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The development of wave turbulence is considered in which the wave excitation and attenuation 
regions are separated by an extended intertial range. The conditions which must be satisfied by 
the function that describes the dissipation in order for a nonequilibrium stationary distribution to 
exist are found. The effect of dissipation on the structure of the stationary turbulence spectrum is 
described for both the inertial range (in which the effect is small) and the region of strong 
dissipation. The general theory is verified in numerical experiments for three physical systems: 
capillary waves in deep water, gravitational-capillary waves in shallow water and three- 
dimensional sound with positive dispersion. 

The theory of fully developed wave turbulence for the 
most part has already passed the stage of finding stationary 
Kolmogorov solutions'-5 and studying their ~ t ab i l i t y~ -~  in 
the presence of an infinite inertial range. It remains to inves- 
tigate in whatever ways are possible how turbulence behaves 
in more realistic situations, taking into account the fact that 
the pumping or the wave source is usually spectrally narrow 
and that the ratio of the wavelength of the excited waves to 
the wavelength of the efficiently decaying waves is finite; 
even the finiteness of the total number of modes in the system 
can be important. The problem of matching the Kolmo- 
gorov spectrum with sources of different types was discussed 
in Ref. 9. In the present paper we study the structure of the 
stationary spectrum of wave turbulence in the presence of 
dissipation distributed in k-space. Three questions naturally 
arise: 

1. What should the function look like that describes the 
behavior of the damping rate of the waves in k-space in order 
that a stationary distribution should exist? 

2. What sort of distortions of the Kolmogorov distribu- 
tion in the inertial range does the presence of a remote dissi- 
pative region introduce? 

3. What is the structure of the stationary spectrum of 
wave turbulence like in the strong-dissipation region? 

We will consider weak wave turbulence. In this case the 
evolution of the pair correlations-the wave occupation 
numbers nk-obey a kinetic equation: 

Here yk is a function that describes the interaction of the 
waves with the external environment. In those regions where 
yk > 0 holds it corresponds to a source, and where we have 
yk > 0, to a sink, i.e., dissipation. The function I, is the colli- 
sion integral, which describes the interaction of the waves 
with each other. For compactness of the presentation, we 
will restrict the discussion to wave turbulence with a decay- 
type dispersion law (the nondecay case can be treated analo- 
gously). In this case three-wave processes play the main 
role, and the collision integral has the form 

Here V, ,, is the matrix element of the interaction, and w, is 
the wave frequency. 

When the waves interact the entropy of the wave system 

s = j ~ I I  nkdk 

should grow. In fact 

As can be seen, the first term on the right-hand side of Eq. 
(3) ,  which describes the variation of the entropy due to the 
interaction of the waves with each other, is nonnegative. 
Consequently, it is necessary that the condition 

J ykdkco (4)  

be satisfied in order that a stationary distribution exist. The 
physical meaning of this requirement is obvious: in order 
that a nonequilibrium stationary state may exist, the exter- 
nal environment must provide a steady outflow of entropy 
from the system. 

The next fundamental property of the collision integral 
is that the energy and momentum conservation laws be 
obeyed. Formally, this is connected with the presence in Eq. 
(2)  of 8-functions of the frequencies and the wave vectors, 
which express the energy and momentum conservation laws 
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during each elementary interaction event of the waves. We 
will consider isotropic distributions. The total momentum of 
such distributions is zero. Conservation of energy 

when the waves interact is expressed by the following equa- 
lity: 

