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The attenuation of the space-time echo in a plasma as the result of cqllisional relaxation of Van 
Kampen waves is analyzed. The Fokker-Planck operator, the Lenard-Bernstein operator, and the 
T approximation are considered as collision integrals. It is possible to determine the dynamic 
friction and diffusion coefficients in velocity space which appear in the Fokker-Planck operator. 
It is also possible to determine the effective electron collision rate which appears in the two other 
model collision integrals. A comparison of the experimental echo characteristics with the 
theoretical predictions reveals the validity of the various model collision integrals for a real 
plasma. 

1. INTRODUCTION Coulomb collisions in several cases, e.g., in a solid-state plas- 

The echo effect in a plasma stems from the phase mem- 
ory of particles, which retains information about an applied 
perturbation in the form of Van Kampen waves, which are 
rapid oscillations of the distribution function. Karpman' 
has shown that small-scale perturbations of this sort can be 
smoothed out by Coulomb collisions which involve small- 
angle scattering of charged particles and which are of diffu- 
sive nature. In other words, Coulomb collisions with a rela- 
tively small momentum transfer erase the phase memory of 
the particles and thus attenuate the echo. 

The effect of Coulomb collisions and of the microscopic 
turbulence described by Fokker-Planck collision integrals 
on the temporal and spatial echoes was studied theoretically 
in Refs. 2-9. It was shown there that Coulomb collisions 
sharpen the echo, since the tails on the echo signal are atten- 
uated more rapidly than the central part of the signal. It was 
also shown that diffusion in velocity space leads to a loss of 
the phase memory of the particle, i.e., to a reduction of the 
echo intensity. It was demonstrated that the plasma echo can 
be utilized to measure the time scale of diffusive damping 
and thus the diffusion coefficient and autocorrelation coeffi- 
cient of electric field fluctuations. 

The theoretical work has stimulated corresponding ex- 
periments, both in the range of ion waves"'-'2 and in the 
range of electron waves.13-l5 The results of these experi- 
ments agree well with the theory. For example, Jensen et 
al." studied the electron diffusion in velocity space which 
arises from the presence of a microscopic turbulence in a 
plasma. They obtained an experimental value for the diffu- 
sion coefficient which figures in quasilinear theory. The ex- 
perimental method which makes use of the attenuation of an 
echo as a result of diffusion has demonstrated a surprising 
sensitivity: The measured mean free path was found to be lo3 
times as long as the experimental apparatus. The electron 
diffusion coefficient in velocity space which appears in the 
Fokker-Planck operator has been determined either from 
spatial Fourier components of the echo or from 
the dispersion relation between the wavelength and frequen- 
cy of the echoI5 which was found through separate measure- 
ments of the phase and amplitude of a signal. Such measure- 
ments are convenient when the structure of the echo signal 
can be determined quantitatively. That requirement, how- 
ever, seriously limits the use of the echo method to study 

ma. 
In the present paper we show that when the space-time 

echoI6 is used to study collisions and weak turbulence in a 
plasma one need measure only the amplitude of the echo 
signal at a fixed point. This simplification circumvents the 
obstacle which we just mentioned, and it also goes a long way 
toward simplifying the process of analyzing the experimen- 
tal data to determine the electron diffusion coefficient in ve- 
locity space. First, a Fokker-Planck collision integral is used 
to describe the effect of Coulomb collisions on the space- 
time echo (a  brief report of these results was published in 
Ref. 17). Lenard-Bernstein and T-approximation model op- 
erators are then used for this purpose. A comparison of the 
experimental characteristics of the echo signal with the theo- 
retical predictions reveals whether a given collision model is 
suitable for describing a plasma of interest. 

2. FORMULATION OF THE PROBLEM; LINEAR 
APPROXIMATION 

An echo in a plasma, which is the result of a nonlinear 
wave-particle interaction, can be observed most convenient- 
ly if the length scale of the Landau damping of external per- 
turbations is short in comparison with the distance between 
the sources and also in comparison with the length scale of 
collisional damping. Nonlinear wave-wave interactions, 
which are capable of masking the echo signal in the case of a 
weak Landau damping, are then inconsequential, and the 
self-consistent field can be ignored. 

