D- 1 waves which are 
practically plane, and not almost standing as in the D< 1 
case. Therefore, the destruction by phonons of the interfer- 
ence between the waves incident and reflected by a defect 
should not then occur. As expected, a point-contact spec- 
trum corresponding to D Z  1 depends strongly on the param- 
eter Ori .  This dependence is shown in Fig. 3  for the average 
form factor F ( H )  in the quantum case defined by jl. 3 1. For 
values of the parameterx higher than a certain value X, < 1, 
we find that in strong magnetic fields the quantity ((K,)) 
changes its sign and the surface contribution to a point-con- 
tact spectrum becomes negative. 

b) Effects of renormalization of the carrier mass 

The effects of renormalization of the electron spectrum 
are represented by the contributions of virtual electron tran- 
sitions to the transport current. The corresponding compo- 
nent of the point-contact junction current is [see Eq. ( 19) 
and Appendix I ]  
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2e sions for the probabilities a:'' in Eqs. (7)  and ( 12), we can 16" = - S d2p dSp0 ( P A  1 d 3 p 9  ( P I , )  

(2N3 VEo show that in the case of symmetric contacts we have 

2 K 2 = 0. However, any deviation from the junction symme- 

x a!?,,. Pzj  ( ~ 7  - H) try gives a nonzero value of K 2. For example, when a tunnel 
j, r, I=I barrier of transparency I,/d<D< 1 separates metals of dif- 

ferent purity (1 ,'2' < I ,"', I j is the elastic mean free path of 
x 1 Vp;,-p,i, Y l 2  $ M ~ I )  ( P ,  pt) carriers in the jth metal), we have 

Y 

(27) 
where the functions M :j' (p,pl ) and I?,, (p,pl) are given by 
Eqs. (I. 14) and (1.13) in Appendix I. Substituting in Eq. 
(27) the zeroth-approximation distribution functions of Eq. 
(51  and differentiating Eq. (27) twice with respect to the 
voltage V, we readily obtain an expression for the correction 
to the value of R - ' ( d R  /dV) of Eq. (20), which describes 
an additional background in the point-contact spectrum due 
to the EPI in the quantum vicinity of the junction barrier. 
The corresponding term (identified by the index bg) in the 
normalized second derivative of the current-voltage charac- 
teristic of the point-contact junction at the temperature 
T=Ois  

Y 

where 

Since the matrix M g' contains only the off-diagonal compo- 
nents ofD j," and, consequently, is proportional to the prod- 
uct of the quantum reflection R and tunneling T coefficients 
[see Eqs. (I.  14) and (I. 19) in the Appendix I],  the compo- 
nent of the point-contact spectrum given by Eq. (28) is small 
both for tunnel junctions with a transparency D 4  1 and for 
junctions with direct conduction ( D z  1 ). Using the expres- 

Beyond the boundary of the phonon spectrum ( e  V >  w, ) 

the quantum background of Eq. (28) is positive and it de- 
creases as a function of V proportionally to V - '. 

3. POINT-CONTACT SPECTRUM OFTHE BULK ELECTRON- 
PHONON INTERACTION IN THE PRESENCE OF A PLANAR 
DEFECT 

h 

If we assume W, = 0 in the boundary condition ( 1 ) and 
include in the transport equation (2)  the electron-phonon 
collision integral I,, using perturbation theory, we obtain 
the correction to the electron distribution function which 
can then be used to calculate the bulk contribution to the 
inelastic current through a point-contact junction." The cor- 
responding term in the normalized second derivative of the 
current with respect to the voltage applied to a point-contact 
junction [see Eq. (20)] contains the EPI function in the 
bulk of the metal 

G A W ) = ( J  +)-'z J J  cisp (221) cup, vv' 
T 

where W,, - ,, is the square of the absolute value of the EPI 
matrix element. The dependence of the point-contact spec- 
trum on the magnetic field, on the geometry of the point- 
contact junction, and on the transparency D of a planar de- 
fect is concentrated in the factor K, which can be expressed 
in terms of the probability a:'' (r) :  

3n 1 d3r [a$) ( r ,  ~ ) - a $ )  (r, ~ ) ] [ a $  ( r ,  - 
Kv (P, P ~ )  = 

j=l d2p (npt)) 

-H)-u$, (r, - H ) ]  
0  I(- 1) 21. 

