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The propagation of electromagnetic waves in a plasma may be nonlinear if a mechanism operates 
to make the charge-carrier distribution function nonanalytic (i.e., if this function acquires 
discontinuous derivatives). A nonlinear wave equation is derived for the propagation of an 
electromagnetic wave in a semiconductor in a strong static electric field. This strong field 
stimulates spontaneous emission of optical phonons by electrons. As a result, the electron 
distribution function becomes nonanalytic at a certain set of points corresponding to energies 
which are multiples of the energy of these optical phonons. This result in turn causes a nonlinear 
response to a high-frequency electric field and, correspondingly, a nonlinear behavior of a wave. 
The creation and propagation of dark envelope solitons of an electromagnetic wave in a 
semiconductor are described. 

1. INTRODUCTION 

Such effects as modulational instability, self-focusing, 
and second-harmonic generation are quite familiar in media 
in which the electric displacement is a nonlinear function of 
the electric field strength.' This nonlinearity mechanism 
might be called the "dielectric" mechanism. In a conducting 
medium, yet another nonlinearity mechanism can operate: a 
"current" mechanism. That this is true can be seen easily 
from the equation describing the propagation of an electro- 
magnetic wave in a plasma: 

wherek is the electric field, J is the current density, and E, is 
the static dielectric constant of the medium. If the current J 
in the system is a nonlinear function of the field E, the behav- 
ior of an electromagnetic wave is n~nlinear.'.~ 

In this paper we examine the current mechanism for the 
nonlinear propagation of electromagnetic waves in a semi- 
conductor. We will see that the current may become a non- 
linear function of the field as a result of nonanalyticity of the 
nonequilibrium steady-state electron distribution function. 
This result applies to any plasma. The choice of a semicon- 
ductor specifies the nature of the nonanalyticity of the distri- 
bution function. In the case considered here, the nonanalyti- 
city stems from spontaneous emission of optical phonons by 
electrons in a static electric field. 

The kinetic equation for an electron gas in static and 
high-frequency electric fields is solved in the high-frequency 
limit in Sec. 2. The electron distribution function is found 
and then used to calculate the current density J. The right 
side of Eq. ( 1 ) is calculated in Sec. 3 for the case in which the 
semiconductor is in a static electric field and a quantizing 
magnetic field parallel to it. The quantizing magnetic field, 
which is not of fundamental importance to the analysis, is 
introduced partly to simplify the ca@ulations. Another rea- 
son is that conditions corresponding to high-energy electron 
runaway and spontaneous emission of optical phonons by 
electrons4 are more favorable for shaping an electron distri- 
bution function with a discontinuous derivative near the en- 
ergy of an optical phonon. A nonlinear Schrodinger equa- 

tion is constructed for the slowly varying field amplitude E 
in Sec. 4. In this equation, the signs of the dispersive and 
nonlinear terms correspond to repulsion of the particles of a 
Bose gas or defocusing. In this case, dark  soliton^^,^ (see also 
Ref. 7 ) ,  i.e., regions from which the electromagnetic field 
has been displaced (a  condensate), can propagate through 
the medium. The creation and propagation of solitons is ana- 
lyzed in Sec. 5 by the inverse scattering m e t h ~ d . ~  In Sec. 6 
we discuss the conditions which would be required for ex- 
perimental observation of envelope solitons of an electro- 
magnetic wave in a semiconductor. 

2. KINETIC EQUATION 

Let us examine the ordinary kinetic equation for elec- 
trons with an isotropic parabolic energy spectrum 
E~ = p2/(2m) in a static field E, and an oscillatory field E. 
The electrons are interacting with scatterers. We write this 
equation in the form 

where v, = &,/dp, and j is the collision integral. In the 
absence of the oscillatory field E, we describe the spatially 
uniform steady state set up by the static field Eo by the distri- 
bution function fo (p). We restrict the discussion to the high- 
frequency limit, in which the conditions 