We consider a homogeneous electron plasma with infi- 
nitely heavy ions. Restricting the discussion to one-dimen- 
sional waves, we start with the kinetic equation for the elec- 
tron distribution function f ( x ,  v, t ) :  

where the electric field E(x ,  t )  is the field of the external 
perturbations, StCf) is a collision integral, and e  and rn are 
the charge and mass of an electron. As mentioned earlier, 
Van Kampen waves, which store information about external 
perturbations, are damped particularly effectively as a result 
of Coulomb collisions of electrons characterized by a small 
change in momentum and thus deflections through small 
angles. The effect of such collisions is described quantitative- 
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ly by the Fokker-Planck collision integral 

where Dl is the dynamic friction coefficient, and D, is the 
diffusion coefficient in velocity space. 

We consider the space-time evolution of the response of 
the distribution function to an external perturbation 

E ( x ,  t )  =@,IS ( x )  exp ( i o , t )  [0 ( t )  -0 ( t - z )  1. (3 

Here is the amplitude of the potential perturbation, 
which is a high-frequency pulse of modulated frequency w l  
with an envelope which is square (in time) with a length T. 

This pulse is applied to the plasma at the time t = 0 at the 
point x = 0; 8 ( t )  is the unit step function. Assuming that the 
external perturbation is small, we solve Eq. ( 1 ) with colli- 
sion integral (2) perturbatively. We write the electron distri- 
bution function as a series 

where f, is the unperturbed distribution function, and f 'I' 
and f '2' are the corrections linear and quadratic in the exter- 
nal perturbation. Assuming that the coefficients D, and D, 
in the Fokker-Planck collision integral are small, so that the 
right side of Eq. ( 1 ) is small in comparison with the last term 
on the left side near the point x = 0 [where the external 
perturbation (3 )  has not yet been damped by the Landau 
mechanism], we use the method developed in Ref. 5. In the 
collisionless limit, a solution of Eq. ( 1 ) for a S-function lin- 
ear perturbation of the distribution function 

( 1 )  e a t  0 ( v )  d f o  I - exp [ i (o+wl ) . l -1  f w  ( x ,  v)=i---p e x P ( i $ x ) .  
m v  d v  o + o l + i O  

The function O(v) here reflects the circumstance that solu- 
tion (4) is valid for particles with positive velocities; the 
infinitesimal increment iO specifies the way the pole is cir- 
cumvented. 

In a region without a macroscopic electric field, the 
function f L') satisfies the equation 

supplemented by the boundary condition which makes the 
solution of Eq. ( 5) go over to the collisionless solution (4)  at 
small values ofx. Under the assumption that the coefficients 
Dl and D, are small, the derivatives df L1)/du on the right 
side of Eq. (5) can be replaced by their approximations 
found by differentiating the most rapidly varying factor: 

Finally, taking inverse Fourier time transforms, we find the 
following expression for the linear response of the distribu- 
tion function to external perturbation (3)  (this expression is 

valid over distances x > k , ', where k ,  is the coefficient of 
spatial Landau damping : 

eml  0 ( v ) O ( x )  dfo 
f ( l )  (x, V, t )  = - - 

m v  d v  

The problem of the effect of Coulomb collisions on the tem- 
poral and spatial echoes was solved exactly in Ref. 18. In the 
limit of low collision rates, the exact result becomes the 
expression which was found in Ref. 5 by joining the collision- 
less solution with the solution of the ballistic equation (5 ). 
The legitimacy of the approximate method was thus con- 
firmed. 

