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The me!hod of collective coordinates is used to develop a theory of perturbations in the vicinity of 
the classical solution for an anisotropic Heisenberg ferromagnet. A detailed analysis is made of 
the first three orders of perturbation theory for a ferromagnet whose ground state is of the domain 
wall type. 

Recent investigations of nonlinear field-theory models 
have been concerned particularly with the problem of quan- 
tization of the field close to the classical solution of the equa- 
tions of motion.'-9 This problem arises in the theory of mag- 
netism when, for example, a study is made of entities such as 
domain walls and of their interactions with structure defects 
or with quasi particle^.^^'^ 

There are several approaches which can be used to tack- 
le this problem (for reviews, see Refs. 4 and 9 ), among which 
the most consistent and providing the fullest treatment is the 
method of collective coordinates, proposed by Bogolyubov 
in connection with the problem of the interaction of a parti- 
cle with a boson field.', The method was developed subse- 
quently to deal with strongly interacting systemsI4 and also 
as the basis of a procedure for canonical quantization in 
models of extended objects.'-' 

The fundamental side of the method has been discussed 
freq~ent1y.I.'~ We shall recall briefly its main features. The 
essence of the method is the selection, from the variables of a 
system, of those parameters of the symmetry group of the 
Hamiltonian of the problem which ensure that the laws of 
conservation are satisfied rigorously to all orders of pertur- 
bation theory and thus one of the main difficulties known as 
the problem of zeroth modes is eliminated.'~~ It is important 
to stress that, in contrast to other approaches,6.'0." the 
method of collective variables provides means for treating 
the problem at the quantum level right from the beginning 
without recourse to the classical analog of the investigated 
system, and makes it possible to avoid the operator ordering 
problem. 

We use the method of collective coordinates to develop 
a perturbation theory close to the classical solution of an 
anisotropic Heisenberg ferromagnet whose ground state is of 
the domain wall type. The small parameter of the theory is 
1/S "*, where S is the spin. 

1. We shall consider the model of a biaxial ferromagnet 
described by the Hamiltonian 

as, 
H = J [ J d 1 - J S - J ~ S ]  ; a=*, 2, 3, 

where S, are spin operators satisfying the following commu- 
tation relationships: 

Following the general idea of the method of collective 
coordinates, we introduce an additional variable p and the 

conjugate variable II: [p,II] = i, which is the generator of 
translations in the space of Zp (i.e., in the space of the 
functions of the variable p ) .  We assume that 
Z = &", Zp is a tensor product of 2YP and Zs in the 
space of the states H, while 1/2,q(x) ) are the eigenvectors of 
the commuting operators p and S, ( x ) .  We assume that 
R i P ( x ) )  is a functional whose actual form will be defined 
later, but which has the following property: 

We consider the space of the states H as a subspace of Z, 
described by the condition 

PI., .)=O, (4)  

and define in 2Y a unitary transformation 

where 

X=R{cp(x)) ,  @ ( x )  =cp(x+X-A). 

The corresponding operator is 

where - 'PC, - ill6 are the operators of the translations in 
Zs and 2YP, respectively: 

We also mention a relationship, which will be used later and 
which follows from Eqs. (3) and (7 ) :  

The significance of the transformation given by Eq. (5)  is 
that in the new representation the spin variables are invar- 
iant under translations in Xs, as is easily demonstrated. 
This makes it possible to identify the classical component 
corresponding to a domain wall without disturbing the 
translation symmetry of the Hamiltonian of the system. The 
zeroth (translation) mode is excluded by the condition (4) ,  
which after the transformation of Eq. (5)  becomes 

Unless stated otherwise, we always assume that S, rep- 
resents the following operators: s , ,  S, = S, +_ is,. 

Using Eqs. (6)-(8), we find that 
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where E{ I I ,S ,~  (xk ) ) is given by the equality 

k = i  k-i 11-1 

We must mention that in view of the condition ( 9 ) ,  the term 
R{S3 ( x ) )  in the argument of the last S  function can be omit- 
ted and then, since [p,S, ] = 0, there is no need for ordering 
of the operators when integrating with respect to 7. 