hold. Here k and w determine the spatial and time scales of 
the system, P=mZ is the average electron momentum, and 
Y, is the highest of the rates at which charge carriers collide 
with the scatterers. We also assume that the field E is turned 
on adiabatically, so that at t = - we have E = 0 and 
f = fo (p).  In lowest order in the small par%meters deter- 
mined by the inequalities (4) ,  we then have L = d/dt, and 
the solution of Eq. (2) under the initial conditions is 
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It is important to note that the form of the solution (5)  pre- 
supposes that the functionf, (p)  is real and analytic, as can 
be seen clearly from the second equality in (5) ,  since the 
displacement operator 

is defined for analytic functions. In other words, the Taylor 
series 

must converge. For piecewise-analytic functions, the valid- 
ity of ( 5 )  and (6)  is thus disrupted near points in momen- 
tum space at which the derivatives of the functionf, (p)  are 
discontinuous. Discontinuous functions of this sort are the 
subject of the present paper. 

If the functionf, (p)  is analytic everywhere, we easily 
find a well-known result for the right side of Eq. ( 1 ): 

where w, = (4?re2n/&,m) is the plasma frequency, and 
the carrier density is a constant (n = const). In other words, 
Eq. ( 1 ) describes a linear propagation of high-frequency 
waves in the plasma in this case. If, on the other hand, the 
function f, (p)  is nonanalytic at a certain set of points in 
momentum space, then Eq. (7)  does not hold, since the sub- 
stitution 

t 

cannot be made throughout space in the equation for the 
current, and the wave equation ( 1 ) becomes nonlinear. This 
conclusion is valid for any plasma, but a special analysis of 
the nonanalyticity of the distribution function f, (p)  will 
have to be carried out in each specific case. The simplest 
examples of a nonanalyticity are corners in the distribution 
function (discontinuities in its first derivatives at a certain 
set of points in momentum space). Substitution of the distri- 
bution function f as in series (6)  into the ex~ression 

for the current dknsity ( Vis the volume of the system), in the 
region in which the function f, (p)  is analytic, shows that 
discontinuities in the derivatives of the steady-state distribu- 
tion function lead to nonzero terms which are nonlinear in 
the field E. The lowest degree of nonlinearity is determined 
by the number of continuous derivatives off, (p)  . One might 
say that the electromagnetic field determines the smooth- 
ness of the electron distribution function. The discontinui- 
ties in the derivatives should be finite (more precisely, the 
corresponding integrals should converge). If the field E is 
not very strong, 

and we assume below that this is the case, writing f as a series 

makes it possible to calculate the current in the necessary 
order in the small parameter determined by condition (9) .  

To again call attention to the smoothness properties of 
the functionf, (p) ,  we will outline an iterative procedure for 
solving the kinetic equation (2)  in the form of a series 

in which f, is given by the following expression in the situa- 
tion described above: 

t t,, 

This procedure may be thought of as a method for construct- 
ing both an exact solution, (5),  and an approximate one, 
under condition (9) .  In addition, each iteration presupposes 
explicit account of the differentiability properties of the 
function f, (p)  in the calculation of the current density J. 

3. NONLINEAR WAVE EQUATION IN A SEMICONDUCTOR 

We turn now to a specific system in which an electro- 
magnetic wave exhibits nonlinear behavior as a result of non- 
analyticity of the steady-state electron distribution function. 
One such system is a semiconductor in a strong static electric 
field, which is susceptible to spontaneous emission of optical 
phonons by electrons and thus gives rise to abrupt changes in 
slope (corners) on the electron energy distribution, at points 
corresponding to energies which are multiples of the energy 
of optical phonons.4.8-'0 

To simplify the problem and to arrange conditions 
more favorable for the onset of this nonlinearity, we consider 
a semiconductor in an electric field E, and a quantizing 
magnetic field H parallel to the electric field. We assume 
that the electrons are scattered by acoustic and nonpolar 
optical phonons. If the electric field is strong, the steady- 
state electron distribution function will be very far from 
equilibrium, because two competing mechanisms will deter- 
mine the behavior of the electrons: a high-energy electron 
runaway and a spontaneous emission of optical phonons by 
 electron^.^.^ The spontaneous emission of phonons prevents 
the electrons from reaching high energies, as they would in a 
quantizing magnetic field (because the electron spectrum is 
one-dimensional) if the electron scattering were quasielas- 
tic. As a result, sharp changes in slope appear on the distri- 
bution Inoue et a1.I0 have experimentally ob- 
served an electron energy distribution with a corner near the 
energy of an optical phonon in the absence of a magnetic 
field; they also studied it numerically, by the Monte Carlo 
method. 