This relation is valid if the integrals that enter into it con- 
verge. Assuming the absence of singularities in nk at k = 0 
and the power-law behavior of the functions w, and V, ,, as 
k-0, it can be shown that the integrals in Eq. (5)  converge if 
in the region of large k the occupation numbers n, fall off 
faster than k - m - d .  Here rn is the homogeneity index of 
V, ,, in the limit k- CQ,  and d is the dimensionality of k- 
space. In order to clarify the physical meaning of this condi- 
tion it is necessary to introduce the concept of energy flow in 
k-space. Relation (5) allows one to write the collision inte- 
gral in divergence form: 

div p ~ = - o ~ I ~ ,  (6)  

where pk is the energy flux in k-space. The rate of change of 
the total wave energy dE /dt as a result of their interaction 
with each other is equal to the integral over the surface of a 
sphere of infinite radius of the normal component of the vec- 
tor p,. In order that this integral vanish as k- CQ , as may be 
seen from Eq. (61, it is necessary that n, fall off faster than 
k m - d  (the distribution n, - k - " - is the Kolmogorov 
spectrum corresponding to a constant energy flux in k- 
space). 

For the stationary distribution it follows from Eqs. ( 1 ) 
and (5) that y, should satisfy the condition 

From Eq. (7)  it is clear that if the function y, is to 
ensure stationarity it must pass through zero somewhere, 
i.e., it must describe sinks as well as sources of wave energy. 
The relative positions of the sources and sinks in k-space can 
in no way be arbitrary. Let us consider the isotropic situa- 
tion. We define the energy density in wave number space 

Ek= ( 2 k )  d - i n ~ k =  (2k)d-'nmknk 

and the corresponding flux P, with the spherical normaliza- 
tion dPk /dk = (2k) d -  ' .mu, I,. The stationary kinetic 
equation in this case can be written in the form 

We integrate it from some wave number k, to infinity: 

Assuming that the occupation numbers decay rapidly 
enough (faster than k - " - d),  we have P( CQ ) = 0. Note 
that for all the cases of wave turbulence encountered (see 
Ref. 4) we have rn + d>a, where m and a are indices that 
characterize the power-law behavior of the matrix element 
and the dispersion law as k- co . This inequality expresses 

the fact that for large k the nonequilibrium stationary distri- 
butions should decay as a function of k at least as rapidly as 
the equilibrium Rayleigh-Jeans distribution n, = T/w, . 
This means that at large k, the energy flux is positive, 
P(km ) > 0. Indeed, in the equilibrium solution we have 
E,  = const and P = 0; for more rapidly decaying distribu- 
tions the flux is directed toward regions where the energy 
density is less, i.e., towards larger k. Returning to Eq. ( 9 ) ,  
we see that for the stationary solution there exists k, such 
that for arbitrary k > km 

m - 

Thus, a necessary condition for the existence of the nonequi- 
librium stationary distribution is the presence of an energy 
sink in the region of large k. 

The asymptotic limit of the function y, ask-. cc should 
also satisfy some condition. To find it, let us consider the 
Kolmogorov situation in which the regions of pumping 
(y, > 0 )  and dissipation (y, < 0 )  are separated by an iner- 
tial range, where y, ~0 (or more precisely y,n, <I, ). The 
Kolmogorov spectrum n, = AP '',k - " - should be real- 
ized in the inertial range. Here A is a dimensional constant, 
and 

is the energy flux associated with the distribution. In the 
dissipative region the function y, should be such as to ensure 
the absorption of the flux transported in the inertial interval. 
In the region where y, z O  the flux is constant. Substituting 
the Kolmogorov distribution n, - k - " - in the relation 

we see that if the function y, grows more slowly as k- CQ 

than the power function k " - ", then the dissipation is not 
able to ensure the absorption of all the flux. 