Bearing in mind that [ S ,  ( x )  ,S3 (x' ) ] 
= - + S(x - x')  S+ - ( x ) ,  we have 

where ~ ( 3 )  = 0, E (  + ) = 1 ,  E (  - ) = - 1 .  
We define R { p ( x ) )  as the solution of the equation 
m 

f ( x - R )  cp ( x )  ax. (12)  -- 
where f ( x )  is a certain given function, which falls sufficient- 
ly rapidly at infinity. The functional R { ~ )  introduced in this 
way clearly has thenecessary property described by Eq. ( 3 ) .  
In our subsequent analysis it is sufficient to expand R { p )  in 
the range of low values of SR = ~ { p ,  + 6 ~ )  - R{P,) .  
Varying the expression (12)  and using the condition 
16R / g 1 ,  we find that the method of successive approxima- 
tions yields 

6 1 1 = 6 ~ ( ~ j + 6 ~ ( ~ ) + 0 [  ( 6 R )  '1, 

6@')=c f (x-R.) 6cp (2)  dx, c-I = j j1 (x -Ro)  cpo ( x )  dzl 

where R, = R{p, ( x ) ) .  
We carry out one further unitary transformation corre- 

sponding to rotation of the coordinate axes: 

where a ando are the Euler angles, and we use the Holstein- 
Primakoff representation for spin  erato tors:'^.'^ 

S+-(2s-a+a) "a, S-=a+(2S-a+a) ", SpS-a+a, 

[ a ( x )  , a ( x r )  ] = [ a + ( x )  , a+ (x ' )  1 =O. 

Since in the representation obtained by the transformation 

of Eq. (6) the spin variables are invariant under translations 
in XS and the classical solution corresponding to a domain 
wall is not degenerate, on the basis of Eq. ( 9 ) ,  there are 
angles a ( x )  andP(x) such that as a result of the transforma- 
tion given by Eq. (14)  the classical solution becomes 
(S,  ( x ) ,  S2 ( x ) ,  S3 ( x )  ) = (O,O,S). Consequently, following 
Refs. 1 5  and 16, this makes it possible to consider weakly 
excited states using the quantity 1/S ' I2 as the formal param- 
eter of the expansion of the expressions given in the system 
(15) .  

Using Eqs. (9) ,  ( l o ) ,  ( 13 ) ,  and (15) ,  as well as the 
familiar relationship 

exp (- ieSa)SB exp ( ieSa) =AflTa ( e )  ST , (16)  

where A " are matrices of the rotations in g 3 ,  we find 

As far as q, {I IkSak (x ,  )) is concerned, in subsequent calcu- 
lations we need to know that x, occurs in this expression 
only in the combination Z, &(ak  ) f (xk  ) . 

We now consider Eq. ( 10). The transformation of Eq. 
(14), subject to the comment made immediately after Eq. 
( lo ) ,  yields 

where the following notation is introduced: 

F ( E )  =G exp (-iPE) G+ exp (iIIE), 

Since the expansion of F ( 6 )  in powers of S  - 'I2 is not 
regular, we use the fa& that SR = O ( S  - '), which can be 
deduced from Eq. ( 17), and we represent F i n  the form 

We show below that the coefficients Fk of this series now 
have a regular expansion in the powers of S  - '/' and they 
obey Fk = O(S - k / 2 ) .  Then, after integration with respect 
to 6, Eq. ( 18a) becomes 
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so that the problem reduces to finding expansions for F,.  
Using Eqs. (7) and ( 16), we can transform F to an expres- 
sion more convenient in expansions: 

G {S,  ( x )  )e-iPEG+ {S, ( x )  )einE 

. exp{i I 8 ( X I  [Sz(x+E) -S2(x)  ldx}  exp{ i%(II -~) , l .  