Below we consider the propagation of a high-frequency 
transverse wave E which is polarized linearly along the fields 
E, and H. We assume that the electrons occupy only the 
zeroth Landau level (this is the quantum limit). We also 
assume w, > w,,,, where w, is the cyclotron frequency, and 
w,, is the frequency of longitudinal optical phonons. Under 
theseconditions the kinetic equation has the form of Eq. (2),  
and the corresponding distribution function has the form 
( 5 ) ,  with E = {0, 0, E )  and p = {0, O,p,} (since the motion 
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of an electron along the quantizing magnetic field is one- 
dimensional). In the case at hand, the quantizing magnetic 
field is manifested only in the coefficients of the expansion of 
dJ,/dt in powers of E. 

The steady-state distribution function f(p, ) was de- 
rived in the quantum limit in Ref. 4 without consideration of 
the dispersion of optical phonons. As a result, infinite dis- 
continuities occurred in the derivatives of the function f(p, ) 

at the points corresponding to the emission of optical phon- 
ons (see also Ref. 9 ) . When dispersion is incorporated, the 
discontinuities in the derivatives become finite. The distribu- 
tion function f(p, ) is derived in the Appendix for the case in 
which the frequency of an optical phonon is 

where q and m, are the wave vector and "mass" of the 
phonon. That derivation is carried out for strong fields E,, 
whose strength satisfies the condition4 

here 2 is the average energy of an electron, u, is the sound 
velocity, I is the magnetic length, and I,, is the mean free 
path of an electron with respect to scattering by longitudinal 
acoustic phonons at H = 0. The distribution function is 

wherepo2r 2mfiiS,, and Go = wo ( 1 - m/m, ( d m ,  -4 1 ). 
The quantity Go is the energy at which an electron becomes 
capable of emitting an optical phonon. The function ( 14) is 
continuous at the points + p,,  but its derivatives are discon- 
tinuous; as a result, the behavior of an electromagnetic wave 
is nonlinear. 

As we mentioned earlier, we assume that the strength of 
the field E is limited by the inequality (9).  Expanding 
dJ,/at in E, and retaining terms of up to third order, we find 
a wave equation for a linearly polarized wave E(r,  t ) :  

whereg(~)  is the density of states at the zeroth Landau level, 
P(E) and q,(p, ) are the parts of the function f(p, ) which are 
respectively even and odd in p,, and the prime means differ- 
entiation with respect to the argument. For Ip, 1 >po,  the 
functions F and q, vary more rapidly than they do for 
Ip, I <po, so the conditions a, p >  0 hold. In the case of a 
strong field Eo [see ( 13) and the Appendix], we find the 
following expressions for a and P: 

270; a=- a7 'p=- 
bb, ' 2 ' 

where -- 

n'" 1 e 1 i.1 EOP p=. 
ti21-2 

Y E  Eo ' 8 d = - ( 1 - E ) .  me (19) 
The energy E, in ( 18) and ( 19) is related to the dispersion of 

the optical phonons (E, 4 E 0  ). The field Eop is an upper 
limit on the external fields Eo (p2$ 1 ) at which the quantum 
limit holds. In addition, b and b, are - 1 (these quantities 
are defined in the Appendix). The derivation of expressions 
( 18) allowed for the circumstance that for Eo > E, the quan- 
tities a and p are determined primarily by the derivatives of 
f2, ( q , 1 ( ~ ~ ) 1 % 1 q , ; ( p ~ ) l  and F ; ( G o ) % F ; ' ( G o ) ,  in ac- 
cordance with the inequalities E, "2Z 2/ijo 5'2 9 1 and 
E,/Z, 4 1, respectively, (Zr,Eh/Eo ). 

