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Discussed below are the results of a numerical solution of a system of abbreviated Slonczewski 
equations which describe the dynamics of interacting clusters of vertical Bloch lines in an isolated 
domain wall in a film of a uniaxial ferromagnet of high perpendicular anisotropy. It is shown that, 
depending on the relationship between the parameters, when the clusters collide, they can 
annihilate each other or create new ones. The clusters are also observed to pass through each other 
without distorting their shape ( solitonlike traversal). 

INTRODUCTION 

Relatively simple mathematical models have always at- 
tracted the attention of theoreticians, since they permit a 
detailed understanding of the basic mechanisms of compli- 
cated phenomena. At the present time, active use of numeri- 
cal experiments makes it possible to consider as basic (very 
simple) models even some that until recently were not in- 
cluded among traditional ones. 

This paper gives a discussion of the results of a numeri- 
cal analysis of a system of truncated Slonczewski equa- 
t i on~ , ' . ~  a mathematical model describing the dynamics of 
an isolated domain wall (DW) in films of a uniaxial ferro- 
magnet of high transverse anisotropy (so-called CMD mate- 
rials). It was found that this model, on the one hand, leads to 
conclusions consistent (not only qualitatively, but often 
quantitatively as well) with the results of physical experi- 
men t~ , "~  and on the other hand, is a generator of new soli- 
tonlike solutions whose behavior depends appreciably on the 
relationship of the parameters of the model. 

Interest in the dynamics of vertical Bloch lines 
(VBL)-a 1-D boundary between DW subdomains having 
opposite polarization-began to increase after Konishi's7 
constructive proposal to use a pair of VBL instead of cylin- 
drical magnetic walls (CMD) as the carrier of information 
on magnetic memory systems. 

As is well known, monopolar VBL have a tendency to 
collect into clusters.' According to theory, a static cluster 
produces a very slight distortion of the DW,2 and it is only 
during motion along the boundary that the cluster can pro- 
duce a visually observable distortion of the DW, whose dis- 
placement can be used to follow the displacement of the clus- 
ter. The velocity of the cluster and the magnitude of the 
accompanying deflection of the DW depend on the number 
of VBL it contains.334 Methods of high-velocity photogra- 
phy make it possible to observe the interaction of different 
clusters when they counterstream or move  together.'^^.^ 

TRUNCATED SLONCZEWSKI EQUATIONS ALLOWING FOR A 
NONLOCAL MAGNETOSTATIC INTERACTION OF VBL 

A theoretical discussion of VBL in a CMD film is based 
on the truncated Slonczewski equations, derived by averag- 
ing the complete equations in film thickness h, assuming a 
slight twisting of the DW (a  small change in azimuthal angle 
with film thickness). A correct allowance for the magnetos- 
tatic interaction of VBL within a cluster and between the 
clusters makes it necessary to keep in the equations the non- 

local term Hz1 characterizing the magnetic field component 
along the DW, due to a nonuniform distribution in azi- 
muthal angle p. In dimensionless variables, the equations 
are2 

Here x and q(x,t) are the coordinate along the DW and the 
amount by which the DW deviates from the equilibrium po- 
sition y = 0, both normalized to the characteristic length of 
the magnetic material; p(x,t)  is the azimuthal angle of mag- 
netization at the DW center; a is a dimensionless damping 
parameter; E = (2Q) - ' is a dimensionless small parameter 
(Q being the quality factor); t is the time normalized to the 
quantity To = (477My) - '20, where y is the gyromagnetic 
ratio and M is the saturation magnetization; H, , Hy , H, are 
the components of the external field, and H ' is the displace- 
ment field gradient. All the fields are normalized to the 
quantity 477M. The expression for H:f is in the form of an 
improper integral: 

It is easy to show2 that in the absence of external fields, i.e., 
for H, = Hy = Hz = 0, the functions 

q ( x )  =0, (p (x)  =2  arc. tan exp[p ( 2 / e ) " x ] + n n  

( p  = + 1 being the polarity of the VBL, and ncZ) are the 
leading term of the solution, asymptotic in E,  of the system of 
equations (1) .  The field (2)  corresponding to this solution 
for h k 1 is 

where s = sign cos ~ ( 0 ) .  
This field offsets the repulsion force of exchange origin 

arising from two VBL of the same polarity coming closer 
together to a distance a - 6 ,  so that the expression 
87=, p(x - a i ) ,  with a,, , - ai -&, as shown by numeri- 
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cal modelling, is also an asymptotic solution of the initial 
system ( 1) and according to the physical terminology, cor- 
responds to a cluster of n VBL. 