Further analysis of Eq. (3 1 ) can be carried out conveniently (32) in the model of a point-contact junction in the shape of 
as in the preceding section in the two limiting cases D-. 1 and a hyperboloid of revolution: 
D<  1. 

0' '* li { 2  (nz-nzf 2 cos2 -- Kv(n,nl)=-- 
a) Point-contact junction with direct conduction 64 d 2 

Substituting the diffusion expansion of Eq. (7)  for the 
functions a:'' in the limit D-. 1 [see Eqs. ( 12) and ( 13) 1, 
we obtain the following expression for the form factor of Eq. 
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The value of the K factor averaged over the directions of the 
electron momenta is 

In the case of a junction in the form of an aperture (8 = 77/2) 
Eqs. (33) and (34) are identical with the results given in 
Ref. 12. It is worth noting that in strong magnetic fields 
when 8 '-. 77/2 holds, so that the aperture model provides a 
satisfactory description of a point-contact junction, the con- 
tribution made to the point-contact spectrum by the scatter- 
ing processes associated with the change in the momentum 
along the magnetic field H is balanced out by the corre- 
sponding contribution when the momentum changes at 
right-angles to the field. However, the nature of the fall of 
( ( K , )  ) as H increases is different for a junction in the form 
of an aperture ( 8 ~ 7 7 / 2 )  and for an extended contact 
(O(1): 

b) Planar defect with a low transparency 

The use of the probabilities a:'' for a point-contact tun- 
nel junction of low transparency in the calculation of the K 
factor of Eq. (32) [Eqs. ( 7 ) ,  (12), and ( 17) ] gives the fol- 
lowing result in the aperture model: 

The value of the form factor averaged over the directions of 
the vectors n and n' 

decreases as H - ' in strong magnetic fields (RT, $ I ) ,  in 
contrast to junctions with direct conduction, which are char- 
acterized by ((K,)) a H - '. 

The quantity ( ( K , ) )  represents the total intensity in a 
point-contact spectrum. In an anisotropic material a situa- 
tion may arise in which the dominant contribution to the 
spectrum at some particular energy is made by the EPI pro- 
cesses involving changes in the electron momentum compo- 
nents longitudinal (p,) or transverse (pll ) relative to the 
magnetic field vector H. Then in strong magnetic fields the 
intensities of the individual peaks in the spectrum increase 
linearly with the field H. The part of the spectrum corre- 
sponding to the emission of phonons with a modified value of 
pII (these processes represent the spreading of the current) 
has the negative sign. An increase in the intensities of the 
individual peaks in the point-contact spectrum in a magnetic 
field is due to an increase, with H, in the size of the region of 

the strong interaction between electrons and phonons, 
which coincides with the region in which the current is con- 
centrated. 

CONCLUSIONS 

Our analysis shows that single planar defects have a 
considerable influence on the nonlinear electrical conductiv- 
ity of point-contact junctions, giving rise to an additional 
term G, (eV) in the point-contact spectrum. This term is due 
to the inelastic scattering of electrons by phonons localized 
near the defect. The intensity and sign of the point-contact 
spectrum characterized by the average value of the form fac- 
tor ( ( K ,  ) ) depend on the defect transparency D to carriers 
and on the ratio of the de Broglie wavelength A, to the char- 
acteristic damping depth x ' of surface phonons ( w  = e y) .  
In the case of a low-transparency defect, we have 

In the quantum case defined byAB $ x  - ' (w), typical of 
intervalley relaxation in semimetals and semiconductors, 
when the scattering processes occur at distances x - ' from a 
barrier smaller than A, the intensity in the point-contact 
spectrum is independent of the bulk relaxation lengths of 
electrons and of the applied magnetic field, whereas the sign 
of the average K, factor is negative. This is due to "bleach- 
ing" of the barrier because of suppression (by inelastic sur- 
face processes) of the interference between the incident and 
reflected electron waves. In the semiclassical case when the 
depth at which surface phonons are damped out is consider- 
able (x ' > A, ), the point-contact spectrum is positive for 
H = 0 and becomes negative in a strong magnetic field 
( r ,  < I, ) perpendicular to the defect plane. Reversal of the 
sign in the spectrum in this case is due to the processes that 
are accompanied by a change in the carrier momentum pro- 
jection perpendicular to the vector H. 

