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One aspect of the molecular interaction between two semi-infinite media separated by a plane 
vacuum gap is analyzed. Specifically, the tangential forces, i.e., the forces acting along the 
boundaries, are analyzed. One medium is at rest, and the other is in uniform motion with respect 
to it at a velocity v which is parallel to the boundaries of the media. In general, the media are at 
different temperatures. A general expression is derived for that tangential interaction force 
between the media which results from a fluctuating electromagnetic field. The force exerted on 
the moving medium may either slow it or accelerate it. In the latter case the moving medium may 
perform work on external bodies. There is the interesting possibility of an "anomalous" situation 
in which the cold moving medium cools and the hot medium at rest heats up while this work is 
performed. It is shown that this case does not contradict the second law of thermodynamics. A 
detailed study is made of the particular case of highly conducting metals separated by a small gap. 
If the velocities involved are low, the interaction of the metals can be described with a 
"hydrodynamic" viscosity coefficient. 

Fluctuations of the polarizability and magnetization of 
bodies give rise to a fluctuating electric field both inside and 
outside these bodies. The interaction between bodies mediat- 
ed by this field is manifested in several effects, among which 
we will mention the following. First, there are the well- 
known molecular attraction forces (van der Waals forces) .'- 

Second, there is the heat exchange through a fluctuating 
electromagnetic field between bodies heated differently (see, 
for example, Ref. 4 and the bibliography there). Third, tan- 
gential molecular forces may act between gyrotropic media 
which have different temperatures and which are at rest in 
an external magnetizing field. The existence of these forces 
was pointed out in Ref. 5. 

In the present paper we examine the interaction 
between moving media mediated by a fluctuating electro- 
magnetic field. We restrict the discussion to the following 
formulation of the problem. Media 1 and 2, which fill half- 
spaces separated by a plane vacuum gap of width a (Fig. 1 ), 
are assumed to be homogeneous and isotropic with permitti- 
vities and permeabilities E, ,  p ,  and E,, p,, respectively. 
These are dispersive media; i.e., their permittivities and per- 
meabilities are complex functions of the frequency') m. Me- 
dium 1 is assumed to be at rest, while medium 2 is in motion 
with respect to it at a constant velocity v which is directed 
along the boundaries of the media. The temperatures of the 
media are held constant at T, and T,, respectively. We as- 
sume that the temperature of each medium is measured by a 
thermometer connected to it. The interaction of the media 
through the fluctuating electromagnetic field has the conse- 
quence that tangential forces act on each medium. 

1. GENERAL EXPRESSION FOR THE TANGENTIAL FORCE 

The Cartesian laboratory coordinate system fixed in 
medium 1 is chosen so that the axis z - x ,  is orthogonal to 
the boundaries of the media. We denote the x and y axes by 
x ,  and x, ,  respectively. We denote by F, the tangential force 
acting on a unit surface area of medium 1. This force has two 
components F,, (here and below, the Greek-letter indices 

take on the values 1, 2).  The components of this force are 
obviously determined by the average values of T,, , the aver- 
age components of the energy-momentum tensor of the elec- 
tromagnetic field, in the vacuum gap. In other words, 
F,,  = T,,. The superior bar here means a statistical average 
over the fluctuations of the electromagnetic field. 

We assume that random electric and magnetic sources 
of electromagnetic fields are distributed in a statistically in- 
dependent way in media 1 and 2. We can then write the force 
F, as the sum of two terms, FI" and F12', the first of which is 
the contribution from sources distributed in medium 1, and 
the second from those in medium 2. The expression for the 
correlation functions of sources distributed in medium 1, at 
rest, is well known.6 By solving the corresponding electro- 
dynamic problem in the presence of a moving medium 2, one 
can find the fields generated by these sources in the vacuum 
gap. It is then a simple matter to calculate the average a3 
components of the energy-momentum tensor and to thus de- 
termine the part of the force F;". The part F12', on the other 
hand, can be found in the following way. We transform to a 
coordinate system which is fixed in the moving medium, 2. 
In this coordinate system, the part of the force F:,' can be 
found from the expression for FI1) through appropriate 
changes in notation, as is easily understood. We then trans- 
form to the laboratory coordinate system and find the 
expression for Fr2' which we want, thereby completing our 
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task of finding the total force Fl  . The force density F, , acting 
on medium 2, differs from F, only in sign: F, = - F, . Since 
media 1 and 2 are isotropic, the only direction which is dis- 
tinguished in this problem is that of the velocity at which 
medium 2 is moving. It follows that the forces F l  and F, can 
be written 