In this work, the numerical solution of the system ( 1 ) 
was performed by means of an implicit difference scheme 
using the matrix dispersion method. In view of the presence 
of an integral term in the second equation, a numerical solu- 
tion of this system requires a significantly longer time than 
does the solution of an ordinary system of Slonczewski equa- 
tions. In the calculation using Eq. ( 2 ) ,  the integration near 
the singular point involved the use of difference formulas 
derived by expanding a part of the integrand as a Taylor 
series at this point, and Simpson's formula was used on the 
other portions. It was assumed that at the boundaries of the 
calculation interval in x ,  the derivatives dq/dx and d p  /ax 
were zero. The results, obtained in the calculations by this 
method for a statistical pair of VBL, are in good agreement 
with the result of Ref. 9, where a different calculation meth- 
od was used to study static VBL clusters. All the calculations 
in this work were performed for the parameter values 
E = 0.1, a = 0.2, h = 4, H ' = 0.1 for zero H, and H, . Initial- 
ly all the VBL in the cluster were located at the same distance 
from each other, equal to the distance between the VBL in 
the pair in the static case for the given parameter values. 
Allowing for the magnetostatic interaction of the clusters 
through the field Hzf makes it possible (in contrast to the 
results given in Ref. 4 )  to follow the cluster interaction pro- 
cess in detail. 

RESULTS OF NUMERICAL EXPERIMENTS 

When a DW moves under the action of an Hz field, the 
clusters begin to move along the boundary owing to the gyro- 
tropic force [the term dq/dt in the second equation of the 
system ( 1 ) ] acting on them. Since the presence of the DW- 
stabilizing H ' gradient causes rapid deceleration of the mo- 
tion of the DW in a constant displacement field, the numeri- 
cal experiment involved the consideration of a field Hz that 
changed linearly with time and provided for nearly uniform 
motion of the DW outside the region containing the VBL. 
Note that all the results given in this work were obtained for 
DW velocities from 0.05 to 0.27; this is lower than the Walk- 
er velocity, which in dimensionless variables is 0.5. Obvious- 
ly, the VBL velocity increases with the velocity of the DW, 
and below we discuss the velocities of these clusters. 

Figure 1 shows the curves q ( x ) ,  p ( x ) ,  as well as the 
form of H zf for a cluster consisting of six VBL and moving 
steadily from right to left at a velocity v = 0.29. The velocity 
of the DW is u = 0.05. It is evident that the field Hzf has a 
fairly complicated form, but the number of points where this 
field is zero is equal to the number of VBL in the cluster. As 
the velocity increases, the average distance between the VBL 
and hence the total extent of the cluster decrease somewhat. 
Note that in this case, as well as those discussed below, the 
asymmetry of the DW deflection accompanying the cluster 
is not very distinct. This is due to the fairly large value of the 
gradient H ', which, together with a and v ,  is shown by theo- 
retical analysis to exert an appreciable influence on the 
asymmetry. Thus, for H '9 a2v2, which corresponds to the 
case under consideration, the shape of the deflection is near- 
ly symmetric. For the same values of a and u and H ' = 0.01, 
the lengths of the leading and trailing edges will differ sever- 

1132 Sov. Phys. JETP 71 (6), December 1990 

FIG. 1 

alfold. It is the smallness of the gradient H ' that accounts for 
the marked asymmetry of the DW deflection, observed in 
experiments performed by Chetkin's gro~p.3-6 

Let us consider the interaction of two clusters of oppo- 
site polarity, consisting of two and four VBL and initially 
located at a distance of - 10 (the position of the cluster tak- 
en to be the average value of the coordinates entering into its 
VBL). During the motion of the DW in the negative direc- 
tion, the clusters begin to come closer together (Fig. 2 ) .  The 
smaller cluster moves faster, and prior to collision, the veloc- 

FIG. 2. 

E. E. Kotova and V. M. Chetverikov 1132 



ities are approximately 0.25 and 0.35. The interaction then 
involves annihilation of the smaller cluster with part of the 
VBL of the large cluster, and as a result, there remains a 
cluster consisting of two VBL moving in the same direction 
in which the large cluster was moving prior to collision. A 
similar result was observed experimentally in Ref. 6. How- 
ever, at cluster velocities approximately twice as high (0.57 
and 0.78), the clusters interpenetrate, and after the collision, 
we again have clusters consisting of two and four VBL, but 
now they are moving away from each other. 