4. EQUATION FOR THE ENVELOPE 

The standard way to solve nonlinear wave equations 
like ( 15) is to write the wave in terms of a rapidly oscillating 
carrier and a slowly varying envelope (the spatial and tem- 
poral scales of the envelope are considerably larger than 
those of the carrier). The method of multiscale expansion is 
used to represent the wave in this manner." In accordance 
with that method, we introduce slow variables T, = ~ " t  and 
R, = znr, where r = {x, y, z), R, = {X,,Y,,Z,) and ~ - 4  1, 
and we expand the field E(r ,  t )  in a power series in E: 

Assuming that T, and R, are independent variables, we 
substitute expansion (20) into Eq. ( 15). Equating terms of a 
common order in E, we then obtain a system of linear equa- 
tions for En.  We assume that the rapid variations of the wave 
occur only along the x axis. We can then write E, in the 
following form [the equation for El is of the form ( 15), with 
vanishing right side] : 

E,=A (R , ,  T , ,  . . .) ei"+c.c., (21) 

where A is a slowly varying complex amplitude, 
i? = kx - wt, w2 = wp2 + C: k ', cm2 = c ~ / E ~ ,  and C.C. means 
the complex conjugate. Substituting (21) into the E~ equa- 
tion, we find that secular terms (i.e., terms which grow as 
t+  C.O ) appear in this equation. Requiring that there be no 
secular term, we find an equation for A: 

where u, = 6'w/ak = c, 2k /w is the group velocity. From 
Eq. (22) we find 

where X = XI - u, T, . Now substituting (21 ) into the 
equation, using (23),  and again requiring that the secular 
terms be removed, we find our final equation for the slow 
dimensionless amplitude $ = A /Ed : 

Here v: = du,/dk > 0, R > 0, and 

where Ed and fl are a characteristic electric field and a char- 
acteristic frequency. The first term in the expression for R 
corresponds to the term in ( 15) which is cubic in E, and the 
second to that which is quadratic (2/3bb, < 1 ). We also note 
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that the integrals of exp{ + iwt) in ( 15) are to be understood 
in the sense 

t 

lim dr exp{+ior+lr). 
6+0-, 

quantity 2 = $f - A characterizes the amplitude of the so- 
liton, and the parameter A is an eigenvalue of the equation 

where 

Using the substitutions T2 = T, and X2 = C2 + vgr2, 
we can eliminate the variable X2 from Eq. (24). It is also 
convenient to introduce the dimensionless variables 
T=T2Or g = X / L ,  v =  Yl/L, and C=Z,/L,,  where 
L = vg2/2fl and L12 = vg/2kfl. As a result, the nonlinear 
Schrodinger equation (24) becomes 

for $ = $ I , = ,  (Ref. 12). If $ I , = ,  is given by (27), it is a 
simple matter to show that we have 

where a = 1 and A, = '/6'v2 + 6' 2/6'C 2. In the one-dimen- 
sional case [$ = $(<, T) 1, the signs of the dispersive and 
nonlinear terms in (25) correspond to stability of a mono- 
chromatic wave with respect to self-modulation or to the 
absence of envelope solitions for the most common bound- 
ary conditions: $-+0 as {-+ + w . For -+const, however, 
solitons exist in the ordinary sense in the limits 6- f m 

(i.e., they have a finite energy, they recover their shape after 
an interaction, etc. ) .697 

where = (A - $02)1'2 , PO = A - C 0  and 
pc = (A + iv) /$ , .  Joining the function g, at the points 
6 = f So, we find an equation for A: 

p o 2  = exp (4ivti0). 
1-,0,,(2--,c) 

