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The stability of Coulomb systems is investigated as a function of the charges of the particles. It is 
shown that every stable system gives rise to a region in which systems with varying charges of the 
particles remain unconditionally stable, and that every stable system that has only one bound 
energy level gives rise to a region in which such systems are unconditionally unstable. The regions 
of unconditional stability and instability of three-particle Coulomb systems are determined in 
explicit analytical form as a function of the charges of the particles. The boundaries of these 
regions are calculated for the systems obtained as functions of the constitutent charges of the 
atomic ion H -  ( ao ) with an infinitely heavy nucleus, thep ' e - e -  ion, and the positronium ion 
e - e - e  + . The boundaries of the region of unconditional stability are calculated for the systems 
obtained in an analogous manner from the mesomolecular ion d  + d  + p  - ,the isotopic 
modificationsp + p  + e -  , p  + d  + e- , and d  + d  + e -  of the hydrogen-molecule ion, and the latter 
ion H,+ ( ao ) with infinitely heavy nuclei. Account is taken of the motion of all the particles in the 
system, and of the associated correlation and nonadiabaticity effects. Bounds on the critical 
charge Z,, and on the critical particle-coupling parameter A,, in the above systems are calculated. 
For all these systems these bounds are obtained for the first time, except in the case of the atomic 
ion H - ( 03 ). In the case of H - ( 03 ), the upper and lower bounds found for the critical charge of 
the nucleus are substantially more accurate than those obtained earlier by Hogreve. The results 
can be applied to the stability of various Coulomb systems and to the investigation of the 
convergence of perturbation theory in the coupling parameter A characterizing the interaction of 
the like-charged particles in these systems. 

INTRODUCTION 

The problem of the stability of quantum-mechanical 
systems with Coulomb interaction of particles as a function 
of their charges occupies a central position in the theory of 
atomic and molecular ions. Reflected in this problem are the 
uncertainty principle (which prevents oppositely charged 
particles from completely coalescing and thereby prevents 
their Coulomb potentials from being completely screened), 
correlations in the motion of the particles (to which negative 
atomic and molecular ions entirely owe their existence), 
and, finally, the statistics of the particles (in boson systems 
negative ions can exist whose multiplicity is much greater 
than that of their electron analogs). 

The investigation of the general properties of negative 
ions and the estimation of the maximum number of electrons 
that can be bound by one or more positively charged Cou- 
lomb centers have been the subjects of papers by a great 
many researchers. For example, in Refs. 1 and 2 it was 
shown that the negative hydrogen ion H -  has only one dis- 
crete energy level, so that this ion is stable only in its ground 
state and its excitation involves detachment of an electron. 
General estimates of the number N of electrons that can be 
bound in an atom with atomic number Z or in a molecule 
with K nuclei for which the sum of the atomic numbers is 
equal to Z can be found in Ref. 3: For an atom N <  2 2  + 1 
holds (it follows from this, for Z =  1, that the doubly 
charged ion H - is unstable), while for a molecule, 
N <  2Z + K (with Z = 1 and K = 2, this implies that the 
doubly charged molecular ion H; - is unstable). 

In Ref. 4 the number Nof electrons that can be bound in 
an atom with atomic number Z was considered for Z- a,, 
and it was found that the ratio of this number to the atomic 

number tends to unity (N /Z+ 1 ) . This mathematically rig- 
orous result is in agreement with the rule N < Z  + 1, which 
follows from experimental observations and almost com- 
pletely rules out the possibility of the existence of doubly 
charged negative atomic ions. However, this rule, which is 
valid for electrons, does not hold for bosons. Model atoms 
containing boson analogs of electrons remain stable when 
the number N of these bosons is considerably greater than 
the atomic number 2. As the atomic number Z tends to infin- 
ity the ratio N / Z  tends not to unity but to a value y=: 1.26 
(Refs. 5 , 6 ) .  Therefore, in the absence of the Pauli principle 
and of the resulting shell structure, the existence of negative 
atomic ions of very high multiplicity would be possible. 

It is of considerable interest not only to analyze the sta- 
bility of ions as a function of the number of particles consti- 
tuting them, but also to investigate the stability of a system 
with a fixed number of particles when the masses or charges 
of the latter are changed. In Ref. 7, on the basis of variational 
calculations, the region in which a three-particle system 
with particle charges + 1, * 1, f 1 in its ground state is 
unconditionally stable was established. In Ref. 8 this region 
was extended, and regions of unconditional stability of 
three-particle Coulomb systems in their excited states and 
with varying particles masses were found. 

In the present paper we consider the stability of three- 
particle Coulomb systems as a function of the particle 
charges Z ,  , Z,, and Z, . This problem is important in rela- 
tion to the application of perturbation theory in the coupling 
parameter R characterizing the interaction of the like- 
charged particles, which leads to representations of the wave 
function and energy of the system in the form of series in 
powers of the parameter A. For example, for the energy of 
the ground state of a two-electron atom with a fixed nucleus 
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22 coefficients in such a power series have been found.9 
To establish the applicability of perturbation theory it is 

necessary to know the critical interaction-parameter value 
A,, at which the system loses stability and its discrete term 
moves into the continuous spectrum (where it can be trans- 
formed into an auto-ionization state). On the basis of an 
analysis of the perturbation-theory coefficients calculated in 
Ref. 9, Stillingerlo determined that the critical value of the 
electron-interaction parameter in an atom with atomic num- 
ber Z = 1 is A,, = 1.0975 (and also found the value 
R * = 1.1 184 at which the auto-ionization state disappears). 
But if we consider atoms with a fixed electron-interaction 
parameteril = 1 (the actual value), but with a continuously 
varying atomic number Z, the point of detachment of an 
electron corresponds to the critical atomic-number value 
Zcr = 1/ACr = 0.91 116. Variational calculations of the up- 
per bound on the energy make it possible to determine an 
upper bound on the critical atomic number. For example, in 
Ref. 1 1 purely analytical variational calculations yielded 
Zcr <868/901 = 0.9634, while in Ref. 12, by means of a vari- 
ational calculation with 476 basis functions, Baker et al. ob- 
tained" an extremely accurate upper bound on the critical 
atomic number (Z,, <0.91103), which agrees well with the 
nonvariational estimate of the quantity Zcr from Ref. 10. 

