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A new type of basis function for variational calculations of quantum-mechanical systems with 
Coulomb interaction between the particles is proposed, viz. complex exponential functions of the 
interparticle distances. The simplicity of the calculational formulas and of the computer 
programs that is characteristic of exponential functions is retained when the proposed basis 
functions are employed; the latter, however, yield much better convergence of the variational 
calculations compared to the usual real exponential basis functions. This is particularly true in the 
case of molecule-like systems in which two heavy particles oflike charge are bound by a light 
particle. On the basis of calculations of various three-particle Coulomb systems it is shown that a 
single real exponential-trigonometric basis function consisting of a pair of complex conjugate 
exponential functions can replace from 10 to 15 real exponential functions in calculations of 
atom-like systems and up to 80 such functions in calculations of molecule-like systems. Thus the 
proposed new basis functions can significantly broaden the scope of variational calculations of 
Coulomb systems without complicating the method of calculation. 

The problem of quantum-mechanical systems with a 
small number of particles interacting according to the Cou- 
lomb law has stood in recent decades at the center of atten- 
tion of a large number of authors and groups of authors. It is 
important for the theory of mesomolecules and mesomole- 
cular ions, which participate in the muon catalysis of reac- 
tions of nuclear synthesis, and also in the detailed theory of 
atoms, molecules, and their electron-hole analogs in the sol- 
id state. At present two important directions in the approach 
to this problem have taken shape: an approach based on the 
expansion of the wave functions of the systems over the adia- 
batic basis,'-3 and the direct variational method, based on 
the expansion of the unknown wave functions over basis 
functions of simple analytic form, among which we may note 
in particular the Hylleraas functions" and the purely expo- 
nential  function^.^-'^ These approaches to a certain extent 
complement each other. The expansion over the adiabatic 
basis is the more applicable of the two in the case of heavy 
identically charged particles bound by a light oppositely 
charged particle and converges poorly in the case of light 
particles bound by a heavy particle. The direct variational 
methods are the more applicable of the two in the region 
where the adiabatic expansion converges poorly, but cease to 
be of service in the limit of infinitely heavy bound particles 
and a light binding particle, i.e., when the adiabatic basis of 
one single function gives the exact solution of the problem. 
This justifies the parallel development of both approaches, 
which in their regions of applicability (and using a wide 
enough basis) give precise results for the energies of various 
three-particle Coulomb systems, reviews of which can be 
found, e.g., in Refs. 2, 3, 7, and 13. At the same time, it 
should be noted that the adiabatic expansion method, which 
requires the preliminary solution of a quite complicated 
Schrodinger equation to determine the basis functions, is 
more labor-intensive than the direct variational method. 

In the ground-breaking work of Delves and K a l o t a ~ , ~  
dedicated to the mesomolecular ion d + d + p  -, was pro- 
posed a simple and practical method for variational calcula- 

tions of three-particle Coulomb systems with complete ac- 
count of the motion of all three particles. It is based on the 
use of basis functions which depend exponentially on the 
interparticle distances. Its unquestionable virtue is the ex- 
ceptional simplicity of the calculations of the matrix ele- 
ments of the energy operator, which are easily performed in 
perimetric coordinates and yield compact analytic formulas 
suitable for numerical computation. After a fifteen-year 
pause this method was discovered anew in Refs. 9 and 10, 
and after a detailed reworking of its purely computational 
aspects it has now become one of the main variational meth- 
ods for calculating three-particle Coulomb systems; a de- 
tailed exposition of the technique of this method and the 
results obtained using it can be found in Refs. 11-14. 

