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Using the Lyapunov method, stability of 3 0  flows of an ideal incompressible fluid is studied. The 
integrals expressing the 3 0  "vector" freezing of the curl of the velocity of a 3 0  flow into the flow 
itself are stated in terms of locally conserved scalars; this allows us to use them in Lyapunov 
functionals by means of the method of Lagrange undetermined multipliers. The concept of 
"dynamic" variations is introduced, equivalent to accounting for supplemental "motion 
integrals" involving invariance of the system (only those variations of the system that are 
compatible with its equations of motion are admissible). It is shown that for such perturbations, 
planar flow that is stable with respect to 2 0  perturbations remains stable with respect to 3 0  
perturbations as well. A sufficient condition for stability of toroidal vortices is obtained. 

1. INTRODUCTION 

Stability of a system is closely associated with the exis- 
tence of "integrals of motion." This fact is explicitly and 
directly used in the case of one of the most efficient methods 
for investigation of stability of motions-the Lyapunov 
method in which the Lyapunov function is constructed with 
the aid of a set of motion integrals (cf., e.g., Refs. 1,2). Ar- 
nol'd generalized the Lyapunov method to the the stability 
of 2 0  (Ref. 3) and 3 0  (Ref. 4) incompressible flows. In the 
2 0  case, Arnol'd's variational method has been quite fruitful 
and popular. Using this method, a stability criterion for 
planar flows of an ideal fluid in the form of a generalized 
Rayleigh theorem4 was obtained, as well as a number of 
results concerning the stability of flows in the atmospheres 
and oceans of and also concerning the stability of 
plasm  configuration^^-'^ (the references cited are far from 
complete and presented solely for illustration). However, in 
the 3 0  case, Arnol'd did not succeed in obtaining the veloc- 
ity field Vof a flow for which his quadratic form S2E would 
be of definite sign or 3 0  perturbations4 which would then 
signify stability of a flow in the Lyapunov sense. In the subse- 
quent literature such flows have not been considered; in any 
event, they are unknown to the author. 

Since the Lyapunov method provides only a sufficient 
condition for stability, this does not mean that 3 0  flows or 
perturbations are necessarily unstable. On the contrary, 
flows are known, for example Coulette flow,15 whose 3 0  
stability has been established by the spectral method. One 
would expect in such a situation that allowing for supple- 
mentary integrals of motion, i.e. selecting another set of inte- 
grals or another Lyapunov functional would permit us to 
make some progress in the problem of 3 0  stability of mo- 
tions. This is demonstrated in the present paper. 

When discussing supplementary integrals of motion, it 
is useful to note that fixing an integral of motion amounts in 
essence to stratification of the phase space of a fluid (the 
"points" in this space are complete sets of the independent 
hydrodynamic fields characterizing the instantaneous state 
of a moving fluid) into "sheets" within which the motion of 
a point is restricted. The manner in which this stratification 
is imposed, is, however, another problem. For example, con- 
servation of vorticity of a 2 0  flow in the xy plane, 

= (curl V),,  is usually formulated in a form of an unde- 

termined Lagrange "multiplier" in the problem of condi- 
tional extrema. Here the integral of motion 

6 - j  F ( R ) d z d y  (1.1) 
D 

[where F ( n )  is an arbitrary function of its argument and D 
is the region of the flow] associated with freezing of 0 in the 
flow is explicitly included into the Lyapunov functional and 
arbitrary variations S n  are allowed. In the 3 0  case, how- 
ever, the freezing of the curl V in the flow has been taken into 
account4 through restrictions on the form of the variations 
SV in the velocity when only "equivorticity" variations are 
admitted which do not take the "point" outside the corre- 
sponding "sheet". Both methods of imposing "stratifica- 
tions" are equally valid, although the first is preferable since 
it allows us to extend without difficulties a set of motion 
integrals, provided of course that one succeeds in formulat- 
ing integrals of the form ( 1.1 ). In this paper, unlike that of 
A r n ~ l ' d , ~  the freezing-in of the vector curl V will be stated in 
the form of an infinite series of invariants of the form ( 1.1 ) 
(cf. Sec. 2). This would allow us to account for supplemen- 
tary "sheets" in the phase space of the fluid in the form of 
restrictions on the variation of velocity (Sec. 3) and to ob- 
tain a criterion for the 3 0  stability of flows (Sec. 4).  