As was shown by the calculations, if two identical clus- 
ters, each consisting of four VBL, are oppositely directed, 
then at low velocities they annihilate completely, and at high 
velocities they also pass through each other. At the location 
of the cluster interaction, a particularly substantial devi- 
ation of the DW [ -0( l )  ] takes place. We note that such 
behavior of the solutions apparently is not directly related to 
the presence of the integral term in the system ( 1 ). Thus, 
Ref. 10 discussed the Slonczewski equations in the absence 
of a DW-stabilizing gradient, ignoring the magnetostatic in- 
teraction, and at the same time, owing to a special selection 
of the initial conditions, solitary-wave type structures arose 
in the DW that, depending on the velocity, either annihilated 
or traversed each other like solitones. 

However, the examples discussed above still do not de- 
scribe all the possibilities. Let us consider in more detail the 
opposite motion of two pairs of VBL. A characteristic fea- 
ture of the solutions of the system ( 1 ) is the fact that in view 
of the presence in the equations of nonlinear terms contain- 
ing the first derivatives with respect to x, especially the term 
containing dp /dx, the velocities of clusters of opposite po- 
larity containing the same number of VBL will be somewhat 
different. For Fig. 3, corresponding to the opposite motion 
of two pairs of VBL, the velocities of the left-hand and right- 
hand clusters prior to collision are 0.67 and 0.56, respective- 
ly. It is evident that the deviation of the DW for the left-hand 
cluster slightly exceeds the corresponding deviation for the 
right-hand cluster, while on the contrary, the range of vari- 
ation of angle rp for the left-hand cluster is somewhat smaller 

FIG. 3. 

than for the right-hand cluster. During the interaction, the 
clusters traverse each other only partially, and as a result, by 
t = 19 two single VBL of opposite polarity have formed 
which move away from each other. At the same time, repo- 
larization of the boundary takes place. It is evident that if the 
motion of the DW ceases, these VBL will eventually annihi- 
late each other. This type of pair interaction is characteristic 
only of a certain range of velocities. 

Studies have shown that if the pairs approach at a rela- 
tive velocity v,,, ~ 0 . 9 0 ,  complete annihilation of the clusters 
takes place, while at v,, = 1.35, they already pass complete- 
ly through each other. The dynamics in the latter case resem- 
bles the pattern, known from soliton theory, of the two-soli- 
ton solution which corresponds to noninteracting solitons at 
t -  * co . AS the velocities increase further, not only soliton- 
like interaction of the clusters, but also the formation of new 
VBL becomes possible. Thus, for a relative velocity 
v,,, = 1.53, after the collision three VBL of opposite polarity 
that move away from each other are formed in each case. The 
maximum deviation of the DW during the collision will be 
greater than when the pairs simply pass through each other. 

Since at the same DW velocity, clusters containing a 
smaller number of VBL move faster, a study can be made of 
what will occur in a collision of two clusters during unidirec- 
tional motion. Consider clusters of the same polarity, con- 
sisting of two and four VBL, moving in the same direction at 
velocities of 0.46 and 0.34. In this case, the DW velocity is 
0.05. Figure 4a shows the positions of the VBL included in 
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FIG. 4. 
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the clusters, at different times, starting with t = 16. When 
the clusters come closer together after some vibrations and 
displacements of the VBL relative to each other, a chain of 
six VBL is formed that will move in the previous direction. 
Figure 4b shows how the deflection of the DB changes in this 
case. The result of the interaction does not change qualita- 
tively as the velocities approximately double. A similar in- 
teraction was observed in Ref. 8. In Ref. 5, a result was ob- 
tained in the case where a small cluster, catching up with a 
large one, seems to traverse it and then is found to be in front, 
gradually moving away. As is evident from Fig. 4, at the 
instant of interaction of the clusters there is a definite ten- 
dency in this direction, but the difference between the veloc- 
ities is insufficient to permit the detachment of a tiny cluster 
in front. 

CONCLUSIONS 

1. This system of Slonczewski equations is not in the 
class of completely integrable systems, but has solitonlike 
solutions for a certain relationship of the parameters. For 
other parameters, there exist solutions corresponding to the 
creation and annihilation of solitons. 

2. The described effects of VBL cluster interaction are 
weakly dependent on the terms which are present in the 
Slonczewski equations and which contain the first spatial 
derivatives. However, these terms cause a certain difference 

between the absolute values of the velocities of clusters of 
opposite polarity, moving along the DW at the same DW 
velocity. This also leads to a slight drift of a VBL pair under 
action of a periodically changing displacement field. 

3. The results of the numerical experiment performed 
are in good agreement with the observations made in phys- 
ical experiments of Refs. 3-6. 

The authors are grateful to M. V. Chetkin for fruitful 
discussions regarding the agreement between the numerical 
calculations and the experimental data. 
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