Two-electron systems with a fixed nucleus are the only 
example of a Coulomb system whose stability as a function 
of the particle charges has been investigated in detail. 

Here we consider the stability of three-particle Cou- 
lomb systems with full allowance for the motion of all the 
particles (and for the correlation and nonadiabaticity effects 
associated with this motion). The systems to be investigated 
are not assumed to be symmetric in the masses or charges of 
the like-charged particles. At the basis of our approach lies 
the simple idea of varying the scale, which has made it possi- 
ble to obtain useful inequalities for the total energies and 
components of the potential energy of atoms with varying 
atomic numbersI3 and lies at the basis of the convexity rela- 
tion for the energies of quantum-mechanical systems.'"16 
Combining this approach with presently known results of 
highly accurate calculations of the energies and components 
of the potential energies of "standard" systems enables us to 
determine the region of unconditional stability of Coulomb 
systems as a function of the charges of the particles. Applica- 
tion of projection operators then allows regions to be estab- 
lished in which for the values of the particle charges under 
investigation the systems are unconditionally unstable. 

PRELIMINARY DISCUSSION OF THE STABILITY CONDITION 

Suppose that the first two particles have charges 2, and 
Z2 of the same sign, and that the third particle carries a 
charge Z, of the opposite sign. Since the particles 1 and 2 
repel each other, the system can be stable only if the magni- 
tude of the charge of the third particle, which plays a binding 
role, is sufficiently large. It is obvious that the system is sta- 
ble when the charge of the third particle is greater in magni- 
tude than the charges of the first and second particles, so that 
the inequalities 

are fulfilled. In fact, in this case neither of the particles 1 and 
2 can fully screen the Coulomb field of particle 3, and the 

system has infinitely many bound discrete levels, corre- 
sponding to the incompletely screened Coulomb potential of 
the third particle. We now consider the case when the 
charges Z, and Z, are fixed and the charge Z, of the first 
particle increases in magnitude without limit while remain- 
ing of the same sign. In this case, particles 1 and 3 are 
grouped into an atom-like ion, whose size (defined by the 
average distance between particles 1 and 3) tends to zero. In 
this limiting case, particle 2 will move in the field of an al- 
most point charge (2, + Z, ), experiencing from the latter 
an infinitely strong Coulomb repulsion. Therefore, the sys- 
tem decays, with liberation of particle 2. We obtain an analo- 
gous result by fixing the charges of particles 1 and 3 and 
letting the magnitude of charge 2 tend to infinity. Thus, the 
three-particle system is certainly unstable in the limit 

It is clear from what has been said that a three-particle sys- 
tem will be stable when the charge Z, of the binding particle 
3 is sufficiently large and the charges Z, and Z,  of the parti- 
cles being bound are sufficiently small [ensuring fulfillment 
of the conditions ( 1 ) 1. Loss of stability of the system occurs 
when the magnitude of the charge Z, decreases, or when the 
magnitudes of the charges Z,  and Z2 increase. In the next 
section these qualitative arguments will be made quantita- 
tive. 

QUANTITATIVE STABILITY CRITERION 

The Hamiltonian of the system being investigated is 
given by 

3 3 

where the signs of the charges of the particles satisfy 
Z,Z2 > 0, Z,Z3 < 0, and Z2Z3 < 0. We use the atomic system 
of physical units: lei = me = f i  = 1. After changing to rela- 
tive particle coordinates 

and separating out the nonquantum motion of the center of 
mass, we find that the Hamiltonian (3)  takes the form 

Its eigenvalues depend on the masses and charges of the par- 
ticles. We denote by E(m,  ,m2 ,m, ,Z, ,Z2 ,Z, ) (or, more 
briefly, by E) the lowest of these eigenvalues. The system of 
particles in its ground state is stable when its energy is lower 
than the energy of both of the two atom-like systems into 
which it is transformed when particle 1 or particle 2 is re- 
moved from it. Therefore, a necessary and sufficient condi- 
tion for stability of the system is that the following two strict 
inequalities be fulfilled simultaneously: 
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If just one of the inequalities (6a), (6b) is violated, the sys- 
tem is unstable against decay into an atom-like two-particle 
system and a free particle. 

We change to the scale-transformed coordinates 

In these coordinates the Hamiltonian (5)  can be written, 
with allowance for the homogeneity properties of the kinet- 
ic-energy and potential-energy operators, in the form 

Here we have introduced the new energy operator 

and are using the following notation for mass ratios and 
charge ratios: 

The operator (9) depends parametrically on p ,  v, p and q, 
and its eigenvalues also depend on these parameters. We de- 
note the lowest eigenvalue by ~ ( p ,  v,p, q) .  It is related to the 
ground-state energy of the system by the equality 

E (m,, mz, m,, Z,, Z,, Z 3  =m3Z,'e (p, v, p, q). (1  1) 

The condition (6a), (6b) for stability of the system of parti- 
cles reduces to the requirement that the following system of 
inequalities be fulfilled: 

The charges and masses of the particles appear in these con- 
ditions through the parameters p ,  v, p, and q (10). There- 
fore, the stability or instability of the system of particles is 
determined entirely by the charge ratios and mass ratios of 
the particles. Thus, if a system with a certain set of masses 
m, , m,, m, and charges Z, , Z,, Z, is stable (or unstable), 
the same property is also possessed by the system with pro- 
portionally changed particle masses and charges, equal to 
km,, km,, km, and IZ,,  IZ,, IZ,, where k and I are arbi- 
trary positive, nonzero numbers. 