2. INTEGRALS OF "VECTOR" FREEZING-IN 

In a general case the equation for the freezing of a vector 
a into a flow with the velocity field V is of the form 

In particular the freezing-in equation (2.1 ) with a = curl V 
is a corollary of the Euler equation describing 3 0  flows of an 
ideal fluid, 

(here Pandp are respectively the pressure and the density of 
the fluid). 

As in the 2 0  case, an infinite series of integrals of mo- 
tion in the form of conservation of the velocity circulation 
along an arbitrary contour y moving with the fluid: 

C, -9 ( V d l )  (2.3) 
7 

is associated with the freezing-in equation of the curl. How- 
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ever, these integrals are practically useless as regards their 
use in the problem of stability of flows, in the spirit of the 
approach described above, as was done with the series of 
invariants ( 1.1 ) . The required series of invariants can easily 
be formulated provided one succeeds to obtain a locally con- 
served scalar h for which the equation of a "scalar freezing- 
in" is valid: 

ah 
- + (VV) h=O, 
a t  

i.e., h is a function of the Lagrangian coordinates. 
The velocity circulation C, (2.3) which is closely asso- 

ciated with the Clebsch variables as shown by Eckart,I6 sat- 
isfies the above requirement, and in the general case, the 
vector freezing-in equation (2.1 ) expresses conservation of 
the contravariant component of the frozen-in vector in La- 
grangian coordinates. Indeed, let x, be the current Euler 
coordinates of the fluid elements, xJ the corresponding La- 
grangian coordinates, and g,, = dx,/dxk the metric tensor. 
The Lagrangian property of the system is assured by the 
condition ax,/& = V, which implies dg,,/dt = dV,/dxk. 
Since the fields V and a are divergence-free, equations (2.1 ) 
can be written in the form 

da, a V, - = akgkj - 
d t d l  

(we use here the standard notation; see, e.g.,). Multiplying 
(2.5) by gam and summing up over the repeated indices, we 
arrive, after simple transformations, at 

Since g,, , gtk are symmetric, we have gUg,, = SL . 
Thus, the contravariant components am of the frozen-in 

vector can be used to construct an infinite series of invar- 
iants. However, the variation of these invariants becomes 
complicated due to the nonlinear dependence of the metric 
coefficients on the components of the vector displacement of 
a fluid. It thus makes sense to stipulate the frozen-in proper- 
ty of vector a in a somewhat different but a more transparent 
manner. We take the scalar product of Eq. (2.1) with an 
arbitrary (for the time being) vector b and transform it ac- 
cording to the rules of vector analysis: 

This implies that the quantity a-b is locally conserved in the 
sense of (2.4) if the vector b satisfies the equation 

d b  - +V (Vb) +[rot b, V]  =O. 
at (2.7) 

One possibility is b = Vp where the function p satisfies in 
turn the equation 

acp - + (VV) rp=g(t), at (2.8) 

and $(t) is arbitrary so that, at each instant of time, p is 
determined up to a constant. This is indeed not surprising 
since only V p  enters into the resulting part. For simplicity, 
we shall assume below that $ = 0. In the end, we have for the 
Euler equation (2.2) a series of invariants: 

B = F (h)  drdydz ,  (2.9) 
D 

h= (rot V, Vtp) =V (rp rot V) , 

where p is advected together with the fluid, so that some set 
of three functions p , ,  p,, and p, satisfying (2.8) and the 
condition det(dpk/dxi) # O  form a system of Lagrangian 
coordinates and the corresponding h, are analogous to the 
contravariant components of the curl V. 