Of course, the requirement that the flux P vanish as 
k CQ has meaning only when there are an infinite number of 
modes in the system. If there exists a maximum wave num- 
ber k, < CQ and a maximum frequency w, corresponding to 
it, then n(w, ) does not, generally speaking, have to vanish. 
Let us consider, for example, the case of a finite and discrete 
w-space with an equally spaced spectrum: w,  = iw,, 
i = 1, ..., M. Interest in such a system is due, in particular, to 
the fact that just such a set of frequencies is excited by a 
spectrally narrow source in a continuous medium in which 
the waves have a decay-like dispersion law (see Ref. 9) .  De- 
fining the energy flux by the formula 

6 

P, = z l l r .  
1-1 

we see that P, = 0 holds by definition, and P, = 0 holds as a 
consequence of energy conservation. Indeed, the condition 
P, = 0 is relation (5)  written in discrete form. Consequent- 
ly, in this case the function yi can be quite arbitrary. Only the 
requirement that condition (4)  be satisfied remains in force, 
or, in discrete form, 
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In the case of the model system with three spherical harmon- 
ics (an w-space consisting of three points) for which we have 
according to Eqs. ( 1 ) and (2)  

an, - =VZ2 (n12-2nIn8) -2VI2 (n,n,-n3nI-nsnJ +yznz, 
at 

it is possible to convince oneself that 
3 

is a necessary and sufficient condition for the existence of at 
least one (and there may be several) stationary state with 
positive n, , n, , n, . 

When the system has an arbitrary number of modes, 
condition ( 1 1 ) can be proved sufficient only in the limit 
Xy, - - 0. In this case the system is almost in equilibrium 
even though individual yi can be very large. Indeed, relation 
(3)  in the discrete case takes the following form: 

where U(i,l) is a positive function expressed in terms of the 
square of the matrix element and the wave frequencies. It is 
evident from Eq. ( 12) that as Zyi - - 0 each of the expres- 
sions in parentheses in the first sum should approach zero. 
This is possible only for the Rayleigh-Jeans distribution 
ni = A  /i (here i is the coordinate in w-space, and ni is the 
wave density in k-space taken as a function of frequency). 
Recall that we are considering the isotropic situation. The 
stationary distribution can be constructed by perturbation 
theory: ni = A  /i + pi + ... . Substituting such a distribu- 
tion into the discrete analog of the kinetic equation, we can 
show that 

and the small parameter on which the expansion is based is 
(Xyi)*/(Byf). Thus, as By, -0 the effective "temperature" 
of the stationary distribution tends to infinity, and the char- 
acteristic time required to establish it grows. 

We have numerically modeled the establishment of the 
stationary state for the discrete kinetic equation which de- 
scribes capillary waves on deep water. In this case we have 
a = 3/2, m = 9/4, d = 2, and the kinetic equation can be 
written in the form4 

where 

x = k /I, and the function y, has been chosen in the form 

Figure la  depicts the time dependence of the total 
energy of the distribution for M = 100, A = 100, By, 
= - 571.4. Figure lb shows the logarithmic derivative 

d Ig E/dt. It can be seen that for t k 3.8 the evolution enters 
the exponential regime 

By determining the slope of the curve in Fig. lb  we can find 
the characteristic time At. It is interesting to trace out the 
variation of At with the growth of the number of modes M. 
Function ( 14) grows slower than k - = k 3'4 with increas- 
ing k, therefore in an infinite system the stationary distribu- 
tion should be absent. In a finite system, however, the char- 
acteristic time At falls as a function of M as a result of the 
growth of I Zy, I (see Fig. lc) .  It is clear that in the limit 
By,-0 wehave At -'-Xy,. 

FIG. 1. 
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Two other common wave systems with a decay-like dis- 
persion law-gravitational-capillary waves on shallow wa- 
ter (two-dimensional sound), for which we have d = 2, 
a = 1, m = 1, m, = 1, U(k,l) = k(k  - I), and three-di- 
mensional sound, for which d = 3, a = 1, m = 3/2, m, = 1, 
U(k,l) = k '(k - I)2-demonstrate similar behavior when 
numerically modeled. 