CONDITION FOR CERTAIN STABlLlT Y OF A COULOMB 
THREE-PARTICLE SYSTEM WITH VARYING PARTICLE 
CHARGES 

Below, we assume that the particle-mass ratiosp and v 
are fixed, and consider the stability of the system as a func- 
tion of the charge parameters p and q. Accordingly, we use 
the abbreviated notation E = ~ ( p ,  q) = ~ ( p ,  v, p, q).  

Suppose that the three-particle system with given parti- 
cle-mass ratiosp and v is stable when the ratios of the parti- 
cle charges are equal top, and q, . Then, by virtue of continu- 

ity, in the neighborhood of the point p,,q, there exists a 
certain region (an "island of stability") in which the system 
remains stable when the charge parameters p and q deviate 
from their initial valuesp, and q, . The variational principle, 
in combination with variation of the scale, makes it possible 
to determine easily that part of the island of stability on 
which the three-particle system is unconditionally stable. 

The operator of the energy of the initial stable system is 
obtained from (9)  with p = p, and q = q, . It is equal to 

+ ho (t, u),=h(t, u; jt, V, PO, go) =T - 1 

pot 9ou ~oqolt-ul ' 

where 

Since the initial system is stable, the lowest eigenvalue 
E, = ~ ( p ~ , q ~  ) of the operator ( 13) satisfies the inequalities 
obtained from ( 12a) and ( 12b) with p = p, and q = q,: 

We denote by $, (t,u) that normalized eigenfunction of the 
energy operator ( 13 ) of the initial system which pertains to 
its lowest eigenvalue E,. We go over to a system with arbi- 
trary charge parametersp and q and set up the energy opera- 
tor that is obtained from the energy operator (9)  by chang- 
ing the scale of the coordinates by a factor of a. Taking into 
account the homogeneity properties of the kinetic-energy 
and potential-energy operators, we obtain 

The lowest eigenvalue of the operator ( 15) is equal to E, as 
for the energy operator (9) .  We now construct the math- 
ematical expectation value of the energy operator ( 15) with 
the eigenfunction $,,of the energy operator ( 13) of the initial 
stable system. According to the virial theorem, the contribu- 
tion of the kinetic-energy operator [the first term in the 
right-hand side of ( 15) 1 to this mathematical expectation 
value is equal to - a2&, . Therefore, we have 

(go (t, U) 1 h (tla, ula; p, v, p, q )  )qo (t, u) )=-a2&o+a(v). 
(16) 

We denote mathematical expectation values of physical 
quantities calculated with the eigenfunction $, of the energy 
operator ( 13 ) of the initial system simply by angular brack- 
ets. Then the quantity (v) is the expectation value of the 
potential energy of the interaction of the particles in the sys- 
tem under investigation [described by the energy operator 
(9) 1, calculated with the function $,: 

By virtue of the variational principle, the mathematical ex- 
pectation value of the operator h(t/a,  u/a; p ,  v, p, q), ex- 
pressed by Eq. (16), is greater than or equal to its lowest 
eigenvalue, equal to E = ~ ( p , q ) .  Therefore, for all positive 
values of the scale factor a ,  the following bound is valid for 
the ground-state energy of the system under investigation 
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with charge parametersp and q: 

E ( p ,  q )  <-u2~ ,+a(v ) .  

bound to be positive by virtue of our stipulation on the signs 
of the charges of the particles. 

(18) 
DETERMINATION OFTHE REGION OF UNCONDITIONAL The right-hand side of the inequality ( 18 ) depends on a .  The OF A SYSTEM OF 

optimum value of a ,  corresponding to the minimum of the CHARGES 
right-hand side of (18), is easily found by differentiation. It 
is equal to On the plane of the variables p and q, all points whose 

coordinates satisfy the system of inequalities (22a), (22b) 

Substituting this value into ( 18), we obtain 

This formula determines an upper bound on the lowest 
eigenvalue of the energy operator (9)  of the system under 
investigation with charge parametersp and q in terms of an 
eigenvalue of the energy operator (13) of the initial stable 
system and the mathematical expectation value of the poten- 
tial energy of the interaction of the particles in the system 
under investigation, calculated with an eigenfunction of the 
initial stable system. 

For the bound (20) to be strong, the optimum value 
( 19) of the scale factor a should be positive. The energy E, of 
a bound state of the stable system is negative. Therefore, the 
mathematical expectation value of the potential energy in 
the numerator of Eq. ( 19) should be negative: (v) < 0. This 
is ensured by a positive sign of the quantity a,. 

The condition for stability of a system of particles with 
charge parameters p and q is certainly fulfilled if in (12a) 
and ( 12b) we replace the exact energy eigenvalue ~ ( p ,  q)  of 
this system by its upper bound (20). Therefore, the system is 
certainly stable when the inequalities 

and the condition ( u )  <O, which ensures positivity of the 
scale factor a,, are fulfilled simultaneously. Substituting 
into (21a) and (21b) the explicit expression (17) for the 
mathematical expectation value of the potential energy, we 
bring these inequalities to the form 

From our stipulation on the signs of the particle charges, the 
quantities p and q are positive. Therefore, fulfillment of the 
inequalities (22a) and (22b) implies fulfillment of the in- 
equality 

which ensures a negative sign of the mathematical expecta- 
tion ( 17) of the potential energy and, simultaneously, a posi- 
tive sign of the scale factor (19). Therefore, the simulta- 
neous fulfillment of the inequalities (22a) and (22b) is a 
sufficient condition that unconditionally guarantees the sta- 
bility of a system with charge parameters p and q that are 

lie in a region in which the three-particle system (for given 
fixed particle-mass ratios ,LL and v )  is unconditionally stable 
under change of the particle-charge ratiosp and q ( 10). It is 
possible to determine the boundaries of this region in explicit 
analytical form. We shall do this. 