We will not discuss the possibility here of some other 
choice of the vector b in (2.7), although this problem is of 
interest. Note that in the case of the equations of ideal mag- 
netohydrodynamics with the magnetic field vector frozen 
into a plasma, invariants of the form (2.10) were studied by 
Gordin and Pet~iashvili"-'~ in the course of an analysis of 
the stability of plasma configurations. 

3. VARIATION OF VELOCITY AND OFTHE LAGRANGE 
COORDINATES AND THE SUPPLEMENTARY INVARIANTS 

In the Lyapunov method, the stability of a motion fol- 
lows from the extremization of a single integral of the motion 
of the system under the condition that one or several other 
invariants are conserved. It is important to show this for all 
the possible variations which conserve the required invar- 
iants. Since h, in (2.10) depends on the choice of p,, a prob- 
lem arises as to the meaning of "all" variations in the appli- 
cation to (2.9). In the 2 0  case ( 1.1 ) there is no problem here 
since it is clear that only the argument of the function 6fi 
varies arbitrarily, while the function itself does not change 
(although it is arbitrary). What, however, is meant by "the 
function itself '? If, for example, we take F = a" then the 
exponent a enters into the definition of the function and 
remains unchanged as fl varies. Analogously, we include the 
Lagrangian coordinates p, in the definition of F in (2.9) 
and, in the course of variation, we ought to concern our- 
selves with the invariance of the functional dependence 
F(h,, p, ) as well as of the invariance of the chosen system 
of Lagrange coordinates p, although the p, vary in time. In 
other words, variations of p, and V cannot be viewed as 
independent, since otherwise it would be impossible to know 
whether we are tracing the invariance of values of the very 
same invariant or comparing values of different invariants, 
which does not make sense. 

To answer the question on the relation between varia- 
tions of p, and V it is necessary to analyze how, in general, a 
perturbation of the velocity field V arises. Arnol'd4 consid- 
ered fields of equal vorticity obtained from a given field V by 
means of a displacement of the fields such that curl V is 
frozen into the "displaced" flow. Here the displacement vec- 
tor c is not connected with the field V; it is essential only that 
in the displacement process the equation 

a 
-rot V=rot [u,  rot V] a.t 

be valid (where u = dc  / d ~  and T is a fictitous time). In our 
approach it means that the pJ should also be frozen into this 
"hypothetical" flow u, which generates the perturbation SV. 
Assuming that u is an arbitrarily assigned divergence-free 
vector field, we obtain the first two terms of the expansions 
of SV, curl SV, and SpJ in the small fictitious time T (i.e., the 
first and second variations) : 

rot GV=rot [g rot V]+l/, rot [g rot [t rot V] 1, (3.1a) 

6V= [g rot V]  + '/,[9 rot [ g  rot V] ] + V a ,  (3.lb) 

Gq,=--(%V) (q,-'lz(bV)tp,). (3. lc)  

Here 6 = ru is a small displacement and vector a is an arbi- 
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trary function. The variations (3.1 ) by themselves assure the 
freezing-in of vorticity and in this sense are redundant with 
respect to utilization of the integral of motion (2.9) in the 
Lyapunov functional. The invariant (2.9) is useful if some 
other variations are considered which do not have the same 
vorticity, but conserve some supplementary invariant or 
property of the system (which defines the supplementary 
"sheet"); however, it is necessary here to retain also the fro- 
zen-in property of curl V .  

