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The screening properties of a system of interacting spin-polarized electrons are investigated. An 
exact closed equation is derived in the many-particle approach for the vertex function and the 
principal contribution arising in the ladder approximation with respect to the generalized 
screened potential is found. The local field correction, which is strongly dependent on the electron 
density, is calculated; this correction ensures positive compressibility across a broad range of 
electron densities. 

1. INTRODUCTION 

The need to incorporate many-particle effects consis- 
tently and the lack of explicit small parameters have lead to 
the development of a new direction in condensed-matter the- 
ory (see, for example, Refs. 1-3 and the work they cite) 
devoted to the formulation and analysis of the permittivity 
function of an interacting electron gas. A variety of tech- 
niques are employed to obtain a great variety of expressions 
for the permittivity in which the Coulomb interaction effects 
between electrons are taken into account in one form or an- 
other.&" However virtually all of the proposed approaches 
have limited applicability and require at least partial addi- 
tional substantiation. 

In the present paper we propose a method of describing 
the screening properties of a system of interacting electrons 
with a positive neutralizing background, based on an ap- 
proximate solution of the equation for the vertex function. 
The exact equation for the vertex is formally obtained in 
closed form using functional derivatives. 

The primary result of this study is the weakening of 
interelectron correlations due to screening of the interac- 
tion. This is directly manifested as a reduction in the local 
field correction at low momenta in the intermediate range of 
electron densities characterized, as usual, by the dimension- 
less parameter r,. This entire analysis corresponds to values 
of r, where the electronic system takes the form of a homoge- 
neous gas or liquid, since no fundamental rearrangement of 
the one-particle spectrum has yet occurred. 

It is demonstrated that we can utilize an approximate 
equation for the vertex to first order in a certain generalized 
potential for a spin-polarized electron gas; the potential is 
the product of the interelectron screened interaction and the 
vertex function. This is due to the cancellation of higher- 
order contributions accounting for the screening of interpar- 
ticle interaction. The region where this potential is effective- 
ly small also determines the range of r, for which the analysis 
is valid. Analysis of this particular system is made even more 
interesting by the fact that a wide range of experimental and 
theoretical results have already been obtained for a number 
of Fermi systems of this We assume T =  0 and 
fi  = 1 throughout the analysis below. 

2. SELF-CONSISTENT INTERPARTICLE INTERACTION OF 
ELECTRONS 

We consider a system of interacting electrons super- 
posed on a background of homogeneous positive neutraliz- 
ing charge. Then including the external field U ( r ,  t ) ,  the 
Hamiltonian of this system takes the standard form in the 
second quantization representation: 

(1) 

Introducing in the usual manner the one-particle Green's 
function 

G ( x ,  x i )  =-i<TY (r,  t )  Y + (r l ,  t i ) >  

together with the effective field 

v(x)=u(x)  + J s r t  v..(r-ri) t y + ( r i ,  t )  Y (ri ,  (I) ,  
using the formalism proposed in Ref. 14 we obtain the closed 
equation 

Here we introduce the electron self-energy part 

Z (x ,  x,) = -1 1 dz,  axa 6G-i (x2' x i )  - G (x ,  z2) W (xz, x3) , 
~ V ( X , )  

(3)  

defined through the total effective interelectron interaction 
potential 

W ( X , ,  x,) = 1 d3rs VV. . (q-4)  8-' (r3, t t ;  4 ) .  (4)  

This potential is essentially a screened two-particle potential 
in which all screening effects are described by the permittivi- 
ty function 

8 2 = - + j r i -  r ,  t i  x . c s 
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Here the permittivity is given by the polarization operator 

and the vertex function 

It is the study of the vertex function that is of primary inter- 
est in investigating the role of many-particle effects in a sys- 
tem of interacting electrons. A qualitative analysis of the 
contribution of various diagrams to the vertex has been pro- 
vided in Ref. 14. It was noted in this study that no consistent 
strategy for selecting the most important diagrams exists, 
since the Coulomb interelectron interaction is not small at 
real electron densities. 