First we ascertain the sign of the coefficient of the quan- 
tity q in the inequality (22a) and the sign of the coefficient of 
p in the inequality (22b). According to (2a), the system of 
particles is unconditionally unstable when q has an arbitrary 
fixed value and p-0. Therefore, the system of inequalities 
(22a), (22b), fulfillment of which guarantees the stability of 
the three-particle system, cannot have a solution for p = 0, 
q>o.  

We now assume that the coefficient of the quantity q in 
(22a) is positive. Setting p = 0, we find that the system of 
inequalities (22a), (22b) then has the solution 

which contradicts what was said above. Therefore, the as- 
sumption made is incorrect, and the coefficient of q in (22a) 
is not positive. An analogous result can be obtained for the 
coefficient ofp in (22b): For this it is sufficient to start from 
the relation (2b) .'' 

Thus, we have found that the following inequalities are 
valid: 

The region of solutions of the system of inequalities 
(22a), (22b) on the plane of the variablesp, q is bounded by 
straight lines, on which, respectively, the inequality (22a) or 
the inequality (22b) goes over into an equality. The first of 
these straight lines intersects thep axis at the point A,  and the 
second intersects the q axis at the point B (see the figure). 
The coordinates of the points A and B are given by the fol- 
lowing equalities: 

The point of intersection of these straight lines (point C )  has 
coordinates 

1 
PC= ( 1 + ~ ) ~ ~ *  (-) [ ( I + ~ ) ~ I *  (f ) I t-u l 
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As follows from (25a) and (25b), the denominators in 
(26a) and (26b) are positive, so that the point C i s  in the 
positive quadrant of the p, q plane. If we take into account 
the signs of the coefficients ofp and q in (22a) and (22b), it 
is clear that the straight lines AC and BC have positive 
slopes. Therefore, the point C is located above and to the 
right of the points A and B. Taking the same signs into ac- 
count, we can see that the inequality (22a) is fulfilled at 
points lying below the straight line AC, while the inequality 
(22b) is fulfilled at points lying above the straight line BC. 
Therefore, the region of solutions of the system of inequal- 
ities (22a), (22b) is the angle, shaded in the figure, with 
apex at the point C. This angle, opposite the angle ACB, is 
the region of unconditional stability of a three-particle sys- 
tem with varying charges-a region generated by specifying 
an stable initial system with coordinates po and qo. The 
boundaries of this region are fully determined by the coordi- 
nates of the points A, B, and C, which are expressed in terms 
of characteristics of the initial stable system by the formulas 
(26a) and (26b). 

Returning, by means of Eqs. (7),  ( lo) ,  and ( 1 1 ), from 
the quantities t, u, p, v, p, q, and E to the interparticle dis- 
tances, the particle masses and charges, and the total energy 
E of the initial stable system, we can write the coordinates of 
the points A, B, and C in the form 

FIG. 1 .  Regions of unconditional stability and instability of three-particle 
Coulomb systems as a function of the charges of the particles. Plotted 
along the coordinate axes are the particle-charge ratios p = - Z, / Z ,  and 
q = - Z,  / Z 2 .  The signs of the charges of the first two particles ( Z ,  and 
Z2 ) are the same, and opposite to the sign of the charge Z ,  of the third 
particle. The system is unconditionally stable in the shaded region inside 
the angle opposite the angle ACB, and inside the infinite square with lower 
left corner at the point G with coordinates p ,  = q, = 1 .  The coordinates 
of the points A, B, and Care determined by Eqs. (27a)-(27c). The system 
is unconditionally unstable in the rectangle OEDF', the location of the 
corner D being determined by Eq. (46). 

We restate the result obtained. If a certain initial system 
of three particles with masses m, , m,, and m, and charges 
ZiO', Z i O ' ,  and ZiO' is stable, so that its energy 
Eo = E( m , ,m, ,m, , Z  iO',Z y' ,Z y' ) satisfies inequalities of 
the form (6a) and (6b), then all three-particle systems in 
which the particle masses are equal to km, , km, , and km, 
and the particle charges are characterized by ratios 
p = - Z3/Z, and q = - Z,/Z, that fall in the shaded an- 
gle in the figure are also stable. The coordinates of the points 
A, B, and C are determined here by characteristics of the 
stable initial system from Eqs. (27a)-(27c), and kis an arbi- 
trary positive factor. 

According to the relation ( 1 ), formulated in our pre- 
liminary discussion of the condition for stability, three-par- 
ticle Coulomb systems are unconditionally stable when the 
representative pointp, q lies inside the infinite square whose 
lower left corner is located at the point G with coordinates 
p, = q, = 1 (see the figure). Therefore, a Coulomb system 
of three particles with varying charges of the particles is un- 
conditionally stable in the entire region marked by either 
type of shading. 