When the defect is highly transparent, so that D-. 1 and 
the interference between the electrons incident and reflected 
by the barrier is negligible, the dependence of ( ( K , ) )  on I, 
and r, is retained in the quantum and semiclassical cases: 

Behavior of the function F({) [.F (0)  = 1-see Fig. 31 in 
strong magnetic fields (5  = I,/r, % 1 ) depends on the posi- 
tion of the defect in the junction, which governs the ratio of 
the contributions made to the scattering spectrum and ac- 
companied by changes in the momentum along and at right- 
angles to the magnetic field. In the most natural (from the 
experimental point of view) situation when the plane defect 
is located at a distance of order d from the center of the 
junction, we have 

We may find from Eqs. (38) and (39) that the point- 
contact spectrum of surface oscillations obtained for the 
phonon momentum range q=: x - ' $A, is characterized by a 
"quantum" smallness A,/d compared with the contribu- 
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tion of the bulk EPI. However, the absence of integration of 
the third component of the phonon momentum from G, (w) 
[see Eq. (21 ) ] suppresses the effects of the smallness of the 
K factor and the relative intensity of the surface EPI in the 
point-contact spectrum when q<pF is governed by the pa- 
rameter q - '/d. 

The contribution of the bulk EPI processes to the point- 
contact spectrum of a junction in the form of an aperture 
with tunnel conduction across a planar defect is always pro- 
portional to the transparency coefficient D g  1 and falls lin- 
early with increasing magnetic field, but remains positive: 

When the barrier transparency is close to unity, the de- 
pendence of ((K,) ) on His  very sensitive to the shape of the 
junction: 

so that in the aperture model (junction length L = 0)  we 
have ((K,) ) a r i, whereas for an extended junction 
( L s d ) ,  we obtain ((K,)) a r,. 

It therefore follows that although the surface contribu- 
tion to the point-contact spectrum contains the small param- 
eter x - '/d, representing the smallness of the region of gen- 
eration of two-dimensional phonons, this contribution can 
be distinguished from the background bulk effect. This is 
possible because of the different behavior of ( (K,))  and 
((K,)) in strong magnetic fields. The surface component 
( (K, ) ) changes sign in the range r,/l, < 1 and tends to a 
constant value for D< 1, as given by Eq. (38), or it falls as 
(r, / I ,  ) ln(l, /rH ) in the limit D- 1, whereas the bulk com- 
ponent of the K factor ((K,)) remains positive and de- 
creases at least as fast as 1/H for any value of D. It therefore 
follows that when the magnetic field is sufficiently strong, 
the surface contribution becomes dominant and can be in- 
vestigated under the conventional conditions used in point- 
contact spectroscopy experiments. In the quantum case 
( X  - < A B  ) the point-contact spectrum of point-like tunnel 
junctions with a very low transparency D < (x3A d )  - ' is 
negative and is governed by the interaction of electrons with 
the surface phonons even if H = 0. 

When the contribution of the EPI at a planar defect is 
not the dominant term, reversal of its sign in the range 
x - ' (w) R A, should result in an effective reduction of the hf 
part of the overall spectrum and should enhance the If part. 
It should be noted that this enhancement of the If part of the 
spectrum should be much stronger because the effective vol- 
ume a d  2x - I (w) of the region where surface phonons are 
generated increases as the frequency decreases. This may 
account for the "softening" of the EPI spectrum reported for 
point-contact junctions of tin containing twin boundaries.' 
It is worth noting the appearance of a specific quantum 
background in the point-contact spectrum (as demonstrated 
by the experimental results reported in Ref. 8),  which is 
associated with the energy-dependent effect of the renormal- 
ization of the electron mass because of the interaction with 
strongly localized surface phonons. The anomalously strong 
background in the experiments of Ref. 8 is of such quantum 
nature. 

Reliable identification of macroscopic defects in a 

point-contact junction and identification of their contribu- 
tion to the point-contact spectrum of the EPI requires that 
the experiments be carried out in a magnetic field which 
above all provides an opportunity13 to determine the tunnel 
barrier transparency in the point-contact junction from the 
dependence R (H) . 

The authors are deeply grateful to I. 0. Kulik for his 
constant interest and valuable comments. 