Calculations from ( 1 ) yield the following expression for F: 
1 

F -- - (Pi+PzI7), v (2)  

where 

y = l / ( I - ~ ~ ) ' ~ ,  u=v/c, 

and c is the velocity of light in vacuum. The quantities P, and 
P, in (2) have the following meaning. The quantity P, is the 
heat given up by medium 1 from a unit surface area per unit 
time in the coordinate system fixed in medium 1, i.e., in the 
laboratory coordinate system. The quantity PI is obviously 
equal to the average projection of the Poynting vector of the 
fluctuating electromagnetic field onto the outward normal 
to medium 1: P, = 3,. In turn, the component S3 is ex- 
pressed in terms of the component T,, of the energy-momen- 
tum tensor of the electromagnetic field: P, = cT,,. The 
quantity P, is the heat given up by medium 2 per unit time 
from a unit surface area, but in the coordinate system fixed in 
medium 2. We obviously have P, = - cT3,. The tilde ( - ) 
means that the component '7;,, is taken in the moving coordi- 
nate system, fixed in medium 2. The minus sign means that 
thez axis is directed into medium 2. The quantities PI and P, 
are thus determined in the same way. Actually, P, and P, are 
the same quantity, looked at from different coordinate sys- 
tems. We note in this connection that relation (2) is actually 
the law of transformation of this quantity under the transfor- 
mation from one coordinate system to the other. 

We now write expressions for P, and P, (since the cal- 
culations are fairly lengthy, we will write only the final re- 
sults): 

- + 4 j d 0  j ~ x { ~ ( ~ " ~ )  n(T2'e) oM(0, x; u), (3)  
4n -m 0 a 1 

where li is Planck's constant, x = ( x ,  ,x, ) is a two-dimen- 
sional wave vector, and 

The integration in (3)  and (4)  is over the entire wave-vector 
space. The function n ( T, o) is given by 

where T is the temperature in energy units. The function 
M(u,  x;  U) in (3 ) and (4) depends in a complicated way on 
the permittivities and permeabilities of the media, the width 
of the gap between them, and the velocity v. It is given by 

4 lq I z  
M=-{($)"(%)" I Q I "  (i+B) l Q p 1 2  

( 5  
where 

The branches of the square roots are chosen to satisfy 

A single prime and a double prime specify the real and imagi- 
nary parts, respectively, of acomplex quantity. The choice of 
the sign of the square root in the expression for q is arbitrary, 
as we will see below. In addition, we have 

where x, is the component of the wave vector x which is 
perpendicular with respect to the velocity, i.e., 

and 2 is the magnitude of the wave vector in the moving 
coordinate system, 

- ~ ( X U )  
x=x+ (7-I)----;-- yku. 

U 

The tilde here means that the corresponding quantities 
which depend on w and x are taken at w = G, x = ii. The 
quantities Q,, Q,, Q,,, Q,,, and Q are given by 

Let us examine some properties of the function M(w, x;  
u ) . Since the media which we are discussing here are dissipa- 
tive, for w > 0 we have 

EI">O, p1">0, EZ">O, pif>(). (12) 

From (6)  and (12) we find 
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These quantities are odd functions of the frequency. It then 
follows from (5) that we have 

M(o, x ;  u) >O 3 oG>O, 
M (o ,  x ;  u) <O,  oa<O. 

It is also simple to verify that M has the additional properties 

Using (15), we can rewrite (3)  and (4)  in a form which 
contains an integration only over positive frequencies: 

II(T1,m) II(T2, GI) + i j  2~~ do j azx{ - a }WM, (16) 

In accordance with the original formulation of the 
problem, it is assumed that medium 2 is in uniform motion. 
The fluctuating electromagnetic field exerts on it a tangen- 
tial force with a surface density F, . Consequently, if the uni- 
form motion of medium 2 is to be sustained, an external force 
must be applied to it. We denote the surface density of this 
external force by f. We assume that the axis x = x ,  is direct- 
ed along the velocity of medium 2. It is then obvious that F2 
and f have projections onto the x ,  axis alone. Medium 2 
gives up heat for P2 > 0 or absorbs it for P2 < 0. Consequent- 
ly, its rest mass is not a constant, and in turn we have f #F. 
The force f can be determined easily from the equation of 
motion of medium 2. Under the condition v = const we have 

dm2 yv-= F + f .  
d t  

(18) 

We wish to stress that all the quantities involved here refer to 
a unit surface area of medium 2 in the laboratory coordinate 
system. In particular, m ,  is the rest mass of a cylindrical 
column whose axis runs parallel to the z axis and which has a 
unit cross-sectional area. It is not difficult to see that for an 
arbitrary rest mass m2 we have 

From ( 18) we then find 

Substituting in F from (2),  we find an expression for$ 
I 

f = - T(P,+yP2). (20) 

The external force f performs work with a surface den- 
sity 

on medium 2 per unit time. The quantity Uis obviously the 
work performed by medium 2 on the source of the external 

force. If U<O, this source of the external force performs 
work on the medium; if U> 0, on the other hand, medium 2 
performs work on the external bodies. Let us analyze the 
various possible cases here. 