5. CREATION AND PROPAGATION OF SOLITONS 

We rewrite Eq. (25) for the one-dimensional case 
($=A/E,),  

In the case IC., = 0 (Ref. 6), this equation takes the simpler 
form 

and we impose the initial conditions According to (38), under the condition So = (a/L)$l ,  
about N = G,/IT pairs of solitons are created. In the case 
So < 1, we have one pair of solitons: 

where a =  1, So=a/L, $o=Ao/E,,, $,=AC/Ed, and 
< $,. Conditions (27) constitute a dark pulse of 

length 2a in a coordinate system which is moving at the 
group velocity of the monochromatic wave, v,. Since T and 6 
are slow variables, the length 2a and the duration of the dark 
pulse, T, = 2a/vg, must be greater than the length 
A, = 2r/k and the period Tc = 21~/w, respectively, of the 
monochromatic wave (2a)A, and T, ) T, ) . In a spatial in- 
terpretation of the variable T, Eq. (26) with conditions (27) 
for $o = 0 describes a steady-state diffraction by a band in a 
nonlinear defocusing m e d i ~ m . ~  

Equation (26) was studied in detail in Refs. 6 and 7 for 
the case a> 0 by the inverse scattering method, so we will 
restrict the discussion here to some points concerning the 
experimental situation to which the initial conditions (27) 
correspond. We write the one-soliton solution of Eq. (26) 
with the boundary conditions I $ (  -+ $, as 6- + m : 

Their velocities (v,. = U j ,  j = 1,2) are close to the limit, 
while their amplitudes are small (in the limit So -0 we have 
Iv,.(-+2$,, and vj-+O). 

6. DISCUSSION AND ESTIMATES 

We have found a mechanism which makes the current a 
nonlinear function of a high-frequency electric field [see 
condition (4)  1 ,  and we have derived a nonlinear wave equa- 
tion for a semiconductor in a static electric field and a quan- 
tizing magnetic field parallel to the electric field. A slightly 
different nonlinearity mechanism was proposed in Refs. 2 
and 3, where a study was made of the propagation of electro- 
magnetic waves in a medium with a model elastic-collision 
operator: v(v2) = 0 for v2 < 0; and v(v2) = w for v2 > v;, 
where v is the velocity of an electron, and vo is a velocity 
which determines the differences in the nature of the colli- 
sions for high- and low-energy electrons.13 In that model, 
the distribution function is found to be Ma~well ian~~'  for 
v2 > u;, and those terms in the expression for the current 
which are nonlinear in the field arise essentially because of 
the limitation imposed on the range of integration by the 
quantity vo . 

It was suggested in Refs. 2 and 3 that this model applies 
to electrons in gases which exhibit a strong Ramsauer effect, 
as was assumed in Ref. 13, where this collisional model was 
proposed for studying echo effects in plasmas. It can be seen 

sin 4 So h 
0 (8) = arcsin 

1$(0)([1+ exp(20)l ' 

Here v, = U is the velocity of the solition ( V, = Au, 
u = 2Ln),  6, is the position of the center of the soliton at 
T = 0 (Xc = l c L ) ,  L, = L /v is the size of the soliton, the 
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from the experimental dependence v(v2) given in Ref. 13 
that the choice of v, is exceedingly arbitrary and that the 
v(v2) model could hardly apply in cases in which derivatives 
of the distribution function play an important role [in Ref. 
13, for example, v, was chosen in a region in which the func- 
tion v(u2) increases monotonically with increasing v] . 

It is also important to note here that the sign of the 
nonlinear terms in wave equation (15) [and, in particular, 
the sign of a. in Eq. (26) ] is determined by the sign of the 
difference between the derivatives of the distribution func- 
tion to the left and right of the point at which they are discon- 
tinuous [see (15)-(17) 1. It  is clear, for example, that the 
nature of the nonlinear behavior of the wave in the nonlinear 
Schrodinger equation (26) depends strongly on the sign of a 
(a<Oin  Ref. 3). 

In the preceding section we discussed the one-dimen- 
sional nonlinear Schrodinger equation, so the stability of the 
solitons with respect to transverse perturbations remained 
an open question. We simply note that this problem was tak- 
en up in Ref. 14 for Eq. (25) in the case a < 0, but the case 
a > 0 requires separate study. 