The present paper demonstrates how, by deriving a con- 
sistent rigorous equation for the vertex function and then 
solving it approximately, we can identify the main contribu- 
tions to the vertex. It is therefore possible to obtain rather 
simple equations in explicit form without using the vari- 
ational procedure (see, for example, Refs. 15, 16) for the 
vertex and the corresponding permittivity of the interacting 
electron gas. 

In the simplest approximation, that of noninteracting 
electrons, we assume 

Including interactions results in a self-consistent redefini- 
tion of the vertex: 

We obtain an exact closed equation for the vertex function 
(the arguments are dropped from the functions to simplify 
the notation) from straightforward calculation of the func- 
tional derivatives with respect to the Green's function of the 
self-energy part and the generalized potential: 

(9)  
In graphical form this equation appears as 

Here the solid lines correspond to the electron Green's 
functions G(x, ,x2 ), while the double dashed lines corre- 

spond to the screened effective potential W(x, ,x2 ), with the 
shaded triangles referring to the vertices T(x,  ,x, ,x, ) and 
the pentagon representing the block ST(x,,x2,x3)/ 
SG(x,,x, 1. 

Equations ( 1 )-(6), (9)  are applicable for describing an 
arbitrary state of an interacting electronic system, including 
a Wigner crystal. The possible approximate solutions are 
determined by the selection of the corresponding zeroth ap- 
proximation and the expansion parameter. 

It directly follows from Eq. (9)  that it is precisely this 
screened interaction W that determines the many-particle 
properties of the electron system. As a rule incorporation of 
screening effects weakens the potential. Formally treating W 
as a small quantity we can transform this equation by writing 
it as an expansion in powers of the effective potential. The 
resulting expression does not yet contain functional deriva- 
tives of the vertex function. To first order in the potential W 
Eq. 10 takes the form 

This result corresponds to the approximation 

To second order in Wit is necessary to retain the contribu- 
tions of the third and fourth terms in Eq. (9)  and also to 
evaluate ST/SG from Eq. ( 10) and then substitute it into the 
expression SGGG( WSr/GG) r. We then have the following 
graphical representation for the contribution to the vertex: 

(12) 
The analytical expression for T'*' is already cumbersome 
and is not provided here. In this way it is possible to obtain 
terms of any order in W. This procedure can be formalized so 
that analytical programming techniques (such as REDUCE) 

can be used up to any term in the series. 
The primary result from analyzing this expansion is 

that the actual parameter of the expansion is the quantity 
p= WT which functions as a characteristic "generalized 
interaction potential" in this system. The function 
~ ( x ,  ,x, ,x3 ), as we see by the definition, is nonlocal in the 
general case even if the initial electron system is spatially 
uniform. 

Below we use the so-called "local vertex" approxima- 
tionI5 to carry out a consistent and transparent analysis. 
Here the solution of Eq. (9)  is sought in the function class 

which corresponds to a dependence of the vertex on momen- 
tum only. 

As we demonstrate below, this choice is equivalent to 
describing the interaction in terms of corrections to the local 
field. 

The function p i s  therefore dependent solely on a single 
momentum and in fact becomes a local pair interaction po- 

l 126 Sov. Phys. JETP 71 (6), December 1990 S. V. lvliev and V. N. Sobakin 1 126 



tential. According to the definition (4)  this is a screened 
potential and, consequently, it has a limited radius in a 
charged liquid or gas system. An important property of the 
series (9)  obtained for the vertex is the partial cancellation 
of the contributions of the diagrams to all orders in W, begin- 
ning with the second order. This is most clearly manifested 
for the short-range potentials. Indeed the first and third as 
well as the second and fourth terms have opposite signs in 
Eq. (12) and taking into account the effective short-range 
action of E w e  see that these graphs become topologically 
equivalent. For an unpolarized electron gas the first and sec- 
ond terms contain an additional summation over spin, so the 
cancellation is incomplete. In the case of a spin-polarized gas 
the additional summation is absent and these four diagrams 
cancel one another in a pairwise manner. This same effect 
occurs for higher order terms in W. 