It can be seen from ( 16) and ( 17) that P, and P, are 
complex functionals of the permittivities and permeabilities 
of the media and can vary over wide ranges. This result does 
not, however, mean that P, and P, can independently take 
on any prespecified values. Analysis of expressions ( 16) and 
( 17) shows (we omit the proof) that the permissible values 
of P,  and P, are determined by the inequality 

which is essentially the Clausius inequality from thermody- 
namics. 

Under what conditions can useful work be obtained 
from this system? In other words, we wish to determine the 
conditions under which the following inequality holds: 

Figure 2 shows the regions determined by inequalities (22) 
and (23) in the plane of the variables PI and P2 . The region 
of P,  and P2 values which are allowed is the region below the 
line P, = - ( T,  / T I  ) P,  . The region of P, and P2 values 
which correspond to a positive work U, on the other hand, is 
the region above the line P2 = - P, /y .  The intersection of 
these regions determines that set of permissible values of PI  
and P, for which positive work is performed on external 
bodies. The following cases are possible here: ( 1 ) T2 > T,  . 
In this case, positive work is performed in the region with 

as can be seen from Fig. 2. In other words, the cold body 
(medium 1) obtains heat ( P ,  <0) ,  and the hot one gives it 
up. Such a situation should be regarded as normal. 

(2)  T ,  > yT2 > T, .  In this case, positive work is per- 
formed in the region 

Again, the situation is normal; i.e., the hot body (medium 1 ) 
gives up heat ( P ,  > O), and the cold one acquires it. 

(3)  T,  < T ,  < yT2.  In this case, positive work corre- 
sponds to P, > 0, P,  < 0; i.e., positive work is performed as 
the cold body (medium 2)  cools down and as the hot one 

f'" -%IT) p1 

FIG. 2. 
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(medium 1 ) warms up. We call this situation "anomalous," 
but we do not mean to imply that the second law of thermo- 
dynamics is being violated. Essentially, work is being per- 
formed by virtue of a loss of mass from medium 2 as a result 
of thermal radiation (P, > 0). Losing mass, medium 2 tends 
to increase in velocity in order to compensate for the loss of 
momentum. If the uniform motion of medium 2 is to be sus- 
tained, this medium must be "held back" by an external 
forcef: This is necessary if the force F due to the fluctuating 
electromagnetic field is inadequate for the purpose. As a re- 
sult, medium 2 performs work on the source of the external 
force. 

Let us look at some simple consequences and particular 
cases of the general results. We assume that the media 1 and 
2 are absolutely cold, i.e., T, = T2 = 0 [in this case we have 
II(T,,w) = n(T,,w) = 01. Using (13) and (14), we then 
find from (16) and (17) 

The meaning of this result is that both media warm up as a 
result of the relative motion. External objects must perform 
work if this is to happen. 

We now consider the case in which media 1 and 2 are 
absolutely black: All the radiation incident on them is ab- 
sorbed. Media 1 and 2 may be regarded as blackbodies only if 
they have unit permittivities and permeabilities: E ,  = E, = 1 
andp,  = p2 = 1. In this case the function M(w, x;  u) takes 
the very simple form [as can be seen easily from (5) and 
(7)-(11)1 

In other words, it depends on neither the width of the gap 
nor the relative velocity of the media. In this case the inte- 
grals in ( 16) and ( 17) can be evaluated easily; we find 

where 

is the energy flux into vacuum from an isolated blackbody 
heated to the temperature T. For the work performed by the 
external force f we then find from (21 ) 

Using this result, we find the following expressions for the 
forces Fand f from ( 2 )  and (19): 

Interestingly, the force F depends only on the temperature of 
the second medium, and the force f depends only on the 
temperature of medium 1. In this case we have U <  0; i.e., 
external objects perform work on medium 2. Clearly, the 
work performed by the external force is an insignificant part 
of P, (T, ) at any realistic velocity of medium 2. 

2. METALS WHICH ARE GOOD CONDUCTORS 

In the general case of arbitrary permeabilities of the 
media, the heat fluxes P, and P, are given by very complex, 
opaque expressions. In this section of the paper we consider 
the case of metals which are good conductors, in which case 
the general expressions simplify substantially. 