The results of this study are of interest from the stand- 
point of nonequilibrium kinetics and also from the stand- 
point of the nonlinear optics of semiconductors. The wave 
equation ( 15) (and the corresponding envelope solitons) 
constitute only one example of a nonlinear behavior of an 
electromagnetic wave. As other examples we might cite non- 
linear diffraction and higher-harmonic generation. 

To get an idea of the conditions under which one might 
observe nonlinear propagation of electromagnetic waves in a 
semiconductor, we consider some estimates based on the fol- 
lowing parameter values (which correspond to InSb) of the 
semiconductor: m = 0.017me, h, = 2.4. l o p 3  eV, 
m, = 104m, n = 1016 cmP3, and E, = 16, where me is the 
mass of a free electron, and m, -h,/u;.  We take the fre- 
quency and the wavelength in vacuum to be w, = 1.74. 1013 
rad/s and A, = 10.81 pm, respectively (a  CO, laser); we 
assume a magnetic field H = 100 Oe (for InSb, strong-quan- 
tization conditions hold at H >  20 kOe); we take the static 
electric field E, to have a strength such that the condition 
p = 5 holds [E, 4 Eo 4 E,, ; for polar scattering we would 
have (Ref. 9) E,, - 500 V/cm]; and we assume T = 20-80 
K. The typical parameter values of this system are then 
0, = 1.54. 1013 rad/s, w, = 2.8w0, 1 = 8.12- 10V7 cm, 
Eh-1 V/cm [see (13)], bb, =3.4 (E, = 100 V/cm), 
E, =2 .8 -10 -4h0 ,  Ed = 1.4 kV/cm, ln=3.1012 s- ' ,  
L = 2. 10W5 cm, v, zc,,  and u = 1.2- lo8 cm/s. For a dark 
pulse as in (27) (JI, = 0 )  of duration .r, = 10 ps 
(2a = 7.5. l o p 3  cm), about 250 pairs of solitons would be 
produced [ N z 4 a / ( ? ~ L )  1. 

It can be seen from Eq. (38) that small values of A /$, 
correspond to low-velocity solitons and that their velocities 
are determined approximately by the zeros of the left side of 
(38). We find a smallest wavelength lA I =A,,, z $,/N, for 
the solitons, while their lowest velocity is 
V,,, = A,,,uz5- lo5 cm/s for JIc = 1 (JI, =A,/Ed).  Final- 
ly, we note that the number of pairs of solitons, N, and their 
velocities Vi = A, u ( i  = 1, 2, ..., 2N) can vary over wide 
ranges, depending on the values of L, ln, and JI,, which in 
turn depend on the parameters of the semiconductor and of 
the external fields. 

APPENDIX 

The electron distribution function was derived in Ref. 4 
for a semiconductor in an electric field E, and a quantizing 
magnetic field H parallel to the electric field for the case in 
which the electrons were scattered by acoustic and nonpolar 
optical phonons. In this Appendix, we incorporate the dis- 
persion of optical phonons [their frequency is given by 
(12)l.  Dispersion must be taken into account so that the 
discontinuities in the derivatives of the distribution function 
f(p, at those points in momentum space at which optical 
phonons are emitted will remain finite. In this situation, the 
phonon dispersion makes a negligible contribution to the 
electrical conductivity4 and also to the linear response and 
to current fluctuations,15 since the corresponding integrals 
converge and the relative number of electrons with an energy 
above that of an optical phonon is small. 