This cancellation can be explained physically by noting 
that the Pauli principle forbids particles to approach one 
another and, consequently, directly sense the short-range 
potential. Hence all correlation effects corresponding to sec- 
ond or higher order diagrams become insignificant, and the 
first-order exchange diagram ( 12) makes the primary con- 
tribution to the vertex. Strictly speaking, correlation effects 
are present in this diagram as well, since the effective poten- 
tial fi differs substantially from the Coulomb potential due 
to screening. 

Equation ( 10) therefore determines the principal beha- 
vorial characteristics of the vertex function for a spin-polar- 
ized system of electrons. At higher densities it is valid simply 
because the quantity witself is small compared to the kinetic 
energy with reasonably small r,. Generally speaking dense 
spin-polarized systems are unlikely to exist, so the problem 
of describing their properties in the limit r, < 1 is of purely 
academic interest. The approximate equation ( 10) is also 
valid in the intermediate density range r, > 1, since screening 
results in a progressively weaker dependence of the potential 
on momentum in the range q<2k, with increasing r,, which 
is the condition for cancellation of the higher-order dia- 
grams. 

Taking this into account we use this same approach to 
describe a system of spin-polarized interacting electrons. We 
note that this method may be rather effective for an unpolar- 
ized gas due to the partial cancellation of the corresponding 
diagrams and, as we shall see, the numerical smallness of @, 
even for r, > 1. 

In principle another method has also been proposed 
(see Ref. 13) for transformating the functional differential 
equations by the substitution S W / 6 ~ - d @ / d ~  in Eq. (8).  
However this requires separate treatment 

3. PROPERTIES OFTHE PERMITTIVITY OF A SPIN- 
POLARIZED INTERACTING ELECTRON GAS 

Assuming spatial homogeneity of this system, we will 
operate in the momentum representation. Then the equa- 
tions determining the behavior of the spin-polarized inter- 
acting electrons are 

Herep- (p, w); v(k)  = 4ne2/k2 is the regular Coulomb po- 
tential; and no (k )  is the polarization operator determined 
by means of the exact Green's functions. We then as usual, 
introduce the local field correction F(q, w) using the follow- 
ing representation for the permittivity function: 

Comparing this equation to Eq. ( 16) we obtain directly 

( q ) = l - F ( q ) v  ( q )  110 ( q ) ,  (20) 

which confirms the claim above that the local field correc- 
tion is related to the vertex function, which depends solely 
on the transferred momentum. Then, using Eq. (20) we find 
an equation for F(q)  : 

1 
F ( q )  = - G ( p )  G (p4-q) G ( p t k )  

~ ( 9 )  n o 2 ( q )  

This system of equations is completely closed. An exact solu- 
tion of this system cannot be obtained even numerically. As a 
first iteration in place of the exact self-consistent equation 

we utilize an equation that is valid for this system in the long- 
wavelength static limit 

whereR is a dimensionless screening parameter which must 
be found by requiring self-consistency. Here the self-energy 
part B (p)  is given by 

while the one-particle excitation spectrum takes the form 

E,=e,+Z ( p ) .  (25) 

One advantage of using this equation for P ( q )  is that all 
subsequent calculations can be carried out completely. The 
fundamentally important screening effect can thus be ac- 
counted for, albeit only approximately. 

Then evaluating for Eq. ( 17) the long-wavelength limit 

and noting that for small momenta, as we easily see from Eq. 
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(22), F(q)  is proportional to q2, we obtain a self-consistent 
equation determining R ': 

where a = (2/9?r) 
We can easily show that R ' = (2a / r )  r, holds in the 

limiting cases of large and small densities. In the intermedi- 
ate range it turns out that R ' is also, with good accuracy 
(better than lo%), close to the value 

This result was obtained independently by the present au- 
thors in a previous study1' and in Ref. 18. The screening 
effect clearly results in a significant weakening of the poten- 
tial f@(k) . We go over to the dimensionless form of the Cou- 
lomb potential to prove this statement, by relating the Cou- 
lomb potential to the characteristic energy: 

where k = q/kF and no is the volume per electron. As a 
result the function W( k)  can be given in dimensionless form 
as 

0,18r, 
tp (k) = 

ka+0,26r, ' 

For comparison purposes we note that the unscreened Cou- 
lomb interaction (29) continues to be proportional to r, 
which keeps it from being regarded as small for r, > 5. 

