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The information embodied in the amplitude of the stimulated nuclear spin echo with pulsed
gradients of the magnetic field of a particle moving in a random force field is discussed. The
motion of the particle is described by the Smoluchowski equation. An equation is derived for the
instantaneous diffusion coefficient D(¢) of a particle; this diffusion coefficient depends on the
time. The most informative characteristic of the interaction of the particle with the random
medium is shown to be the initial value of the time derivative of this diffusion coefficient:
[dD(z)/dt ],_,. This initial value is proportional to the dispersion of the random force between

the particle and the medium.

1.INTRODUCTION

The problem of a random walk in a medium with ran-
dom obstacles or, more generally, in the field of a random
potential arises in a natural way in many fields of physics.
Examples are the diffusion of molecules through porous me-
dia, the passage of molecules through the membranes of bio-
logical cells, and the diffusion of molecules in disperse solu-
tions (Refs. 1-6, for example).

One of the most important methods for experimentally
studying spatial movements of molecules is the stimulated
spin echo with a pulsed magnetic field gradient.”® That
method is also used fairly widely in research on spatially
varying heterogeneous media.® The quantity which is mea-
sured in this method is the so-called amplitude of the diffu-
sive damping.of the spin echo, which contains information
about spatial displacements of the molecules of interest. The
displacements depend on the particular way in which the
particle interacts with the random heterogeneous medium.
The spin-echo method could thus in principle be used to
study the characteristics of the random field.

To the best of our knowledge, there is no comprehensive
theory for this method in random media. The primary diffi-
culties are in constructing a detailed description of the self-
diffusion of a particle in a random force field. In papers
closely related to the spin-echo method, the heterogeneous
medium is usually treated as a system of “‘geometric’’ obsta-
cles. When that approach is taken, diffusion equations arise
in a natural way, and the heterogeneity of the medium is
reflected in the particular boundary conditions at the obsta-
cles. Not surprisingly, the only more or less meaningful re-
sults which have been found in this case are on highly sym-
metric (i.e., nonrandom) systems (see, for example, Refs. 6
and 10-13).

Another drawback of that approach is the complexity
of using boundary conditions to reflect the details of the in-
teraction of the particle with the random medium, e.g., sol-
vation effects and the depth of the surface layer in which the
particle interacts effectively with the obstacles.

In this paper we attempt to derive on a more general
basis a theory for the diffusion attenuation of the spin-echo
signal of a particle moving through a random force field and
to determine what type of information is embodied in the
amplitude of the diffusion attenuation.
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2. THE SMOLUCHOWSKI EQUATION; INSTANTANEOUS
DIFFUSION COEFFICIENT

We describe the obstacles by means of an effective ran-
dom potential U(r), which is induced by the heterogeneous
medium. Inside an obstacle we have U(r) — «, and outside
it U(r) - 0. At the boundaries of the obstacles, the potential
grows; in all cases of physical interest, this growth can be
assumed to be smooth. We assume that the random field
U(r) does not depend on the time, i.e., that the obstacles are
fairly massive in comparison with the molecules of interest,
so their motion can be ignored.

The probability density W(r, ) for displacements of a
molecule—the Green’s function—satisfies the Smolu-
chowski equation (Refs. 14 and 15, for example)

0 afa
—a£W(r,t)=DoE[_——-———-f(r)]W(r t), (1)

where D, is the self-diffusion coefficient of molecules in the
absence of obstacles, i.e., in the pure liquid,
f(r) = — dU(r)/ar is the force induced by the random po-
tential, ¢ is the time, and r is the radius vector of the mole-
cule.

Knowing the Green’s function, we can calculate in the
standard way the mean square displacement of a molecule
which starts from the point r = 0:

(rz(t)>,=jrzW(r, t)d'r. (2)
We define the instantaneous diffusion coefficient:

14d
D(t)—?-zt-'(r (t))t (3)

Using (1) and (2), changing the order of integration and
differentiation, we can put (3) in the form

5@ =2 r 22 -2 wesnar. 4)

Replacing the differential operator in (4) by its adjoint,
i.e., integrating by parts twice, we find the following expres-
sion for the instantaneous self-diffusion coefficient:

ﬁ(t)=D¢,(1-{- (rf(r))‘), (5)

3kT
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where
rf(r) ), = j rf(r) W(r,t)d’r

mean an average over the Green’s function.
Taking the limit of (5) as t— «, we find the self-diffu-
sion coefficient of the molecule in the random field:

1
ﬁ=Do(1+ 7 <rf(r)>,.), (6)

where (...) . =1lim,_ _ (...),. The second term in (6) de-
scribes the correction to the self-diffusion coefficient due to

the interaction with the random field. For random fields .

which are spatially uniform at the macroscopic level, i.e., for
fields with a finite correlation radius £, expression (6) is
independent of the choice of origin of coordinates. For fields
of more complex structure, solutions of the Smoluchowski
equation generally do no have a diffusive asymptotic behav-
ior, and expression (6) is a random function of the choice of
starting point of the particle.