3. SPACE-TIME ECHO 

For an echo response to arise, the phase evolution in (6)  
must be inverted. In the problem at hand, that of the space- 
time echo, this inversion is achieved by applying a second 
external perturbation pulse, at the point x = I, at the time 
t = T. The spatial and temporal intervals between the first 
and second pulses must exceed the length scale k , ' and the 
time scale y i  of Landau damping: k ,  1 > 1 and y, T> 1. 
The assumption (used above) of low collision rates requires 
the conditions kc 1 < 1 and yc T <  1, where k ; ' and y: ' are 
respectively the length scale and time scale of the collisional 
damping. By analogy with (3 ), we specify the second exter- 
nal perturbation pulse to be of the form 

E ( x ,  t )  =Oz6  (2-1) e x p ( - i o z t )  [B ( t - T )  -8(t-T-r)] . (7)  

The application of this pulse to the plasma gives rise to both a 
linear response of the distribution function, at the frequency 
w2 [this response is analogous to the response (6) 1, and the 
nonlinear modulation of the perturbation (6),  which is de- 
scribed by Eq. ( 1 ) in second-order perturbation theory. The 
nonlinear response of the electron distribution function to 
the sequential application of the external perturbations (3) 
and (7) is found from the kinetic equation, as in the deriva- 
tion of the linear response (6). The result is 

e2@,@,011 8 ( v )  0  (x-1) df, 
f(" (5, V ,  t )  = i  - 

m2 v4  d v  

x exp  [ - i a 8 ( t  - e) 
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Herew, = w, - w,; I' = Iw,/w,; and the function B ( x  - I )  
reflects the conditions that the echo signal arise only in the 
region x  > I. Since the coefficients Dl and D, are small, we 
can replace the upper limit of the integration in the last two 
terms of the exponential factor in ( 8 )  by 1'. 

Substituting ( 8 )  into the Poisson equation, we find the 
electric field of the echo signal to be 

Because of the rapidly oscillating function of the velocity in 
(8 - exp [iw, ( x  - I, )/v]-the integral in ( 9 )  vanishes 
throughout space except near the point x  = I,. It is not diffi- 
cult to show that we have 

I I' 

Restricting the analysis to the central part of the echo signal 
at the point x  = I,, we can carry out the integration over 
velocity in ( 9 )  with the help of the mean value theorem, 
since the difference between two unit step functions with 
approximately equal arguments lying near the point 
v, = 1 / T ,  under the condition r g  T, is retained in the inte- 
grand. In addition, in the case of a damping due to Coulomb 
collisions the coefficients D, and D, are independent of the 
spatial coordinate and the time, although this condition may 
not be satisfied if the damping is caused by microscopic tur- 
b ~ l e n c e . ~  In the case of Coulomb collisions we thus have 

As a result, expression (9)  for the electric field of the echo 
response in its central part, x  = I,, becomes 

~ ( 2 )  (z=1,, t )  =A exp ( - ios t )E ( t ) ,  ( 1 2 )  

where 

The echo response in ( 1 2 )  is thus a high-frequency pulse 

with a modulated frequency w,, a trapezoidal envelope 
E ( t ) ,  and an amplitude A.  The coefficients Dl and D, , which 
depend on the particle velocity, in expressions ( 11 ) and ( 14) 
are of the form Dl  = Dl ( v ,  ) and D, = D, ( v ,  1. 

It can be seen from ( 14) that the value of the electron 
diffusion coefficient in velocity space, D, ( v ,  ), can be found 
from the behavior of the amplitude of the space-time echo 
signal as a function of the delay time T o r  the distance ( I )  
between the external perturbations which excite the echo. It 
is first necessary to determine the value of the derivative 
df,/dv from the echo signal obtained over a distance I small 
enough that the effect of collisions on the echo amplitude is 
negligible.16 We have made no assumptions regarding the 
shape of the unperturbed electron distribution function 
f, ( v ) ,  which may in general be non-Maxwellian. In addi- 
tion, the dynamic friction coefficient Dl  ( v ,  ) can be deter- 
mined from the shift of the maximum of the echo signal, 
x  = I,, with respect to the point x  = I ' predicted by the colli- 
sionless theory, with the help of ( 1  1 ) . 
4.THE LENARD-BERNSTEIN COLLISION INTEGRAL AND 
THE T APPROXIMATION 

In studies of how collisions of charged particles accom- 
panied by small-angle deflections affect the distribution 
function of these particles, the exact Coulomb collision inte- 
gral is frequently replaced by a model collision term of the 
Fokker-Planck type which was proposed by Lenard and 
 erns stein:'^ 

Here Y is the effective collision rate, and v ,  = ( T J m )  ' I 2  is 
the electron thermal velocity. The Lenard-Bernstein colli- 
sion integral in ( 15) retains two extremely important prop- 
erties of the Coulomb collision integral: It is of a diffusive 
nature, and it vanishes when a Maxwellian distribution func- 
tion is substituted into it. 