It would seem expedient to consider physical variations 
of the velocity field corresponding to preservation of the sys- 
tem as such, i.e., consistent with the equations of motion of 
the system. We shall assume that only those perturbations of 
the velocity field that arise as a result of the action of arbi- 
trary but not nonsingular time-dependent external forces f 
applied to the fluid are admissible. The difference between 
these variations and (3.1 ) can be clarified to some extent by 
analyzing the stability of an equilibrium of a simple pendu- 
lum on an inclined plane (see the figure). An analog of vari- 
ation (3.1) would be the admissibility of all possible devi- 
ation of the pendulum from equilibrium, including those 
under the inclined plane. If one confines oneself to the devia- 
tions that are consistent with the equations of motion under 
nonsingular forces which do not destroy the plane, only the 
upward deviations will be admissible. The question is: 
Which criterion of stability is closer to the truth? 

The connection between the first and second variations 
of the field velocity and the Lagrangian coordinates p, and 
the force f can be obtained by solving, on a short time inter- 
val ( t ,  t + T), 7-0 the system of equations 

a 
- rot V=rot [V rot V] +rot f ,  
at  (3.2a) 

d (- + vv) Cp,=o. 
Hence we have at 

rot 6V=t rot UI+zz rot U2+. . . , (3.3a) 
GV=tUI+z2U2+. . . , 

(3.3b) 
z2 

GCp,=-t(VVCp,) - -2-(U,Vq,- (VV) (VV)(p,), (3.3c) 

where the notation 
U,=f+[V rot Vl + V a l ,  

U2=1/2[UI rot Vl +'I2 [V rot Ull  + V  a 2  (3.3d) 

is used. Here along with variations of the velocity field under 
the action of the force f, variations in V arising in the unper- 
turbed flow during the time T are also taken into account. 
These SV ought to be excluded; we shall retain them, how- 
ever, since they are irrelevant. Moreover, in the case of sta- 
tionary flows whose stability is usually investigated, Eq. 
( 3.3d) can be simplified by using the Bernoulli equation 

[V rot V] = V  (P /p+  V2/2). 

Thedynamic variations (3.3), unlike (3. I ) ,  do not make the 
vorticities of the fields V and V + SV different; however, 
they assure as before that the variations Sp, do not result in a 
substitution of one invariant by another. The essential differ- 
ence between the "dynamic" variations (3.3) and the "kine- 
matic" ones (3.1) is that in the "dynamic" case the first 
variation of pi is actually zero, while in (3.1) this is not so. 
This is of importance in studying the stability of flows. The 
nature of this difference is connected with a difference in the 
dependence of the path on time under equally accelerated 

FIG. 1 .  Simple pendulum on an inclined plane: 1--equilibrium; 2--devia- 
tions admissible in terms of the equations of motion; 3--deviations dis- 
torting the system, i.e. inadmissible in terms of the equations of motion. 

motions with zero and non-zero initial velocities. 
Finally, we note that along with the freezing-in inte- 

grals (2.9) the energy integral 

E = j '/,VVdxdydz (3.4) 
D 

and the helicity integral1* 

H = J' </,v rot V& dy dz (3.5) 
D 

play an important role in the analysis of stability. Helicity is 
closely connected with self-organization of flows of the form 
V = il curl V ,  where il is a numerical factor. 

4. STABILITY OF FLOWS 

Consider the functional consisting of the freezing-in, 
energy and helicity integrals: 

1 h 
L = 1 (- vv + - V rot V+F (hi. h,, h,, q~t, pz, cps) ) dy dz. 

2 2 

where Fis  an arbitrary function of its arguments and il is an 
undetermined Lagrange multiplier whose value is found by 
equating the helicity integral to its initial value. As was al- 
ready mentioned, the functions % can be viewed as Lagran- 
gian coordinates which initially are chosen arbitrarily pro- 
vided only that det (dpi/dx, ) #O holds. 