As in other variational methods, the convergence of this 
variational method deteriorates as one goes from atomic sys- 
tems (where two light particles are bound by one heavy par- 
ticle) to a system with equal particle masses, the positron- 
ium ion e - e - e + , and from there to mesomolecular ions 
and, finally, to isotopic modifications of the molecular hy- 
drogen ion H:. Thus, for the mesomolecular deuterium ion 
d + d +p - , using N exponential basis functions (with three 
nonlinear parameters entering into the exponents) the total 
energy E is reproduced with N = 15 but only to two signifi- 
cant figures, with N = 35, to three significant figures, and to 
six significant figures starting with N = 125. As to the mo- 
lecular ion H,+ ( cc ) with fixed (infinitely heavy) nuclei, for 
its energy even with N =  350 one obtains the value 
E=: - 0.592010 instead of the exact (rounded off to six sig- 
nificant figures) E = - 0.602634, which corresponds to a 
10% error in the binding energy of this system (see Refs. 11 
and 12). The reason for the poor convergence of the vari- 
ational calculations in molecules with heavy nuclei is that 
the set of monotonic exponential functions of the interparti- 
cle distances is poorly suited to approximate the vibrational 
wave function of a molecule that has a sharp maximum near 
the equilibrium of the nuclear shell. This feature of the vari- 
ational method is particularly pronounced in the case of the 
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molecular hydrogen ion with fixed nuclei, for which the vi- 
brational function becomes a delta-function. 

Because of this peculiarity of purely exponential basis 
functions, to obtain precise results it is necessary to use bases 
that contain hundreds (sometimes even thousands) of func- 
tions, which, in turn, is associated with difficulties that arise 
as a consequence of the nearness to zero of the determinants 
of the matrices which are made up from overlap integrals of 

/ 

the basis functions. 
The goal of the present paper is to show that the capa- 

bilities of the exponential functions can be significantly ex- 
tended without complicating the corresponding analytic and 
calculational work by using a new type of basis function: 
complex exponential functions of the interparticle distances. 

Let us consider a three-particle system with particle 
charges Z, and masses m,, where j = 1,2,3. For definiteness 
we take the signs of the charges of the first two particles to be 
identical and opposite that of the third particle (the binding 
particle). We then have Z,  Z, > 0, Z,Z, > 0, Z,Z, < 0. In- 
troducing as the relative coordinates the interparticle dis- 
tances r,,, r,, , and r,, , and restricting ourselves (for the 
sake of simplicity) to the states of the system with zero total 
angular momentum, we have for the Hamiltonian of the sys- 
tem the following expression: 

3 

We abbreviate the notation for the interparticle distances as 
follows: 

The quantities p, are the reduced masses of the particle 
pairs: 

and 8, denotes the angle between the line segments connect- 
ing the jth particle with the other two particles. Then 

a I cos 0,= (rj+t+rj+z-r?)/ (2rj+lrj+a). (4) 

When the index of some quantity (r,, , , mi + , , or Z, + , ) is 
greater than three, it must be reduced by three (i.e., r4 = r, , 
r5 = r 2 , m 4  = m , , m 5  = m 2 , Z 4  = Z , , a n d Z  5 - 2 , ) .  - 

The basis functions proposed here have the following 
form: 

a 

where A,, , A,, , and A,, are a triple of complex numbers 
which characterizes the basis function with index k. Here 

so that each basis function is determined by six real numbers 
a, , ,a, , ,a, , ,b, , ,  b,, ,  andb,,. 

The normalization and overlap integrals of the basis 
functions (5),  and also the matrix elements of the Hamilto- 
nian ( 1 ) in this basis, are easily calculated in perimetric co- 
ordinates (see Appendix). 

Since the wave function of the system of particles in the 
present case, without a magnetic field, should be real, to each 
basis function q,, (5) there should correspond a complex 
conjugate basis function q, 2.  Out of the basis functions q, 
and q, it is possible to construct a pair of real basis functions 

This pair of functions enters into the expansion of the un- 
known wave function of the system of particles together with 
some (determined from the variational principle) real coef- 
ficients d + ' and d 1- '. Therefore the contribution of the 
pair of functions ( 7 ) ,  (8)  to this wave function is equal to 

3 Y 

where 

Thus, the expansion of the unknown wave function of 
the system of particles with respect to the basis of complex 
exponential functions (5 )  containing the pair of complex 
conjugate functions is equivalent to expanding it over the 
real basis consisting of exponential-trigonometric functions 
of the following form: 

3 3 

Each basis function f, contains six nonlinear parameters 
(a,, and bkj ) and one linear parameter, corresponding to the 
tangent of the angle 7,. 