WS also note that, although the expression for the coef-
ficient D actually is exceedingly simple in structure, an actu-
al calculation of this coefficient from (6) has serious math-
ematical problems. The basic difficulty is that the operations
of taking the limits #— « and ¥'— « (V'is the spatial volume
of the system) do not commute. These limits appear in
expression (6). The limit ¥— « should be taken first, and
then r— oo . Unfortunately, we are then unable to make use of
the well-known fact that the Green’s function tends in the
limit t— oo toward the equilibrium Boltzmann distribution.
The details of the process by which the equilibrium is estab-
lished turn out to be of fundamental importance, as can be
seen from the presence of a quantity in (6) which is singular
in thelimit ¥ — o, the radius vector of the particle. For fields
which are spatially uniform at the macroscopic level, the
equilibrium average, on the other hand, is identically zero:
(rf(r)),, =0. Itis thus natural to turn to an analysis of prop-
erties the motion which can at least in principle be calculated
exactly. A search for such properties is aided by the follow-
ing considerations.

The initial (¢ =0) value of the Green’s function is
known exactly: W(r, 0) = 6(r). By virtue of this one can
hope that any average over it can be taken all the way to a
numerical result. It is thus clear that the properties we need
must be average values of physical quantities which are non-
singular in the limit z—0.

The simplest nontrivial quantity of this sort is the rate
of change of the instantaneous diffusion coefficient,
db(t)/dt. It is useful, however, to slightly alter the defini-
tion of D(#) in (5) because D(¢), unlike its limiting value l~),
depends on the choice of origin or coordinates. At finite
times ¢ the Green’s function will always evolve in different
ways, depending on whether the starting point for the parti-
cleis a minimum or maximum of the potential U(r). We will
thus understand D(7) below as the quantity in (5) averaged
over all possible initial positions of the particle with an equi-
librium Boltzmann distribution. The angle brackets (...),
will now contain two integrations:

<rf(r)>,= jdaro W o (ro) rr'f(r)W(r', t)d°r, 7

where ' =r —r,, and W, (r,) is an equilibrium Boltz-
mann distribution w1thapotent1a1 U(r,). Using Eq. (1), we
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then find the following equation for the rate of change of the
instantaneous diffusion coefficient:

—D( )_m jd To Weq(20) j‘d’rr £(r) LW (r—r0,1), (8)

where ,’2\” is the differential Smoluchowski operator,

g..i[" f(r)]

or kT 1’

For convenience in the discussion below, we rewrite the
Green’s function W(r — ry, ?) in the form

W (r—ro, t)=5 (£)6(r—1,), 9)

where the evolution operator is j(t) =exp(D, 17 ).
Replacing the operators . and 5(¢) in (8) by their
adjoints, we find

2 p@=p e Waa [ seras 02w, (10

The validity of the following commutation relations for F
and the “coordinate operator” x_, is easily verified:
0

’
Za

- 1 -~
[Z°, 2. ]=2 +'k-77fa(r)—‘l’a- (11)

We expand the adjoint of the evolution operator, S* (1),
in (10) in a Taylor series. Then using the commutation rela-
tions (11) we “pull” the “coordinate operators” x; of the
particle through the operator product §*(¢) Z*. After inte-
gration over r, we find the following equation for the rate of
change of the instantaneous diffusion coefficient:

i[7(t)

=mjdro ,q(ro)Z (Dr‘;? Z, LR PP fu(10).
(12)

n=0

A repeated coordinate index implies summation.

Equation (10) contains a §-function, so the differential
operators in (12) depend on r, alone. We can thus replace
these operators by their adjoints again. Doing this, and as-
suming that the equilibrium distribution W, (r, ) belongs to
the kernel of the operator Zi e., Zw, ¢ (To) =0, we put
(12) in the form

——-D(t)—mjdsrfa(r)s(t)[ 2—+ fa(r)]W,q(r).
(13)

We now make use of

1 —U(r)
Weq(l‘)=—Z’BXp[ kT ]v (14)

where
. =U(r)
Z=jdrexp» T ]

is the partition function of the particle in the random field.
Substituting (14) into (13), we find

d d’r
2 DW=~ o [ @ s Ot ens |

=U(r)

o7 ] (15)
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The quantity

U(r) ]