REGIONS OF UNCONDITIONAL STABILITY OF SPECIFIC 
THREE-PARTICLE SYSTEMS 

High-accuracy calculations of the energies of three-par- 
ticle Coulomb systems have been the subject of a consider- 
able number of papers by various authors (for a bibliogra- 
phy on this topic, see, e.g., Refs. 8 and 17). However, the 
number of three-particle systems for which highly accurate 
calculations have been made not only of the energy but also 
of the mathematical expectation values of the inverse dis- 
tances between the particles is not great. Amongst such sys- 
tems are: 

1) the atomic hydrogen ion H- with a fixed nu- 
c l e ~ s ' ~ - ~ ~  [H - ( (XI ) ]; 

2) the positronium ion e - e - e + (Ref. 2 1 ) ; 
3) the mesomolecular ion d + d +,u - (Ref. 22 ); 
4,5,6) hydrogen-molecule ions with moving nuclei23v24 
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TABLE I. Physical characteristics of the stable three-particle Coulomb systems used as stan- 
dards in the investigation of the stability of systems with varying particle charges. 

Note: The system p+d +e-  that is symmetric in the particle masses has the following physical 
characteristics: m ,  = 1836.153; m, = 3670.479; m, = 1; - E = 0.697818; (r, I) = 0.84372; 
( r s  ') = 0.84414; (r, ') = 0.49205; ( r , , )  = 2.0548. 

System 
Characteristics 1 1 I ( ( 

H- (-1 e-e-e+ d+d+p- ptpte- d+d+e- HZ+ Iml 

[d  + d  + e - , d  + p + e - , p + p + e W ] ;  
7)  the same ion with fixed, infinitely heavy nucleiz5 

[H , f ( a , ) l .  
The symbolsp + , d + , e + , p - , and e - denote the pro- 

ton, deuteron, positron, negative muon, and electron, re- 
spectively. All the systems listed are stable in their ground 
state, and can be used as initial systems to determine the 
boundaries of the region of unconditional stability of analo- 
gous systems with the same particle-mass ratios, in accor- 
dance with the formulas of the preceding section. On the 
plane of the charge parametersp, q these systems correspond 
to the point G with coordinatesp = q = 1. All these systems 
(except p + d + e-  ) are symmetric in the masses. Their 
physical characteristics are given in Table I, and the charac- 
teristics of the nonsymmetric systemp + d  + e - are given in 
the note at the foot of this table. 

According to what has been said in the preceding sec- 
tion, each of the above seven initial systems gives rise to a 
region of unconditional stability of systems with varying 
charges but fixed particle-mass ratios. The coordinates of 
the points A, B, and C that determine the boundaries of the 
regions of unconditional stability, calculated from the data 
of Table I by means of Eqs. (27a)-(27c), are given for the 
six mass-symmetric systems in the first four rows of Table 11, 
while for the system p + d + e - that is asymmetric in the 
particle masses they are given in the note at the foot of this 
table. 

Closeness of the point C to the coordinate origin is a 
measure of the stability of the system. In fact, from the defin- 

ition of the charge parameters p and q it follows that there 
are two ways of giving a clear interpretation of the coordi- 
nate valuesp, and q,. If we consider a system that is sym- 
metric in the masses of particles 1 and 2, with fixed unit 
charges of the first and second particles ( JZ, 1 = JZ, I = I) ,  
the lowest (in magnitude) third-particle charge that ensures 
the unconditional stability of the system is determined from 
the equality 

Analogously, if we fix the charge of the third particle 
(JZ, 1 = 1) and consider a system with varying particle 
charges Z, = Z,, the largest value of the charge of either of 
these particles for which the system is unconditionally stable 
is equal to 

3670,481 
206,769 
109,817 
150,43 
81,473 
0,013743 

mi=mz 
ms 
-E 
( r l3 - I )  = (rz5-I) 
<riz-'> 
<Qz> 

The quantity (28) is then an upper bound on the magnitude 
of the critical third-particle charge Z,, at which the system 
loses its stability, while the quantity (29) is a lower bound on 
the critical value A,, of the interaction parameter: 

w 

1 
0,602634 
0,852985 
0,500703 
1,9972 

1836,153 
1 
0,597139 
0,84249 
0,49071 
2,0639 

It can be seen from the data of Table I1 that, for systems 
that are symmetric in the masses of particles 1 and 2, with 
increase of the particle-mass ratiop = m 3 / m ,  = m3/m,  = v 
the point C first moves away from the coordinate origin (go- 
ing from the ion H -  ( a, ) to the positronium ion e - e - e + ), 

3670,479 
1 
0,598789 
0,84562 
0,49365 
2,0441 

1 
yLI 

U,527751 
0,683262 
0,311022 
4,41269 

TABLE 11. Characteristic points A, B, C, and D determining the unconditional stability or 
instability of a three-particle Coulomb system as the charges of the particles are varied. 

1 
1 
0,262005 
0,339831 
0,155654 
8,546113 

Coordinates of I Particle-mass ratiop = m,/m,  = m,/m, = v 

the characteristic 
points 

Note: The six columns of this table correspond to the six regions of unconditional stability 
generated by the six initial stable Coulomb systems described in Table I. A detailed description of 
the regions of unconditional stability or instability and of the characteristic points A, B, C, and D 
is given in the text. The mass-asymmetric system p+d +e- generates a region of unconditional 
stability with the following characteristic = 0.58290; qA = 0;L = 0; q, = 0.58319; 
p,  = 0.827532; q, = 0.827645. 
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TABLE 111. Bounds on the critical charge 2,. of the binding particle and on the critical param- 
eter A,, characterizing the interaction of the like-charged particles being bound, and admissible 
limits of variation of the charge Z, of the second particle in Coulomb systems with various 
particle masses. 

and then comes closer to the coordinate origin (going from 
the positronium ion to the mesomolecular ion d + d +p  - 
and to isotopic modifications of the hydrogen-molecule 
ion). This corresponds to the fact that the point Cis closer to 
the coordinate origin the greater is the difference between 
the mass of the binding particle 3 and the masses of the parti- 
cles 1 and 2 being bound. The positronium ion plays here the 
role of a kind of "watershed" between atom-like and mole- 
cule-like systems. 