It is worth recalling, however, that some care should be 
taken in using approximate Eq. (30) in place of the exact Eq. 
(22) for @'(k). The problem here is that the function no is 
dependent on the wave vector, and for q<2k,, for example, 
the Lindhard equation yields no (2kF) = no (Q)/2. This 
imposes a constraint on the range of the effective smallness 
of f@. Indeed, @(k) for k = 2k, will no longer be deter- 
mined by Eq. (30) but rather by 

Here the requirement f@< 1 establishes the possible 
range of these results for r, < 100. The auxiliary factor 
1 - F(q) narrows this range even further, although, as dem- 
onstrated by the calculations given below, F(q)  decays rap- 
idly with increasing r, and at large values of this parameter is 
proportional to rs- ' for q<2k,. A rough upper estimate of 
F(q)  for q<2kF and large r, can be obtained directly from 
Eq. (2 1 ) by replacing f@with a constant of order unity. Then 
F(q) -- 2r; 'q2/k :, which yields a constraint of (r, ),, ~ 6 0 .  
This estimate is in good agreement with Monte-Car10 calcu- 
lations of the phase states of electron gas.19 A rise in r, above 
such values will cause the effective potentials f@ to grow. 
This in turn will result in a fundamental rearrangement of 
the one-particle spectrum and will significantly alter the 
character of the screening. Ultimately a transition to the 
Wigner crystal state is possible. Thus the approximation for 
@ used above will be valid if r, < (r,  ),, ~ 6 0 .  Using Eqs. 
(25) and (21 ) we obtain the equation for the local field cor- 
rection 

1 
F(q, 

= v (q) II: (q, o )  
J- 

where 0, is the Heaviside unit function. We analyze this 
equation in the most interesting static case, w = 0. Then a 
result for F(q, 0)  is obtained in closed form in the limit of 
small and large wave vectors. 

We note that many studies (see survey3 ) that account 
for exchange-correlation effects introduced the permittivity 
in a somewhat different manner. Specifically, 

wherex, (q,w) is the Lindhard function, while G(q, w) (not 
to be confused with the Green's function) is also called the 
correction to the local field. This function is related to F(q, 
W )  as follows: 

In the long-wavelength limit the quantity G(q, 0 )  for the 
spin-polarized electron gas takes the form 

and this result coincides exactly with the linear approxima- 
tion with respect to f@ for lI, ' (9). Reference 20 derived a 
similar equation, although with a different value for the 
screening parameter R '. For large wave vectors the equation 
for G(q, 0 )  is more involved: 

FIG. 1 .  -Plot of the function G(q.0) for various values of the parameter 
r,: 1-r, = 0.01; 2-r, = 4.5; 3-r, = 10.0; 4--r, = 15.0. 
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lim G (9) = 
P+ - 

Here 

2 3 2 1 As we see from the figure the sharp peak at qz2k,, - f - h2-hS arctg - - - 
3 4 h 8 

A' which is characteristic of virtually all typical corrections to 

h 4+ha 2a the local field,3 appears in G(q, 0 )  only for r, small; the peak 
+ - )ln - + - r. ( I ~ ~ - - Z ~ ) .  

' 0  32 h2 n 
(35) almost vanishes entirely in the range r, - 10. 

An analysis of the behavior of the permittivity function 
Here in the limit of small wave vectors demonstrates that in this 

approach the screening radius and the compressibility of in- 
2 d a k d 3 p  1 teracting electron gas determined from the equation 

Ii (') = S we.ek Ip-L, ' 
(37 

1 1 (36) 

remain positive over a broad range of intermediate values. 
In the same approach we examine the behavior of the 

lim G ( q - + m ;  O)=Z/S, and lim G(q+oo ,  0)==1, 
A- rO  A+ m 

i.e., the limiting cases of large and small densities are also 
determined by an approximation linear in @ for the function 
KI; ' (q) given by (3 1 ), (33). The agreement of the limiting 
values from Eqs. (34) and (35) with the results from the 
linear approximation with respect to @in Eqs. (3 1 ), (33) 
provides some hope that the linear approximation will be 
entirely suitable for use across the entire range of wave vec- 
tors. We again emphasize that the validity of this statement 
is essentially based on the effective smallness of the interpar- 
ticle potential ~ ( k )  . 