We calculate the first variation of the functional L in 
(4. I ) ,  taking into account the definition of h, (cf [2.10] ) 
which connects Shj with the variations of curl V and p,, but 
formally SV and p, are considered for the time being inde- 
pendent: 

6L= ~ { G V ( V + ~  rot Y-[ VQ, V El) 
D ahj 

Here summation over repeated indices is assumed and also 
the velosity is assumed to vanish on the boundary of the flow 
region. Although in principle p, depends on SV, one could 
make the first variation 6L vanish by requiring that each one 
of the terms in (4.2) vanish. As the result, we arrive at the 
Euler equations 
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dF 
v+h rot v=[ Vqj, v -1 

ah, ' 

which describe arbitrary stationary flows. Indeed carrying 
out the vector multiplication of (4.3) by curl V, we obtain 
after some simple manipulations 

which is equivalent to the stationary Bernoulli equation 

Equations (4.3) and (4.4) together with the definition 
(2.10) of h describe a stationary flow of an ideal fluid whose 
form depends on a specific choice of the function f i  and the 
form of the function F. Also, Eq. (4.3) does not contradict 
the condition of freezing-in of pj and h, since even in a sta- 
tionary flow the Lagrangian coordinates, when comoving 
with the fluid in general vary in time. Note that (4.3) and 
(4.4) admit a transition from 3 0  to the 2 0  case of flow in the 
xy plane in the usual notation: 

q1=z, hi= (rot V),, h=O, V= e,, V - , $1 
(here e, is a unit vector perpendicular to the xy plane) and 
the coordinates p2 and p, can arbitrarily be assigned in the 
xy plane connecting them, for example, with the streamlines 
of planar flow. Here h, = h, = 0. 

We have thus shown that for any stationary flow, the 
first variation of the kinetic energy SE vanishes assuming 
conservation of the helicity of H and the freezing-in integral 
(2.4) under arbitrary variations of the velocity and Lagran- 
gian coordinates. We now calculate the second variation 
S2L, as before without utilizing as yet the connection 
between variations of V and of p,, i.e., formally for arbitrary 
SV and Sp, : 

h 
6%- J'{~av,av,+sv, (v+A rot V) + - 6 ~ ,  rot SV, 

D 2 2 

HereS,, , (Sp, ) , denote the parts of the variations which are 
linear in the small parameter T and SV, (Sp, ), and (Sh, ), 

are the corresponding quadratic parts. Since the variations 
h, and pj represent are divergences of some vectors in both 
orders of expansion [for h, this follows from (2.10) while as 
far as p, is concerned we utilize here the relations (3. lc)  and 
( 3 . 3 ~ )  1, the last sum in the (4.5) can be transformed, inte- 
grating by parts, which will result in substantial cancella- 
tions when we take (4.3) and (4.4) into account. Indeed, it 
follows from the definition of h that for both the "kinematic" 
(3.1) and the "dynamic" (3.3) variations 

(6hj) 2=V (I6V2, VcpjI+ (Gcp,) r rot V+(6qj) 1 rot 6Vi). 
Then 

a F - (69,) ,(rot 6V1, V -)I dx dy dz. 
k = l  ahk 

From this and (4.5) we obtain an expression for S2L equally 
valid for the variations (3.1 ) and (3.3) : 

1 h 
6zL=6zF+ J [ I (6ViSV,) + - (SV, rot 6V.) 

D 
2 

where the notation 
3 

is used. Hence S 2 F  characterizes the "convexity" of F a s  a 
function of its arguments, and in the 2 0  case it is the condi- 
tion that S 2 F  be positive which yields the Rayleigh theorem. 
In the 3 0  case, the quadratic form (4.6) contains additional 
destabilizing terms which describe the interaction between 
perturbations of curl Vand the basic flow. In particular, the 
last term in (4.6) describes the destabilizing role of bending 
of vortex filaments. Since this term is proportional to the 
first variation (Sp, ), , its contribution is quite different in 
the cases of the "kinematic" variations (3.1 ) and the "dy- 
namic" ones (3.3 ). In the case of "kinematic" variations, the 
expression (4.6) coincides with the expression for S2E ob- 
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tained earlier by Arn01d.~ In the present paper, as in Ref. 4, 5. CONCLUSION 
we have not succeeded in obtaining flows which would en- 
sure the definiteness of S2L. However, taking account of the 
supplementary "integral of motion" in the form of a "sheet" 
imposed by constraints (3.3) on the form of the variations, 
allows us to obtain an interesting result whose validity is 
verified by direct calculations in (4.6) taking (3.3), (4.3), 
and (4.4) into account: every stationary flow of the form 

where we have (curl V, Vh) = 0, p is frozen-in (cf. [2.8] ), F 
is a function of h = (curl V, V p )  is stable provided 