Taking into account the data of Table 11, from (28)- 
(30) we obtain the results given in Table I11 for upper 
bounds on the magnitude of the critical charge Z,, of the 
third particle and lower bounds on the critical constants A,, 
characterizing the interaction of the like-charged particles in 
systems with various particle-mass ratios 
p = m,/m, = m,/m, = Y.  

For all these systems except H- ( co ), the bounds on the 
critical values of the charge of the binding particle and of the 
interaction constant of the like-charged particles being 
bound are obtained here for the first time. It should be re- 
called that our results rest on precision calculations of initial 
systems with charges Z, = Z,  = + 1 and Z3 = q 1. 
Therefore, they are valid when one takes account of the mo- 
tion of all the particles in the system and the nonadiabaticity 
and correlation effects associated with this motion. In the 
case of H -  ( co ) our upper bound for the critical atomic 
number (0.9171) is much better than the result Zcr ~0 .9634 
obtained recently on the basis of an analytical investigation 
of the problem.11 It is only a little worse than the most accu- 
rate values of the critical atomic number in H -  ( UJ ) 
(Z,, = 0.91 103 and Z,, = 0.91 116), obtained, respectively, 
in Ref. 12 by means of a variational calculation with 476 
basis functions and in Ref. 10 on the basis of a special tech- 
nique for summing 22 terms of the perturbation-theory se- 
ries in the electron-interaction parameter. 

Also deserving of attention is the possibility of treating 
systems that are nonsymmetric in the charges of the parti- 
cles, which stems from the specifying of the geometry of the 
region of unconditional stability and its characteristic points 
A, B, and C. For example, systems of the type H- ( UJ ) with 
particle masses m,  = m, = 1 and m, = co and with fixed 
charges of the first and third particles 
( Z ,  = - 1,Z, = + 1) remain certainly stable when the 
charge Z, of the second particle varies in the range from 
- 0.9588 to - 1.0817. Analogously, systems of the type of 

the mesomolecular ion d  + d  +p - with particle masses 
m, = m, = 3670.481 and m, = 206.769 and particle 

system 
! bound bound bound bound 

0,9171 1,0904 1,1225 
0,9174 1,0900 1,1219 

0,9070 0,9276 1,0780 1,1026 - d+d+p- 0,8712 1,1478 - p+p+e- 0,8283 1,2073 - p+d+e- 0,8277 1,2082 - d+d+e- 0,8268 1,2095 - Hz+ (m) 0,8234 1,2145 

charges 2, = 1 and Z3 = - 1 remain unconditionally sta- 
ble when the charge of the second particle is varied in the 
range from + 0.9200 to + 1.21 16. 

The important point is that all these conclusions are 
obtained by means of entirely elementary calculations from 
properties of the initial "standard" systems, viz., from the 
data of Table I. 

CRITERION FOR UNCONDITIONAL INSTABILITY OF A 
SYSTEM OFTHREE PARTICLES WITH VARYING CHARGES 

2, 

Lower Upper 
bound I bound 

We now derive a criterion for unconditional instability 
of a three-particle system. As before, we shall start from the 
fact that a certain "standard" system with charge param- 
etersp, and go is stable. We consider a system characterized 
by proportionally decreased values of the charge parameters 
p = p,/k and q = qo/k, where k) 1. The energy operator for 
such a system is equal to 

0,9588 
0,9591 
0,9643 
0,9200 
0,8792 
0,8786 
0,8777 
0,8741 

k +  k' h(t,u)=T---- 
pot qou poqol t-ul ' 

1,0817 
1,0812 
1,0706 
1,2116 
1,4069 
1,4111 
1,4160 
1,4387 

and its lowest eigenvalue is equal to E (p, /k,qo/k). Dividing 
the coordinates t and u in (3 1 ) by the parameter k, we obtain 
the new energy operator 

t u  1 1  .(-,-)-.(T- ---- 
k k  

) (32) 
pot qou poqol t-ul 

with the same eigenvalue &(po/k,qO/k). This operator can 
be written in the form 

where h, (t,u) is the energy operator ( 13) of the initial stable 
system with charge parametersp, and go. Consider the oper- 
ator in the square brackets in Eq. (33): 

k-l 
g (t, u) =ha (t, U) + 

pogo 1 t-u l ' 

We denote its lowest eigenvalue by 7 (p, ,q, ,k). Since, with 
k = 1, this operator coincides with the energy operator of 
the initial system, we have 7 ( p o  ,go, 1 ) = ~ ( p ,  ,go ) = E, . 

It follows from theoperator equality (33) that the low- 
est eigenvalue of the energy operator (3 1 ) describing the 
system with proportionally decreased particle-charge ratios 
is related to the lowest eigenvalue of the operator (34) by 
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Let us write down the stability condition ( 12a), (12b) for a 
system with charge parameters p =p,/k and q = q,/k. 
With allowance for (35), it has the following form: 

Direct application of this condition is difficult, since the de- 
pendence of the eigenvalue of the operator (34) on the 
quantity k is unknown. Nevertheless, it is not difficult to 
construct for this eigenvalue a lower bound that makes it 
possible to establish the values of k for which a system of 
particles with charge parameters p = po/k and q = qo/k is 
unconditionally unstable. 