Using the method outlined above to find the asymptotic 
solution of kinetic equation ( 1 ), we find the linear response 
of the distribution function to the external perturbation ( 3 )  
for the collision integral ( 15 ) : 

emi e ( v ) 0 ( ~ )  afo 
f(l) (x, v, t )  = - - 

m v dv 

The electric field of the echo signal is described again in this 
case by expression ( 1 2 ) ,  but its maximum is at the point 
x  = I:, where 

Its amplitude is 

The effective collision rate Y = Y ( V ,  ) can evidently be found 
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from the Tor I dependence of the maximum amplitude of the 
echo response, with the help of the method proposed in the 
preceding section of this paper for determining the diffusion 
coefficient in velocity space. 

Finally, we consider a very simple model collision inte- 
gral which is frequently used in estimating electron colli- 
sions with neutral particles: 

f-fo  St{f) = --, 
a0 

(19) 

where r0 = YO ' is the the mean free time of the electrons. 
This is the so-called r approximation in kinetic theory.,' 
Although this model does not conserve charge it does de- 
scribe the disruption of the phase of the ordered motion of 
particles in a Van Kampen wave as a result of collisions. The 
kinetic equation ( 1 ) with the collision integral ( 19) can be 
solved exactly in first- and second-order perturbation theo- 
ry. The linear response of the distribution function to pertur- 
bation (3) is 

The nonlinear response of the electric field to the sequential 
application of pulses (3) and (7) is described (as in the two 
preceding cases) by ( 12), in which I, = I  ', and the amplitude 
of the echo signal is 

A comparison of this expression with the result of the colli- 
sionless approximation'6 shows that the effect of a collision 
integral like ( 19) on the space-time echo is to reduce the 
signal amplitude. This reduction is described by the expo- 
nential factor exp ( - v, Tw2 /a3 ). 

Collision operators of the diffusive type like (2) and 
(15) lead to the same functional dependence of the ampli- 
tude of the space-time echo signal on 1 and T, while this 
dependence is qualitatively different for the r-approxima- 
tion model ( 19). 

5. DISPERSION PROPERTIES OF THE PLASMA 

The ballistic approximation, which we used above, in- 
volves ignoring the dispersion properties of the plasma. That 
simplification is justified if the frequencies of the external 
perturbations and of the echo signal lie outside the range of 
natural plasma waves. In the opposite case, a resonance 
between the high-frequency driving force and collective 
plasma oscillations gives rise to a substantial change in the 
echo amplitude, as was shown in Ref. 21. In order to deal 
with the effect of the collective properties of the plasma in a 
study of Coulomb collisions by means of the space-time echo 
effect, we need to treat the field E(x, t )  in Eq. ( 1 ) as a self- 
consistent electric field satisfying the Poisson equation 

Herep(x, t )  is the density of the external charge, which we 
specify as follows, by analogy with the external perturba- 
tions in (3)  and (7): 

p(x, t)=pt6(xlrD) exp ( h i t )  [0(t)-0(t-a)] 
f p.6 [ (x-l)/rD] exp(- id)  [0(t-T) -0 (t-T-a)] , 

where r ,  is the electron Debye length. 
Solving the system of equations ( 1 ) , (22) with the colli- 

sion integral (2) by the method of successive approxima- 
tions, under the assumption that the coefficients D, ( v )  and 
D, ( u )  are small, we find that the nonlinear echo response of 
the electric field to external perturbations (23) has the form 
( 12), with an amplitude 

where ~ ( k ,  W )  is the ordinary dielectric constant of an elec- 
tron plasma, which describes electrostatic waves: 

All three dielectric constants in (24) describe waves with the 
same phase velocity v,. This is because the space-time echo 
signal is generated exclusively by those electrons whose ve- 
locities are close to v, . 