(19) 
Hence, using Eq. ( 15 ), we find 

d 
= e ip{ i v  5 a -  cos fi dx}  [i+O(S-') ] exp  [$ ( I I -P ) ]  . 

-m dx 

The first exponential function in the above expression may 
be allowed for by the tran~formation'~ 

which has a simple meaning: the second term in Eq. (20) is 
simply the classical momentum of a domain wall; on the 
other hand, in the representation obtained as a result of the 
transformation ( 6 )  the quantity rI is found to be the opera- 
tor of the total momentum of the system, so that the trans- 
formation of Eq. (20) represents inclusion of the momen- 
tum in the classical solution. Finally, using Eq. (20) and the 
expansions of the expressions in the system ( 15), we obtain 

where 

2. We now have all the expansions necessary to find the 
Hamiltonian ( 1 ). The terms containing the derivatives of 
the spin operators are calculated as follows: 

[ d y l d ~  dx' GUS, ( x )  S6 (2')  U+G+] .=,, . 

Using Eqs. (15), (17), (18), and (21), we obtain 

where E, is the classical energy of a domain wall, 

1 
H,=2* J ~ x { I , ~ " - - I ,  sin 8 cos fi + - 1,[2 sin 28 sin2 a 

4 

+2i sin 2asin B-ip1 sin 2a 1 q1(x f )s in2  p ( ~ ' ) d x f ] } ~  +Kc .  , 

1 
-I3 (1-3 sin2 a sin2 8 )  ] a+a + - [ ( I ,  ( p ' )  '-I2 sin2 

2 
+I3 (COS 2a + sinz fi sin2 a-i cos fi sin 2a )  )aa +H.c.] 

1 
- - [ ( I ,  (2q11p' cos fH-qiN sin 8 )  +J$q, sin 8 (cos 2a 

2 
1 

-i cos fi sin 2a),)  oa + 3. c.] - - [ I ,  (q,')' sinZ 8 
8 

i 
-Jsq," cos 2a sin2 p ]  d - - JSoqe sin 2a sin2 i3 

2% 
1 -- 
2 

l,q, sin 20 sin2 8 (P-II) }dx, qi=qi{S+z(x)}.  

The above expression reflects the fact that in the case under 
consideration for x - f a, the quantity p(x )  tends to con- 
stant values, which are multiples of T. Moreover, we also 
assume a = const, because this considerably simplifies the 
calculation. We confirm the validity of this assumption lat- 
er. 

The condition H, = 0 gives 

1,~"-(J2- la  sinz a )  sin 8 cos fi=O, 
(23) 

fit j sin2 8 ( X I )  q ,  ( X I )  d d  - 2 sin 8-0. 
- m 

Using Eq. ( 13), we can readily show that for a = const, the 
system of equations (23) is internally self-consistent for any 
selection of the function f in Eq. ( 12), so that we obtain the 
familiar result" 

fi ( x )  = *2 arctg exp (& +) , A= [I, /  (Iz-]$ sin2 a),]*12, 

where the choice of the signs is governed by the boundary 
conditions imposed on p ( x )  in the limit x - + a. 

This circumstance allows us to simplify greatly the 
expression for H,. For this purpose we choose the function 
fin Eq. ( 12) as follows: 

and we go to the limit L -+ in Eq. (22). The result is then 

da+ da i da+ + - I,A sin 2a (- a-a+ - 
a x  

1 + [212 cos 284-1, (4  sin2 a sin2 p-1) ]a+a + [-I,  (cos 2a 
2 

11 16 Sov. Phys. JETP 71 (6), December 1990 V. I .  Finokhin 11 16 



1 
-i cos p sin 2.) aa + a. c.] + - J, 5 axf sin (x) sin 1 (r') 

4 8  
[2 (cos 2a-i sin 2a (cos p (x') - cos p (x) ) ) p+ (x) a (x') 