As in Ref. 4, we distinguish two regions of electron en- 
ergies: ( 1 ) E < h,, and (2) &>h,,. We are assuming here 
that scattering by acoustic phonons dominates in the first 
region, and scattering by optical phonons in the second. If 
a,, = w,, derivatives of the distribution function do not ex- 
ist in the limit E-+&, + 0. TO make the discontinuities in 
the derivatives finite, it is sufficient to incorporate the dis- 
persion of the optical phonons in a 8-function describing 
energy conservation in the collision integral representing the 
collisions of electrons with optical phonons, for the term 
responsible for the transition of an electron with energy E out 
of the second region. The kinetic equation for ~ > h k , ,  be- 
comes 

-- ' '(pa) - p - er [ i-@ (rail) l f ( p , ) .  
' P *  Pd 

Here @(x) is the error function, 

hoe 2ntispoo 
Eop = - , LOP = - 

1.IL.P ' 
p is the density of the crystal, D, is the constant of the inter- 
action of electrons with nonpolar optical phonons, K is the 
reciprocal-lattice constant, and @ (x)  -+ 1 as x -+ cc and 
@(x)  - + 2 ~ / 7 ~ ' / ~  asx-0. Atp, > p , ,  Eq. (A1 ) has a growing 
solution. Since electrons are moved out of this region by the 
field E, , we assume f(p, ) = 0 at p, >po . For p, < - p, we 
have 

where the constant f( - p, ) is found from the condition that 
the function f(p,) be continuous at the point p, = -p, 
(Ref. 4),  and Cd can be found by joining (A2) and (A3) 
[ C, z exp ( - T'/~,LL) 1. If the phonon dispersion is ignored, 
expression (A3) is an exact solution of Eq. ( A l )  (Ref. 9). 
The function (A3) must fall off fairly rapidly with increas- 
ing E if we are to restrict the discussion to the quantum limit. 
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To satisfy this requirement, we impose the following in- 
equality, which places an upper limit on the field Eo : 

We also write the function f(p, ) --F(E) + p(p, ) in the 
region Ip, I <po for the case of a strong field Eo (Ref. 4) : 

Here Cis a normalization constant, 

Eac 
fj=- 

fio. ni ' i 'p~ ,~  E., = --- lac = - 
Eo ' 4 1 e 1 lac m 2 E D T  ' 

T is the lattice temperature, g ( ~ )  is the density of states at 
the zeroth Landau level, ED is the strain-energy constant, 
and u, is the sound velocity. The region of strong fields E, is 
determined by the inequality ( 13) or 

We have also noted that the function F(w) falls off fairly 
rapidly in the second region, over a distance E,  = G,/p2, 
and that the contribution of the region E > G to the normali- 
zation is small. The distribution function f(p,), given by 
(A2), (A3), (A5), and (A6), makes it possible (in particu- 
lar) to derive expressions ( 18) for the coefficients a andP in 
wave equation ( 15 ) . 

We conclude this Appendix with a brief discussion of 
the analytic properties of the electron distribution function. 
As we mentioned earlier, the interaction of electrons with 
dispersionless optical phonons gives rise to a corner on the 
distribution function and to infinite discontinuities in its de- 
rivatives for E = %oo (Refs. 4 and 9). There is accordingly 
the question of the extent to which the physical system will 

actually exhibit this new property of the solution of the ki- 
netic equation. In other words, how would the corner be 
affected by an additional account of collisional, quantum, 
etc., effects? 

It is clearly difficult to answer this question fully, so we 
will point out two specific mechanisms which affect the na- 
ture of  the corner. One of them-the dispersion of optical 
phonons-was described above. The other is the collisional 
broadening associated with a scattering of electrons by 
acoustic phonons. This broadening was discussed in Ref. 16 
in a study of the energy distribution of photoexcited elec- 
trons in a quantizing magnetic field. While the two mecha- 
nisms differ in essential ways, they act in the same direction: 
They lower the energy at which the emission of an optical 
phonon becomes possible (in the case at hand, wo +Go ), and 
they reduce the size of the discontinuity in the derivatives of 
the distribution function. On the other hand, there is no 
qualitative change in the nature of the discontinuity (the 
corner is simply "renormalized"). These two examples of 
course do not exhaust the topic, but their analysis suggests 
that the existence of a "nonanalytic" mechanism will not be 
qualitatively affected (neutralized) by other, "analytic" 
mechanisms. 
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