Let us turn now to the second of the questions formulat- 
ed in the beginning of the article. Assume that in k-space, 
starting with some k,, there is a strong wave damping 
( y, < 0), leading to the rapid falloff of the occupation num- 
ber n, for k > k,. In the region k, ( k 4  k,, where k, is the 
scale of the source, the stationary distribution should be 
close to the Kolmogorov distribution n: - k - " - if the 
condition for the interaction to be local holds, i.e., if the 
collision integral in the Kolmogorov solution converges. It is 
easy to convince oneself that if for k, g k  the asymptotic 
limit of the matrix element has the form 

the collision integral (2) converges for the power-law solu- 
tions n, = k -' if the index S falls within the localization 
range:* 

As is obvious, the Kolmogorov index lies right in the 
middle of the localization range, which exists if 

If the localization condition ( 17) is fulfilled, then the devi- 
ation of the stationary solution from the power-law distribu- 
tion caused by the effect of the distant sink can be found with 
the help of perturbation theory in the small parameter 
k /k,, . 

For isotropic distributions the angle-averaged three- 
wave collision integral is given to within some unimportant 
constant factors by4 

0 

R ( k ,  kt, k2)=J Vkt2\2 (klkZ)d-1Ad-t6(ka-kta-kza) 
- 0  (k-kt) (ntnz-nknt--nkn,). 

(18) 

Here A, ' is (to within a factor of 277) the result of the angle- 
averaging of the d-dimensional &function of the wave vec- 
tors, 

Az='/z[2 (kzktz+kzk22+ktzkzZ) -k4-kt4-kZL]'t*, 
A,=kk,k,. 

If the Kolmogorov power-law solution nz = Ak - " - 
holds in the infinite interval k ~ ( 0 ,  co ), then the collision in- 
tegral is identically equal to zero. The absence of waves for 
k > k (we assume that n = 0 holds fork > k) causes the colli- 
sion integral to differ from zero by a small amount at k < k,, : 

m 

61t=2.4'j dk, Vtkz~z(ktk,)d-tAd-t[ (kk,) -m-d 

R, 

Here k = k 7 - k ". In order that the distribution n, be 
stationary, the additive term SI,,  which arises as a result of 
the boundedness of the inertial range, should be balanced by 
the additive term 61, due to the small deviation of the solu- 
tion from the power-law form (n, = n: + Sn, , Sn, nz for 
k<k,):  

Here L is the operator of the kinetic equation linearized 
about the background 2:. This integral operator is scale- 
invariant LA, = A " - "L, , with index m - a = - h. Thus, 
in order to determine Sn,, it is necessary to solve the linear 
integral inhomogeneous equation 

First we calculate SI, . Since we have k, > k, & k, we make 
use of the asymptotic behavior of the matrix element 
limIV,,,/ = and expand the expression in 
brackets in Eq. ( 19) out to the first nonvanishing terms in 
(k  /k, )". As a result we obtain 

In accordance with the localization condition ( 17) we have 
61, > 0. 

As a consequence of the homogeneity of the operator L 
the equation 

has a power-law solution 

whereg(S) is a dimensionless integral obtained if we substi- 
tute Sn, = k -'in Eq. (20) and we then take out the factor 
Av2k h - S  . This is the case, however, only if the index 
S = x - h falls within the localization range of the collision 
integral (20). As can be seen, the localization range (S2 , S, ) 
of the linearized collision integral (20) is the same as for the 
total integral (18). In our case, i.e., upon substituting Eq. 
(22) in Eq. (21), we have x = m + d + 1 - m, - a ,  and 
the quantity x - h = 2m - m, + d + 1 - 2a coincides 
with the lower boundary of the locality interval S, [see Eq. 
( 16) 1. Neglecting the slow logarithmic dependence in the 
integration, we obtain 