- ( (COS 2a-i sin 2a (cos p (x) 

+ c o s B ( x f ) ) ) a ( x ) a ( x ' ) ~ ~ . c . ) ] } d x  

-J,AII sin 2a. ( 2 5 )  

We have allowed here for the fact that 

3. In the diagonalization of H2 we can use the method of 
canonical transformations of Ref. 15: 

where u, and v, satisfy the conditions of unitarity 

and in the case under consideration are given by the equa- 
tions 

e -- 
2 

(COS 2a+i sin 2a cos p) 71. - ~j dEf sin @( I )  sin p (El) . 
4 

.{ [COS 2a-i sin 2a(cos p (g') - cos p (E) ) I uk (El) 

- [COS 2afi sin 2a (cos (E') + cos P (g) ) ] vA (E') }=O, 

(27) 

E E 
- -(cos Pa-i sin 2a cos !3) uA -- j dE' sin p (E) sin p (8') 

2 4 
~{[COS 2a-i sin 2a (cos p (El),- cos p (g) ) ] uA(E') 

- [COS 2a-i sin 2a (cos p (E') + cos p (E) ) ] ur (8') ) =O. 

Here, 6 = x/A, w, is the corresponding eigenvalue, and 
E = J,/(J2 - J3 sin2 a). 

We now use the condition (9).  We note that Eq. ( 12) 
implies that this condition is equivalent to 

Using Eqs. ( lo),  ( 15), ( 16), and (26) we obtain 

GU jj(x)s,(x) dx U+G+ ---t (s/P)' C J sin p (x) 

We subtract the equations of the system (27) from one 
another, multiply the difference by sin 8, and integrate with 
respect to x. Integrating by parts the terms containing the 

derivatives of u, and v,, and using Eqs. (23) and (24), we 
find that 

mi J (ur+vA) sin i3 &SO. 

We can see that the condition (9)  reduces to elimination of 
the states with ok = 0 from the spectrum and, therefore, in 
the first three orders of perturbation theory the model is 
described by the Hamiltonian 

H-&+S z o A & k + b k - ~ ,  MI sin 2.. 

By way of example, we consider the case E 4 1. We seek 
uk , v, , and o, in the form of expansions in powers O ~ E .  In the 
zeroth approximation, the solution of the problem described 
by the system (27) is well known:16 

a )  discrete spectrum: 

b)  continuous spectrum: 

The solution a )  should, as demonstrated above, be rejected 
because of the condition (9).  Then, applying the standard 
methods, we find that to within terms of order E, the result is 

uA=C [(ik + th a) e-'AE 

is -- n nk 
sin 2a(e-'k' - - sech - sech ) ] , 

4 2 2 

e cos 2a-k sin 2a 
vk=--c[ 4 1+k2 (ik + th E) e-Ik' 

n nk -I- i sin 2a (e-" - - sech - sech , 2 2 11 

e 
0A=2(12-J3 sin2a) [i+k2 - -(2 4 cos 2a+k sin 2a) I. 

It follows from the above solution that, in particular, in 
the case under consideration there is no scattering of domain 
walls by spin excitations, as one would expect on the basis of 
Ref. 17. 

It  should be stressed that although this model is fully 
integrable, a similar approach can be used also to deal with 
multidimensional models as well as with models that allow 
for the interactions that keep the equations from being com- 
pletely integrable5 and whose inclusion is important in stud- 
ies of relaxation pro~esses.'~~" In particular, in the case of a 
domain wall on transition to the three-dimensional case the 
changes occur only in the stage of diagonalization of Hz and 
they reduce to an additional Fourier transformation of the 
operators a + and a in the domain wall plane (however, in 
this case there is scattering of domain walls by spin excita- 
tions-see Ref. 1 1 ) . 

The author is grateful to V. G. Bar'yakhtar for discuss- 
ing the results of the present paper and for valuable advice, 
and to Yu. I. Gorobets for numerous stimulating discus- 
sions. 
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