We emphasize that we are dealing here with stability against 
3 0  perturbations. We shall now verify the validity of condi- 
tions (4.9). For this purpose, we first note that (4.8) is a 
particular case of (4.3), (4.4) when F depends only on one 
of the scalars h,, for example, h, = h, and does not depend 
explicitly on h2 , h, and the Lagrangian coordinates p, . This 
choice is not contradictory, and it simply restricts the class 
of the flows under consideration, still leaving it sufficiently 
broad because F(h)  is arbitrary. In accordance with ( 3 . 3 ~ )  

(6,) l = - ~ V V q = ~ l L h - O ,  
since in (4.8) A = 0 holds. Then (4.6) can be written in the 
form 1 1 d2F [ T 6Vs "1 + -'(6h) 2 dh "1 &dydz, 

from which the sufficient condition (4.9) follows. Toroidal 
vortices, which in the cylindrical coordinates z, r, and 9- are 
written as 

where h = r- ' (curl V), may serve as an example of flows of 
the form (4.8). A specific choice of the function F( h)  as- 
signs a map of streamlines in the rz plane and for the spatial 
distribution of h we have here the nonlinear vroblem: 

In accordance with (4.9) the toroidal vortices (4.10) 
withd 2F/dh > Oarestable. Leaving open the problemofthe 
existence of solutions of (4.11 ) localized in all directions 
with d 2F/dh > 0, we present an example of a stable solution 
of (4.1 1 ) in the form a cylindrical imbedded jet with a Gaus- 
sian velocity profile (a and b are numerical factors) 

which corresponds to the choice F = h '/2b ', i.e., 
d2F /dh2  = 1/b2>Oand thecased/dz=O. 

Another example of flows (4.8) are planar flows. In 
accordance with the foregoing the following assertion is val- 
id concerning their stability: 

Every planar flow of an ideal fluid which is stable with 
respect to 2 0  perturbations of velocity, is also stable with 
respect to 3 0  perturbations. A certain connection between 
this assertion and the Squire theorem is worth noting. 

In this paper we have attempted to answer a number of 
questions associated with the manifestation of the property 
of a "vector" freezing of the velocity curl of a 3 0  flow in the 
flow itself. Firstly, this property was formulated in terms of 
local freezing-in of certain scalar functions (or functionals) 
in the form (2.9) closely associated with the conservation of 
contravariant (in the Lagrange coordinates) components of 
the frozen-in vector. This allowed us, when searching for a 
conditional extremum of the kinetic energy of the flow, to 
account for conservation of vorticity in the 3 0  case by the 
method of undetermined Lagrange multipliers. To analyze 
the stability of flows, the notion of "dynamic" variations of 
the velocity field and the Lagrangian coordinates (3.3) was 
introduced. This corresponds to making allowance for con- 
servation of one or more invariants which express the invar- 
iance of a system as such (it is assumed that the transition of 
the system from one state into another can be accomplished 
only in accordance with the motion equations, i.e., can only 
be evolutionary). Using these variations, we have found a 
sufficient condition for stability (4.9) of flows of the form 
(4.8) against 3 0  perturbations. This condition implies the 
Lyapunov stability of 2 0  flows with respect to 3 0  perturba- 
tions, provided their stability with respect to 2 0  perturba- 
tions is valid, as well as a sufficient condition for stability of 
toroidal vortices. 
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