APPENDIX I. BOUNDARY CONDITION FOR THE 
SEMICLASSICAL DISTRIBUTION FUNCTION OF ELECTRONS 
INTERACTING WITH OSCILLATIONS LOCALIZED NEAR A 
PLANAR DEFECT 

The derivation of the boundary condition ( 1 ) involves 
calculation of the Wigner distribution function 

r' 
fpw (r, f) = -i J dl' ~ , , ( r  + - , t ;  r - - 

2 
' , (1.1) 
2 

The electron Green's function G,, (x, ,x, ) [x=  (r, t )  ] satis- 
fy the following matrix equationI4 

To lowest order of perturbation theory in the Hamiltonian 
Hint representing the interaction between electrons and sur- 
face phonons, we can modify the right-hand side of Eq. (1.2) 
by replacing the functions Gjk with the functions G,!:) that 
correspond to Hint = 0 and by writing the components of the 
matrix of the self-energy functions X,, in the form 

h 

where D(x,  ,x2 ) is the matrix Green's function of the surface 
phonons that includes the potential of their interaction with 
electrons. 

We expand the field electron operators \V (x)  in terms of 
a complete system of the electron wave functions Yj, ( r )  in 
the case when a barrier is located near the z = 0 plane: 

2 

a. 9. (r) exp (-iekjt) , Y ( X ) = ~ C  lk  I. (1.4) 
1 k 

where a,, is the annihilation operator for an electron in a 
state with a momentum k and a total energy E,,, where the 
index j = 1 and 2 labels the half-spaces to the left ( j = 1 ) 
and to the right ( j = 2) of the barrier. In calculating the 
relevant matrix elements accurate apart from corrections of 
order eV/EF, we can regard the electron momentum p, as 
conserved after tunneling and outside the barrier region we 
can describe the wave functions as follows: 

I Texp(ik,lzJ), sign z= (-I) ' -% 
$kZ3 (2) = 

I 

exp (-ikz 1 z 1 ) + R exp (ik. 1 z I), sign Z= (-1)' 

for k,  > 0 (R and Tare the electron reflection and tunneling 
coefficients linked by the relationship 1 T 1 + IR I = 1 ). 

We expand the phonon operators @(x)  as follows: 
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where 

mq,, (r) = (2x)"Vq,, exp(iqrl1-x 121). (1.8) 

In Eq. (1.8) the notation is as follows: c,,, is the annihilation 
operator for a phonon of frequency w , ,  with a two-dimen- 
sional wave vector q = (q,,q,,,O); y labels the branches of 
the spectrum; V,,, is the matrix element of the interaction of 
electrons with oscillations damped out at a distance 
x - ' ( w , ,  ) from a planar defect. 

Using the expansicns (1.5) azd (1.7) for thematrices of 
the Green's functions G (O' and D, we obtain the following 
expressions: 

j-i k 

h 

where Rq,, is a matrix transposed relative to N,,, . Substitut- 
ing the expressions of Eqs. (1.9) and (1.10) into Eq. (I.2), 
we can find, in the first nonvanishing order of perturbation 
theory in Hi,, , a correction to the function G I;' and thus 
calculate in the same approximation the Wigner distribution 
function f r ( r )  of Eq. (I. 1 ) . After very involved calcula- 
tions for electrons traveling away from a planar defect 
(p, = - p ,  ), we obtain the following expression if 121 % A B ,  
% - I .  

W 
2 ( I ) +  R 1 2  f;) + wj{f(') f")}, fPIl '  - P , ~ =  IT I '  f~ I P ' P  (1.11) 

~I*(P ' ,P)  r h l  (P~P')  I} , l+ j ,  + M::' (pz, P.', q) [ 
E ~ ~ I - E P A + W ~ , T  

(I. 12) 

where 

M :/' and W:{' are real functions linked by the relationship 

w:;' +i~::'= CD::)A,,A,~*, (I. 14) 
8-1 

where 
m 

'I, 
s = q , ~ p z , ~ - q , 7 z ~  - w  (1.15) 

(I. 16) 

In the case of electrons traveling toward a plane defect 
(pZ = pZj 1, we have 

w 0) 
~ P ~ ~ ~ P ~ ~ = ~ P  (I. 17) 

The explicit forms of the functions M 1:) and W::' depend 
on the nature of the changes in the barrier potential V(z). 
For example, in the case of the S-function potential in the 
plane of a defect [ V(z) = h S ( z )  ] the matrix elements of 
Eqs. (1.15) and (1.16) are given by 

T' (p,) R (p,') + ( ~ z ' ) f i '  (Pz) 
-I- 

xqVT+i (pZ-pzf) 

0:;) (p*) 

I R 1 hSj + (TI (1-Slj) T'R6sjSR'T (1-6.j) 1 TR*GSj+RT* (1-6.j) I T 1 6.j-I- I R 1 '(I-ssj) 
' 

(I. 19) 

wherep, > 0 andp: > 0, and S,. is the Kronecker delta. 
Equations (I. 11) and (I.  17) for the Wigner function 

f r, which is identical with the semiclassical distribution 
function f, at distances 121 ,AB, K - from a defect, repre- 
sent the boundary condition which we require and which 
links the value off :is)- ,q for electrons traveling away from 
the boundary of a defect to the value f :{,Lz, for electrons trav- 
eling toward this boundary. 