By stipulation, k>l .  Therefore, the operator (34) 
differs from the energy operator ( 13) of the initial stable 
system by a term in the form of the product of the nonnega- 
tive quantity (k - 1 )/poqo with the positive-definite opera- 
tor l/lt - ul. By virtue of the ~ a u c h ~ - ~ u n ~ a k o v s k i ~  in- 
equality, we have 

where Vis a positive-definite operator and q, and x are wave 
functions satisfying the condition for the existence of the 
corresponding matrix elements appearing in (37). Taking 
for x the eigenfunction 1Cl, (t,u) of the ground state of the 
operator ( 13), we obtain from (37) the following lower 
bound on the mathematical expectation value of the opera- 
tor V: 

Since this inequality is valid for any wave function p, the 
following operator inequality holds: 

In the numerator of the fraction is the projection operator 
onto the eigenfunction &, of the ground state of the system 
with energy operator ( 13). Setting V = l/lt - ul, we have 

We set up the auxiliary operator 

k-l I$o)($ol g(tl U) =ho (t, U) + - 
poqo ( 9 0  I I t-u I I $0) ' 

(41 

From (40) it is clear that this operator provides a lower 
bound on the operator (34): 

In particular, it follows from this that the lowest eigenvalue 
+j(po,qO,k) of the operator (41 ) gives a lower bound on the 
lowest eigenvalue of the operator (34): 

Let the initial system with charge parametersp, and q, 
be chosen so that it has only one bound state. Then the spec- 
trum of the energy operator (13) consists of the discrete 
level E~ and the continuum, which starts at the point 

and extends to + co . It is easy to see that the eigenfunctions 
of the auxiliary operator (41) coincide with the eigenfunc- 
tions of the operator ( 13), and that its continuous spectrum 
also starts at the point (44). Consider that eigenvalue of the 
operator (41 ) which corresponds to the ground-state eigen- 
function ICI, of the initial system with energy operator ( 13). 
For k = 1 it coincides with the lowest discrete energy level 
E, of the initial system, and as k increases it increases mono- 
tonically and is given by the formula 

k-l 
6 (pol 90. k) =eo + 

poqo(lP0 I I t-u I 190) ' 

When the parameter k reaches the value 

the eigenvalue (45) enters the continuous spectrum and 
with further increase of k it is absorbed by the continuum. 
Therefore, for k>k, the lowest eigenvalue of the auxiliary 
operator (41) is the boundary E, (44) of the continuous 
spectrum. It follows from the inequality (42) that in this 
case the operator (33) has no eigenvalues lying lower than 
the boundary E, of the continuous spectrum. Thus, for k> kc 
the condition (36) is not fulfilled and the three-particle sys- 
tem is unconditionally unstable. 

We restate the result. If a certain initial three-particle 
system with particle-mass ratios p and v and with particle- 
charge ratios equal to p o - - - Z 3 'O'/Z ''' 1 and 
q, = - Z r ' / Z  iO' is stable and has only one discrete energy 
level, the analogous systems with the same particle-mass ra- 
tios and with particle-charge ratios equal to p = p, /k and 
q = q,/k are unconditionally unstable when the parameter 
k satisfies the inequality k> kc, where the quantity kc is given 
by Eq. (46). 

This result admits a simple physical interpretation. It is 
clear that the "safety factor" of a stable system with respect 
to increase of the charges of the like-charged particles is 
greater the greater the depth of the discrete energy level of 
this system below the boundary of the continuous spectrum 
and the greater the average distance between the like- 
charged particles. The formula (46) gives quantitative con- 
firmation of these considerations, by showing that the "dis- 
tance" (equal to k, - 1) from the initial stable system with 
k = 1 to the unconditionally unstable system with k = kc is 
proportional to the depth of the displacement of the initial 
discrete energy level from the boundary of the continuous 
spectrum and to the average distance between the like- 
charged particles in the initial stable system. 

Since the negative hydrogen-atom ion H ( w ) and the 
positronium ion e - e - e + have only one bound discrete en- 
ergy the criterion found here for unconditional 
instability is directly applicable to systems that can be ob- 
tained from these initial systems by change of the particle- 
charge ratios. Taking into account the values given in Table I 
for the energies of these systems and the average values (r,, ) 
of the interparticle distances in these systems, we find that 
the three-particle system with particle masses m, = m, and 
m, = co is unconditionally stable at the point D with coordi- 
nates p, = q, = 0.89090; analogously, the system with all 
particles having the same masses (m,  = m, = m, ) is un- 
conditionally unstable at the point D with coordinates 
p, = q, = 0.90695.3' This implies that for a two-electron 
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atom with a fixed nucleus the critical value of the atomic 
number is bounded from below by the inequality 
Zcr >0.89090, while for a system consisting of two electrons 
and a "positron" with variable charge (but with a fixed mass 
equal to the electron mass) the critical charge of the "posi- 
tron" is bounded from below by the inequality Zcr 20.90695. 

REGION OF UNCONDITIONAL INSTABILITY OF A THREE- 
PARTICLE SYSTEM 

We now determine, on the plane of the charge param- 
eters p, q, the region in which a Coulomb system of three 
particles is unconditionally unstable. 

We shall consider functions in the form of the difference 
of the left- and right-hand sides of the inequalities ( 12a) and 
( 12b) : 

Suppose that at a certain point D with coordinates p,, q, the 
three-particle system is unstable against decay along both 
possible channels (1, 2, 3) -+ (1, 3) + 2 and (1, 2, 3) + (2, 
3) + 1. Then both inequalities ( 12a) and (12b) are violated 
simultaneously, and at the point D the functions (47a) and 
(47b) satisfy the relations 

Consider first the consequences flowing from the inequality 
(48a). We form the derivatives of the function f, with re- 
spect top and g. For the first of these quantities, taking into 
account the explicit form of the energy operator (9),  the 
Hellmann-Feynman theorem, and the virial theorem, we 
find the following chain of equalities: 

Taking (47a) into account, from this we obtain 

For the derivative off, with respect to q, taking the Hell- 
mann-Feynman theorem into account we have 