For a quantitative estimate of the amplitude of the echo 
signal, we replace the dielectric constants in (24) by their 
values calculated from (25) when a Maxwellian distribution 
function is used as f,. This approximation is legitimate since 
f, is inside the integral in (25), while the dielectric constants 
(25) themselves are inside a logarithm in the expression for 
the diffusion coefficient D, . We can thus write 

where J+ (x)  is the plasma dispersion function. 
It follows from (26) that when the coefficient D, is 

determined with the help of the space-time echo effect the 
features associated with the plasma dispersion may be mani- 
fested only at high velocities, v, ) v,, and then only if the 
frequency of the external perturbation or that of the echo 
falls in the range of natural plasma wave frequencies. A reso- 
nance peak appears on the curve of the echo signal amplitude 
versus v, in this case. This peak lies near the point at which 
v, coincides with the phase velocity of the plasma wave with 
the given frequency. The amplitude of the peak at this point 
can be found from (9),  where the value of the integral over 
the velocity is determined by the pole which stems from the 
corresponding dielectric constant. 

6. CONCLUSION 

The space-time echo is a time-dependent phenomenon 
and thus difficult to study experimentally. This difficulty 
can be countered, however, by simplifying the process of 
analyzing and interpreting the data to find the characteris- 
tics of the Coulomb collisions. Specifically, the measure- 
ments of the electron diffusion coefficient in velocity space 
which were carried out in Refs. 14 and 15 were based on a 
determination of the shape of the spatial echo signal and a 
subsequent calculation of the Fourier harmonics of the enve- 
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lope of this signal. That method would be difficult to apply to 
(for example) a solid-state plasma. The space-time echo ef- 
fect, whose signal is generated by electrons with a given ve- 
locity v, = I/T, makes it possible to eliminate the determin- 
ation of the spatial shape of the envelope and to simply 
measure the u, dependence of the amplitude of the echo sig- 
nal at the point of its maximum. This dependence can be 
used along with ( 14) or (24) to find the diffusion coefficient 
D, ( u , )  in velocity space, which figures in the Fokker- 
Planck collision integral. Alternatively, one can use ( 18) 
and (21) to determine the effective collision rate v in the 
Lenard-Bernstein collision integral and in the T approxima- 
tion. The method proposed here for measuring electron col- 
lision rates can be used for a solid-state plasma, by working 
from the theoretical and experimental studies in Refs. 22-24 
of the spatial echo in a metal plasma. 

The validity of various models for ion collisions was 
evaluated in Refs. 10-12 by comparing experimental results 
on the spatial echo in the range of ion frequencies with the 
predictions of corresponding theories. The results of Refs. 
10 and 11, on a highly ionized plasma, agree well with the 
theory of Coulomb collisions described by the Fokker- 
Planck collision operator. The effect of collisions of ions 
with neutral atoms, on the other hand, turned out to be negli- 
gible. The opposite situation arose in the experiments of Ref. 
12: The attenuation of the echo amplitude was described 
well by the effect of ion collisions with neutral atoms in the T 
approximation, while no manifestations of ion-ion diffusion 
collisions were seen. 

The results of the present study imply that, in principle, 
one can use the I and T dependence of the echo amplitude 
and also the spatial position of the maximum of the echo 
signal to evaluate the validity of a given model collision inte- 
gral for studying a particular plasma. It follows from ( 11 ) 
that because of the dynamic electron friction which is char- 
acteristic of the Fokker-Planck operator the maximum of 
the echo signal lies further from the sources of the external 
perturbations than the point x = I ', predicted by the colli- 
sionless theory. This shift can be determined in absolute val- 
ue from the coefficient D, (u, ). For the Lenard-Bernstein 

operator, which is also of a diffusive nature, the echo maxi- 
mum shifts away from 1 ' in the opposite direction. An addi- 
tional possibility for testing the Lenard-Bernstein model 
stems from the circumstance that the shift and the attenu- 
ation of the echo maximum are determined by the same ef- 
fective collision rate. In the r approximation, collisions do 
not shift the maximum of the echo signal away from the 
point x = 1 '. 
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