APPENDIX 11. CALCULATION OFTHE INELASTIC 
COMPONENT OF THE CURRENT THROUGH A POINT- 
CONTACT JUNCTION 

The inelastic component I, of the current through a 
point-contact junction is governed by a correction f j,", due 
to the interaction of carriers with surface phonons, to the 
electron distribution function f A!' of Eq. (5): 
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Using the boundary condition of Eq. ( 1 ) to express the dis- 
tribution function of electrons scattered by a defect in terms 
of the distribution functions of carriers incident on the de- 
fect, we can rewrite Eq. (11.1) in the form 

Since the current on both sides of the defect is conserved, the 
integral 

is independent of the index j [see Eq. (I. 12) in the Appendix 
11. 

The correction fy' satisfies Eq. ( 2 )  with I,, = 0. Its 
solution, which is subject to the boundary condition ( 1 ), can 
be expressed in terms of the Green's function g;:!: 

. . 

The equation and boundary conditions which apply in the 
rEa case to gi:! are obtained by substituting Eq. (11.4) into 
Eqs. ( 1 ) and (2)  subject to the condition I, = 0. Then, sub- 
stituting Eq. (11.4) into Eq. (II.2) ,  we find that the current 
is described by 

2 

I.=-?- j d 2 p j d 3 p v z ~ * j ( p , p ) [ ~ ?  ( p ) + ~ .  (11.5) 
( 2 ~ ) ~  j-i 

The above equation contains a function defined as follows: 

G? (1) = .I d2p J d3p '~vZt0  (~.i.)g:!~ (p, r) . (11.6) 

The equation for G :*' can be obtained as follows. We multi- 
ply the transport equation for the function fg' by 
Dv:B(pk )g i c  (p,r), and integrate with respect top, p', r, and 

P : 
2 

a/!;) ): J 8 p  d3r 0 [ (-1)'z]d3p' dZp~u. '0  (pZj') g:!: (p, r)[ v a_ 
j- 1 

Transforming the terms containing the derivatives of the 
function f g' by integration by parts and by altering the or- 
der of integration with respect to the momentum in the term 
containing the elastic collision integral I, { f $'I, we obtain 

2 

Separating the first integral with respect to p in Eq. (11.7) 
into a sum of integrals with respect to the momentum of 
electrons traveling toward the boundary of a defect and 
away from it, we can easily show by application of the 

boundary condition ( 1) that if for r = p ~ o  the function 
GkJ' ( p )  satisfies the conditions 

then the first term in the braces of Eq. (11.7) vanishes. Since 
the remaining integral vanishes for any function f y', it fol- 
lows that Gi*' satisfies 

Far from the constriction in the junction the function GiJ' 
satisfies the obvious condition 

which is a consequence of the requirement of recovery of an 
equilibrium in the electron system in the banks of the junc- 
tion. 

Comparing the boundary-value problem of Eqs. 
(11.8)-(11.10) with the boundary-value problem for the 
probabilities a:" (see Sec. 1 ), we can establish the equality 

G:" (r, H) = a?: (r, -H) - 0 (2). (11.11) 

Substituting Eq. (11.1 1) into Eq. (11.5) for the current and 
allowing for Eq. (II.3) ,  we finally obtain 

2 

2e 
I. = --, j d2p jd3p a$ (p, -H)tY,(p, p) .  (11.12) 

(2n) ,=, p.0 

" Thecontributions to a point-contact spectrum representing the inelastic 
surface scattering of electrons on the boundary of a point-contact junc- 
tion was investigated earlier." 

2' The expression for K ,  (p,pl) can be obtained for a barrier of arbitrary 
shape [see Eq. (22) and therelationships (1.15) and (1.16) in the Ap- 
pendix I]. However, the analysis of a specific case can be carried out 
conveniently using the model ofa 6-function barrier, which is character- 
ized by the minimum number of parameters. 
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