1
f(t)E7S(t)f(r)exp[— T

may be interpreted as the force acting on the particle at the
time ¢ if a force f(r)=£(0) was acting at the time ¢ =0.
Equation (15) then has the very simple structure

2 b= D @t (16)

3(kT)?
The limiting value of the diffusion coefficient D can be
written as an integral of the autocorrelation function

(£(6)£(0)),:

D=Do( I E()1(0)>, dt) : (17)

3(kT)z

For the initial time # = O we have $(0) = 1, so the initial rate
of change of the diffusion coefficient is proportional to the
variance of the random force. A calculation of this variance
requires knowledge only of the equilibrium Boltzmann dis-
tribution:

d 2
—d—tﬁ(t)lt=o= F(2)Deq (18)

3(kT)2

3. DIFFUSIVE DAMPING OF A STIMULATED SPINECHO

In the method of the stimulated spin echo.(SSE), the
measured quantity, called the “amplitude of the diffusive
damping,” is the following dynamic correlation function of
the molecules of interest:

4= exof ~mg ] att0—nm1as} ). a9

Here g, 8, and ¢ are parameters which can be controlled ex-
perimentally; g is the magnitude of the pulsed magnetic-field
gradients along the z axis; & is the length of the gradient
pulses; ¢ is the duration of the “diffusion,” i.e., the time inter-
val between the first and second gradient pulses; ¥ is the
gyromagnetic ratio of the nuclei of the molecules; z, (7) is the
coordinate of molecule J at time 7; and the angle brackets
mean an average over all random trajectories of all mole-
cules.

In general, SSE experiments are carried out in such a
way that the inequality t> & always holds. One can thus ig-
nore the displacements of the nuclei of the molecules over
times of order 8 in comparison with displacements over the
“diffusion” time ¢. In such cases, expression (19), for the
amplitude of the diffusive damping, can be simplified:

A(g*, t)=<exp{~ivgb[z(¢)—2(0)]}>.

The amplitude in (20) is the same as the dynamic incoherent
Van Hove structure factor (Ref. 14, for example):

A (k2 1) =<e=),

(20)

(21)

This structure factor can be measured by neutron scattering.
In the SSE method, y8g is the analog of the wave vector k of
the neutron scattering.

Taking the time derivative of Eq. (21), and using Eq.
(1), we find
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—a———i—f(r)]W(r Hdr.  (22)

2 —ike
A(k =Dy J e —

Replacing the differential Smoluchowski operator in (22)
by its adjoint, we can put the equation for the dynamic struc-
ture factor in the form

d D, .
2y __. 2 2 + " s —'lkra /3 .
— A(R)= KDoA (K) +1— "k fW(r t) =174, (r) d°r. (23)

The first term in (23) describes the free diffusion of the mol-
ecules of a liquid, and the second describes the perturbation
of this motion caused by the random field. The presence of
this perturbation makes Eq. (23) an integral equation and
seriously complicates efforts to solve it. However, certain
general properties of the solution which are important to the
SSE method are amenable to analysis.
We seek solutions of Eq. (23) in the form

A(k*)y=exp[—a, (t) K*+a. () &+ . ], (24)

where the series coefficients , () and «, (¢) are unknown
functions of the time. The medium is assumed to be neutral
and, for simplicity, macroscopically isotropic. We can thus
restrict the series (24) to even powers of the wave vector, in
the simplest algebraic combinations.

We expand exp( — ik'r) in (24) in a Taylor series and
substitute (24) into Eq. (22). Comparing the coefficients of
the terms proportional to & *> and & ¢, we find the equations

iai(t)—ﬁ(t)—Do(H <rf(r))t), (25)

3kT
d D,

—a,(t)= {—((ef) (er)>, —<ri(r)> a, (t)}

26
at 3kT (20

where e is a unit vector which is collinear with the wave
vector k.

The quantity a, (¢) determines the initial slope of the
spin-echo amplitude which is measured experimentally,
In A(k?2). As can be seen from Eq. (25), this initial slope is
closely related to the mean square displacement of a particle
during the experiment:

G (t)>r= 6§ D(2) dt=60s,(2). (27)

Experiments generally use not the quantity a, (¢) itself but a
quantity which is closely related to it, by

o (£)=D" (). (28)

The “effective self-diffusion coefficient” D *(¢) is related in
the obvious way to the instantaneous self-diffusion coeffi-
cient D(¢):

D (t)=

0

iift—zj(r). (29)

The quantity a, (#) determines the initial deviation of
the quantity In 4(k?), measured experimentally, from a
straight line. It can be seen from Eq. (26) that early in the
process, at times 6D, 1 <& 2 where £ is the correlation radius
of the random field, we have

d
llm - Q2 (t) = 0.
>0
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After a sufficiently long time, 6D( w0 )t> &2, on the other
hand, the solutions of Eq. (1) reach the diffusive asymptotic
behavior. The distribution of spatial positions of a particle
thus tends toward a normal distribution. By virtue of the
Wick theorem for quantities with a normal distribution,
however, we then have

{(ef) (er)®>,—3< (ef) (er) >, < (er)?>,=<xf(r) > {(er)?,,

and thus

d
limjtocz(t) =0

t—>c0

in comparison with quantities on the order of z. We thus find
az(t)zoa t«g’/DOv
a:(t)t72~0, t>E/D.