The electrodynamic properties of metals which are 
good conductors can be described by their surface impe- 
dances' 

which lead to Leontovich boundary conditions. The surface 
impedances are small: Ic,,, 1 < 1. The calculation of the 
fluxes p, and p2 can thus be limited to the first nonvanishing 
order in the impedances of the metals. We make the further 
assumption that the width of the gap is small (much smaller 
than the Wien wavelength of the thermal radiation corre- 
sponding to the temperature of the hotter body). The calcu- 
lations in this case are similar to those which were carried 
out in Ref. 4, in a study of heat exchange between metals 
which are good conductors. Omitting the calculations, we 
write the final expressions for the heat fluxes PI and P, in the 
case of thin gaps: 

Here 

Q=70 (1-u cos O ) ,  

There is a useful mathematical result which makes it possi- 
ble to rewrite the results in (24) and (25) in various equiva- 
lent forms. We denote by @(w,Z) an arbitrary function of 
the variables w and Z. We then have the identity 

which is easy to prove by transforming from the integration 
variables w and 0 to the new variables i;, and 6: 

cos 0-u 
a=yo (1-u cos O ) ,  cos 8 = 

1-u cos 0 ' 

We now consider the case in which the velocity of medi- 
um 2 is small (u < 1 ). In this case it is easy to find the follow- 
ing expressions for the forces f and F from the general ex- 
pressions (24) and (25), with the help of (2)  and (20) 
(these expressions hold to first order in u) :  

rn 

Here 
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$i=Uof i', pz=l/ofs', B=Bt+pz. 

We rewrite the force F, exerted on medium 2 by the fluctuat- 
ing electromagnetic field, in the form 

where, according to (27), 

In this connection we recall a problem from hydrodynamics: 
the problem of the relative motion of two parallel planes 
which are separated by a gap of width a and between which 
there is an incompressible fluid with a viscosity coefficient 7 
(see, for example, $17 in Ref. 8 ). We assume that one of 
these planes is at rest, while the other is moving at a velocity u 
parallel to the planes. We then have the following expression 
for the density of the tangential force Fexerted on the mov- 
ing plane: 

This expression has the same form as (28). The quantity A is 
thus playing the role of a viscosity coefficient representing a 
viscosity caused by the fluctuating electromagnetic field. In 
contrast with hydrodynamics, however, the coefficient A can 
in general be either positive or negative. It is simple to show 
that in the particular case in which the metals are at the same 
temperatute this coefficient is always positive. To show this, 
we assume that the temperatures are equal ( TI = T, = T ) ,  
and we find from (29) 

OD 

1 n ( ~ )  a o2 +- 4nc8 JdoYz-. , 
Integrating by parts here, and noting that the terms which 
have been integrated vanish, we find the following expres- 
sion for A: 

This quantity is evidently positive. 
Let us assume, for example, that each metal can be de- 

scribed by the theory of a normal skin effect, i.e., that the 
impedances of the two metals are of the form 

where a, and a, are the conductivities of metals 1 and 2, 
respectively. For the coefficient R we then find from (30) 

where gR (7/2) is the value of the Riemann zeta function 
f R  (XI  at x = 7/2. In particular, at room temperature, with 

conductivities a, -a, -5.10'' s -  I ,  we find A-3. lo-" 
dyn-s/cm2 from (31 ). 

It was shown above that the limitations imposed on PI 
and P, allow the possibility of an "anomalous" situation in 
which useful work is extracted from the system while the 
cold moving body is cooling down, and the hot body at rest is 
warming up. This situation must be understood in the sense 
that it is possible to choose the permittivities and permeabili- 
ties of the media and the velocity of the relative motion in 
such a way that this anomalous situation would arise. Would 
this situation be attainable in a special class of media (good 
conductors)? If so, what restrictions would have to be im- 
posed on the frequency dependence of the surface impe- 
dances? One can show, in particular, that if the impedances 
have a power-law frequency dependence, 9 ;,, -us (with 
s = 1/2, this dependence corresponds to the normal skin ef- 
fect; with s = 2/3, it corresponds to the anomalous skin ef- 
fect), the work U is always negative. In other words, one 
cannot obtain useful work from the system. 

Analysis of expressions (24) and (25) shows that the 
energy extracted from the system, U = (PI  + yP, ), will be 
positive if the function Z(w,Z) lies primarily in the band 

where 8,  and 6, are determined by 

and TI lies in the interval 

In particular, one can assume that Z(w,Z) is always zero 
outside the band (32). We are then naturally led to ask 
whether it is possible to choose the impedances g; ( 0 )  and 
( ; ( a )  in such a way that the function Z(w,Z) has this prop- 
erty. We can achieve this result by choosing the impedances 
in the following way: C ;  (w) is nonzero in the band 
w,, < o < w , , , g ; ( w )  isnonzerointhebandw,, <w<o, , ,  
and the boundaries of these bands satisfy the inequalities 

We see that the following condition must hold: 

On the other hand, we have w ,, < a , ,  , but by virtue of ( 33 ) 
inequality ( 34) can nevertheless be satisfied. This example 
shows that if this anomalous situation is to be realized the 
surface impedances of the metals must have some specially 
matched frequency dependences. 

We wish to thank M. L. Levin, L. P. Pitaevskii, and S. 
M. Rytov for a discussion of these results. 
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