Formula (25) is valid for k <  k, and shows that the finite- 
ness of the scale of the sink gives rise to an increase of the 
occupation numbers in the inertial interval since 6n, > 0. As 
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k  increases the quantity Sn, also grows, i.e., some rising of 
the distribution takes place. Of course, for k z  k ,  an abrupt 
falloff of n, should take place, which can no longer be de- 
scribed within the framework of perturbation theory. Thus, 
the stationary distribution should look roughly as depicted 
in Fig. 2a, where the dashed line corresponds to the Kolmo- 
gorov power-law solution. The dependence of log n, on 
log k  should have an inflection point (denoted in Fig. 2 as 
k  *), in which the current index of the solution 

passes through a minimum (see Fig. 2b). The wave slope for 
k  5 k  * is apparently due to an effect ofthe "bottleneck" type, 
arising as a consequence of the falloff of the flux at k  2 k  * due 
to the decrease of the occupation numbers at k  5 k ,  . This 
picture is confirmed by a numerical experiment that was 
carried out for capillary waves on the surface of a deep liquid 
and for sound. Thus, for example, Fig. 3a shows the depen- 
dence of the running index of the steady-state solution on the 
wave vector, obtained by numerically modeling two-dimen- 
sional acoustic turbulence. A well-defined maximum of 
S ( k )  is clearly visible at k  * = 77. By using various k,  in the 
course of the numerical experiment, one can easily convince 
oneself that the observed effect is connected with the finite- 
ness of the scale of the sink-the location of the minimum is 
proportional to k ,  : k  * = Bk, ; for two-dimensional sound 
and the attenuation arising as a result of the jump at k  = k ,  , 
we have B z  1/3. Figure 3b shows how the index S ( k )  be- 
haves in the analogous situation for three-dimensional 
sound. Note that nonmonotonic behavior of the index has 

been previously observed in a numerical experiment carried 
out by A. V. Shafarenko and one of the authors of the present 
paper (G.  E. F.). 

Let us turn, finally, to the last of the considered ques- 
tions. Let us consider the behavior of the stationary turbu- 
lence spectrum in the dissipative region for k $  k ,  . We as- 
sume that the damping rate y, grows with k faster (or falls 
off more slowly) than the inverse interaction time of the 
waves in the inertial interval (i.e., the function k  - h ) .  AS a 
consequence of this, in the dissipative region the occupation 
numbers should fall off as a function of k  faster than the 
Kolmogorov law. The character of this falloff depends on 
what kind of interaction is dominant for waves in the dissipa- 
tive region: between themselves or with waves from the iner- 
tial range. The dependence on k  of the interaction time of the 
waves with sharply different wave numbers can be found by 
substituting the asymptotic solution for the matrix ele- 
mentI5 

in the collision integral ( 18). If the damping rate increases 
faster with k  than t ; ' ( k ) ,  then the asymptotic behavior of 
the distribution as k- w is determined by the interaction 
among the waves in the dissipation region. In this case an 
exponential "quasi-Planck" spectrum 

nk=Bok-* exp ( - a d a m ) ,  

is formed, analogous to the exponential asymptotic limits 
arising in the shortwave region when the distribution evolves 
freely (see Ref. 10). Indeed, assuming that the damping rate 

S, FIG. 3. 
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FIG. 4. 

y, grows according to a power law y, = - A k a  (e.g., for 
the viscosity a = 2), but the main contribution to the colli- 
sion integral comes from integrating over the region k, <k. 
We obtain the stationary kinetic equation in the form 

Since the integral standing on the right side of Eq. (27) is a 
nondecreasing function of k, a solution of such a form can 
exist only if the inequality 

a>2m-m,f I-a (28) 

is satisfied. For all three wave systems discussed in this arti- 
cle as well as viscous damping this inequality is fulfilled. 
Indeed, numerical modeling shows that for the choice 

7h=A A!,,-A Iv 
the occupation numbers in the strong dissipation region fall 
off exponentially. Figure 4 shows the dependence of the cur- 
rent index of the steady-state solution 

on the wave number for capillary waves on the surface of a 
shallow (a = 1 ) and a deep (a = 3/2) liquid. The segment 
on which S ( k )  decreases linearly corresponds to exponen- 
tial falloff of n, . 
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