(30)

Experiments by the SSE method are carried out in such
a way that the condition 8’ = const holds. Since k = y8g, it
follows from (30) that the diffusive damping tends toward
an exponential behavior with an effective diffusion coeffi-
cient D *(t) at early times and at late times.

The initial rate of change of the effective coefficient
D *(t) is related in a simple way to the initial rate of change
of the instantaneous diffusion coefficient D *(¢), as can be
seen from the definition (29):

d . 1d Dy
Dlimo=- 6 (kT)*

P (r)deq. (31)

aPl-=5g

4.DISCUSSION OF RESULTS

Experimental studies of the interaction of molecules
with heterogeneous media by the method of the diffusive
damping of the spin echo (see the review of this work in Ref.
6) have focused primarily on measuring the effective diffu-
sion coefficient D *(¢) and then interpreting it in some way
or other. The expressions derived in the present paper for
D *(¢) and for the related quantity D(¢) [see (5), (6), (16),
and (18)] are distinguished by their exceptionally simple
physical meaning. However, some formidable mathematical
difficulties lurk in the operation (...),, i.e., the operation of
taking an average with the exact Green’s function of Smolu-
chowski equation (1). These difficulties are serious impedi-
ments to calculations of D *(¢) and b(t) and thus to a reli-
able interpretation.

We first see from (17) and (31) that the initial rates of
change of the instantaneous and effective diffusion coeffi-
cients [dD(t)/dt),_, and [dD *(¢)/dt ],_, are directly re-
lated to the nature of the interaction of the molecules with
the random medium. A point of even greater importance for
a theoretical interpretation is that these rates of change con-
tain only the operation of taking an average with the equilib-
rium distribution function. Second, fairly general consider-
ations show that the initial rate of change [dD(#)/dt ],_, is
in principle more informative than the limiting value D( « ).
_ The limiting value of the self-diffusion coefficient
D( ) contains information about a huge number of colli-
sions of the molecule of interest with various centers of the
random field U(r). The information about it is thus aver-
aged out to a great extent. The initial value of the derivative,
[dD(t)/dt ], _,, contains mostly information about the first
encounter of the molecule with a force center; this informa-
tion is “fresher’” and “has suffered less erosion.”
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For greater clarity we consider the situation in which
the random field is induced by a system of randomly posi-
tioned geometric obstacles. Approximate calculations show
(see, for example, Refs. 2, 3, 5, and 6) that the limiting value
of the diffusion coefficient, 1~)( ), is a function exclusively
of the volume fraction of obstacles; it does not depend on
even the dimensions of these obstacles. The quantity
(f*(r)).,, on the other hand, which appears in (18) and
(31), is considerably more informative. For example, omit-
ting the elementary but fairly lengthy calculations involved,
we write the result for a system of geometric spheres scat-
tered randomly in space [ these spheres have a radius 7, and a
volume concentration @; they repel the liquid molecules
with a potential U(r) =¢/|r — r,|" at r>r,, where € is an
energy parameter of the interaction]:

(¥7)* @

are 1—9

<f2(r)>,q=3nI‘(2+—:z—) (32)
The quantity @, = (¢/kT) /" &r, may be thought of as the
depth of a surface layer; I" (x) is the gamma function.

Expression (32) shows that the quantity { f2(r) ) eq TE-
flects the details of the interaction of the molecule with the
random field, at least for random fields induced by certain
geometric obstacles, e.g., a porous medium or a system of
protein molecules. It thus seems to us that the initial rate of
change of the diffusion coefficient, [dl~)(t) /dt ],_o,isamat-
ter of primary concern in spin-echo experiments on hetero-
geneous media.

We would like to point out another aspect of (32): In
the limit n— oo we have (f*(r)),— e and thus
dD(t)/dt— o at t = 0. The reason is that Smoluchowski
equation (1) is itself inapplicable to fields which vary rapid-
ly in space, since (for example) it ignores the relaxation in
terms of the momentum distribution. A corresponding
modification of the analysis is required for such situations.
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