We draw a straight line connecting the point D to an arbi- 
trary point of the segment OF (this straight line is not shown 
in the figure). It is characterized by a nonnegative slope k, 
where 

and is described by the parametric equation 

where s is the parameter whose variation corresponds to mo- 
tion of the point with coordinatesp, q (53) along the straight 
line. For the derivative off, with respect to s, which deter- 
mines the variation of the function f, as we move along the 
straight line under consideration, we have, with allowance 
for Eqs. (50), (51), and (53), 

dfi d f i  d p  _t 8f' ''&I -=-- 
ds d p d s  d q d s  

The second term on the right-hand side of (54), obviously, is 
negative. From (52) and (53) it follows that 
kp - q = kp, - q, (0. Therefore, the third term in (54) is 
nonpositive. Discarding the second and third terms in (54), 
we obtain the inequality 

By virtue of (48a), the function f, is nonnegative at the point 
D. The inequality (55) shows that as we move from the point 
D along any straight line inside the triangle ODF the func- 
tionf, does not decrease. Thus, in the entire triangle ODF 
(see the figure) the following inequality holds: 

implying instability of the three-particle system. 
We note now that for the function f, relations analo- 

gous to Eqs. (49 ) -(55 ) and differing from them only in in- 
terchange of the coordinatesp and q are fulfilled. Therefore, 
it follows from the inequality (47b) that the system is uncon- 
ditionally unstable in the entire triangle OED. 

Let us combine these results. If a three-particle system 
is unstable at a certain point with coordinatesp,, q, in re- 
spect of both possible decay channels, it is unconditionally 
unstable at all points whose coordinates simultaneously sat- 
isfy the inequalitiesp~p, and q ~ q , ,  i.e., inside the rectangle 
OEDF. 

The systems symmetric in the masses of particles 1 and 
2, considered at the end of the preceding section and genera- 
ted by the negative hydrogen-atom ion and the positronium 
ion, satisfy at the point D the conditions (47). Therefore, 
they are unconditionally unstable inside the rectangle 
OEDF, which in the given case is a square with side equal to 
0.89090 [for systems of the type H- ( ca ) ] or 0.90695 (for 
systems of the positronium-ion type). 

CONCLUSION 

The analysis performed here has shown that the method 
of variation of the scale makes it possible to determine the 
regions of unconditional stability and instability of Coulomb 
systems with varying particle charges for fixed ratios of the 
particle masses. Thus, three-particle Coulomb systems are 
unconditionally stable in the region shaded in the figure. The 
coordinates of the points A, B, and C on the plane of the 
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charge parameters p = - Z, /Z, and q = - Z, /Z2 (the 
coordinates defining the region of stability) are related by 
Eqs. (27a)-(27c) to the total energy and to the component 
parts of the potential energy of the initial ("standard") sta- 
ble system characterized by certain fixed values of the 
charges and masses of the particles. 

The region of unconditional instability of three-particle 
systems with varying particle charges is the rectangle OEDF 
adjacent to the coordinate origin. The location of the corners 
of the rectangle is determined, using Eq. (46), from the val- 
ues of the total energy and the average spacing between the 
like-charged particles in the initial system, which, in the giv- 
en case, should have one (and only one) discrete energy lev- 
el. Thus, every stable three-particle system generates a fully 
determined region of unconditional stability of systems with 
varying charges of the particles. In addition, every stable 
system that has only one discrete energy level also generates 
a fully determined region of unconditional instability of the 
systems that we are investigating. 

Knowledge of these regions of stability and instability 
makes it possible, in particular, to find lower and upper 
bounds on the critical value IZ, ( = Zcr of the charge of the 
third (binding) particle at which the system with unit 
charges of the other particles ( IZ, I = IZ2 I = 1 ) loses its sta- 
bility against decay, and also the corresponding bounds on 
the critical coupling parameter A,, (characterizing the inter- 
action of the like-charged particles) at which the system 
with unit charge of the binding particle ( IZ, I = 1 ) loses its 
stability. These bounds are given in Table I11 for various 
three-particle systems that can be obtained from the initial 
systems indicated there by changing the particle charges. 
Also included in the table are data for the muon analog of the 
negative hydrogen-atom ion (the system p + e - e - ), calcu- 
lated taking the results of recent work2' into account. In the 
last two columns of Table I11 we indicate the limits of the 
range of variation of the magnitude IZ, I of the charge of the 
second particle within which the system with unit charges of 
the other particles ( IZ, I = IZ, I = 1) is unconditionally sta- 
ble. 

All these bounds (except the upper bound on the quan- 
tity Zcr for H - ) are obtained here for the first time. They are 
quite accurate. For example, the upper bounds on the criti- 
cal value Zcr of the charge of the binding particle and on the 
critical value A,, of the interaction parameter of the particles 
being bound differ from the lower bounds by less than 3%. 
At the same time, Ref. 11 gives only a rough estimate of the 
bounds onZcr for the H -  ion: 1/2 < Z,, < 868/901, in which 

the upper bound amounts to 193% of the lower bound on the 
quantity being estimated. 

The results obtained here can be applied to stability 
analysis and to the determination of the critical charge pa- 
rameters and the regions of applicability of perturbation the- 
ory in the interaction of the particles in various Coulomb 
systems. They are a new confirmation of the usefulness of the 
method of variation of the scale in application to the study of 
the dependence of the energy of a quantum-mechanical sys- 
tem on the parameters appearing in its energy operator. 

Ref. 12 is cited in the text of Ref. 11. 
"The validity of the inequalities (25a) and (25b) can also be proved 

purely analytically, starting from the relations obtained in Ref. 13 for 
the energy and the components of the potential energy of a Coulomb 
system with varying particle charges. The method used in the text is 
preferable by virtue of its brevity and clear physical meaning. 
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