Numerical results for the correction G(q, 0) to the local 
field for different r, in the approximation linear in are 
provided in the figure. 

One distinguishing characteristic of the resulting cor- 
rection to the local field is its strong dependence on the elec- 
tron density, which is a new result in the microscopic ap- 
proach. Note that the function G(q, w )  for the case where 
the effective interelectron potential @(q) is replaced by the 
unscreened Coulomb potential v(q) becomes the exact cor- 
responding expression for the correction to the local field 
obtained by a wide variety of different techniques and has 
become the most "popular" function among those defined 
within the framework of the microscopic approach."' How- 
ever it will become clear from this analysis that the un- 
screened Coulomb potential in Eq. (25), accounting only for 
the approximation that is linear in the potential, is valid for 
the spin-polarized electron gas only for r, <5 [see estimate 
(3011. 

one-electron energy which provides the possibility in princi- 
ple for, first, using these results in band calculations and, 
second, directly estimating the value of ?f at which the sys- 
tem makes the transition to the spin-polarized state. This 
energy can be written (see Ref. 3) as 

3 
r - f  ~ d r J  t iz1i-~(z)1, 

5aar.' rcar.' , (38) 

where S ( x )  is the structure factor and x = q/k,. The struc- 
ture factor is calculated through the permittivity by means 
of the fluctuation-dissipation theorem. Equation (38) is val- 
id for both the spin-polarized and unpolarized electronic 
states. 

Numerical calculations with Eq. (38) were carried out 
using the static local field correction derived above. The re- 
sults are given in the table. 

Analysis of the resulting one-electron energy values 
demonstrates the possibility of a transition to the spin-polar- 
ized state for r, -25-30, when its energy drops below the 
unpolarized electron gas energy. This estimate for the transi- 
tion point is in good agreement with Monte-Carlo calcula- 
t i o n ~ . ' ~  Nonetheless our results should be treated with some 
care, since more accurate calculations require knowledge of 
the correction to the local field across the entire range of q, w 
and r, .  Moreover, partial cancellation of higher-order dia- 
grams ( 12) will occur only in the unpolarized state. 

The possible transition point can also be estimated from 
the conditions which define the region within which the di- 
mensionless interpartical potential analogous to Eqs. (28)- 
(30), is effectively small in the unpolarized state. In this case 

TABLE I. The exchange-correlation energy per electron in Ry for the spin-polarized (E:: ) and 
unpolarized (E:: ) electron states. 
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we obtain r: =: 28, which is also in agreement with the values 
reported above. 

4. CONCLUSION 

The analysis of the features of screening of interelectron 
interaction carried in the present paper is based on an exact 
closed equation for the vertex function. The fundamental 
advantage of this equation, aside from its consistent deriva- 
tion, lies in the precise procedure for deriving a series in a 
certain new parameter pwhich automatically arises in the 
problem. Physically the quantity p i s  equivalent to the ef- 
fective interparticle interaction potential, where the 
screened Coulomb potential and the renormalized vertex en- 
ter into the equations self-consistently. The primary contri- 
bution to the vertex in this approach for spin-polarized elec- 
trons is found to first order in @, since cancellation of the 
diagrams occurs in the higher-order terms. 

We therefore obtain an explicit expression for the cor- 
rection to the local field that rather fully accounts for the 
exchange-correlation effects and is valid over a broad elec- 
tron-density range. This correction turns out to be strongly 
dependent on the electron density and will not alter the com- 
pressibility sign in the range of r, analyzed here. 

The authors express their sincere gratitude to D. E. 
Khmel'nikskii for critical commentary. 
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