It  is important that all of the calculations of the norma- 
lization and overlap integrals and matrix elements of the 
Hamiltonian in the basis of functions ( 1 1 ) reduce to a calcu- 
lation of the analogous quantities in the basis of elementary 
complex exponential functions (5) via simple analytic for- 
mulas given in the Appendix, and are easily determined nu- 
merically using the capability of direct operation with com- 
plex numbers provided by the programming language 
FORTRAN. Therefore the calculational work in the basis of 
exponential-trigonometric functions ( 1 1 ) is as simple as us- 
ing the commonly used basis of purely exponential (real) 
basis functions. 

At the same time, thanks to its nonmonotonic depen- 
dence on the interparticle distances, the exponential-trigo- 
nometric basis functions ( 11 ) are much more flexible than 
the purely exponential functions. 

In order to demonstrate the capabilities of these basis 
functions, we have carried out calculations of the ground 
state of a number of three-particle systems which are sym- 
metric in the masses and charges of the first two particles 
(2, = Z ,  = f 1, Z, = + 1, m, = m, ), restricting the dis- 
cussion to the simple case of a variable wave function ob- 
tained from the one single basis function ( 1 1 ) by symmetriz- 
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TABLE I. Results of the variational calculations of three-particle Coulomb systems which differ 
in the masses of their particles, using the exponential-trigonometric test wave function ( 13). 

ing it with respect to the coordinates of the identical particles 
1 and 2: 

In the usual notation of the interparticle distances this wave 
function can be written in the form 

d+d+p- 

1,0533 
0,2054 
0,4215 

-0,0655 
-0,0143 

0,5129 
-0,0595 

109,017 
109,817 [ I21 

0,7 

H- (m) 

0,9560 
0,4475 
0,0353 

-0,0640 
0,0032 
0,0804 
0,2736 
0,52705 

0,52775 [ I81 
0,13 

T=exp (--yiZ) [exp (-aria-BrZs) sin (Gri3+erz3+f r,,+q)( 
) +exp (-Br~3-arzs) sin ( ~ r ~ ~ + G r ~ ~ + ~ r ~ ~ + r ) )  1. 

In place of the subscripted parameters a,, and b,, we have 
introduced here more easily distinguished symbols. 

The results of the calculations of ten three-particle sys- 
tems, differing in the masses of,the particles, carried out by 
varying the six nonlinear parameters (a, fl, y, 6, E,  and 5 )  
and one linear parameter (tan 7) entering into the test wave 
function ( 13), are presented in Table I. 

In the first seven rows of this table are given the optimal 
values of the variational parameters, found by minimizing 
the mean value of the energy (by the method of steepest 
descent). In the next three rows are given the variational 
values of the energy, the exact values of the energy of the 
investigated systems, and the relative error of the variational 
value of the energy. This error is maximal for the molecular 
hydrogen ion with infinitely heavy nuclei (4.7%), and falls 
off monotonically as a function of the ratio of the mass of the 
binding particle to the masses of the bound particles, and for 
the negative ion of the hydrogen atom stands at 0.13%. 
Comparison with the variational calculations of other au- 
thors shows that one exponential-trigonometric test wave 
function ( 13) in the case of the molecular hydrogen ion pro- 
vides the same accuracy as 80 exponential basis functions,12 
and, in the case of the mesomolecular ion d + d + p  -, 23 
exponential basis functions, but in the case of the H - ion, ten 
Hylleraas basis functions. L 1 s 1 9  

These results, obtained with one single basis function 

t t t + y -  

1,0629 
0,2055 
0,4293 

-0,0624 
-0,0161 

0,5612 
-0,1020 

111,853 
112,973 [ I21 

(13), provide convincing proof of the effectiveness of the 
exponential-trigonometric basis ( 1 1 ) proposed here, con- 
structed from elementary complex exponential functions 
(5) .  These basis functions make it possible to substantially 
improve the modeling of the dependence of the wave func- 
tions of Coulomb systems on the interparticle distances in 
comparison with real exponential basis functions and to im- 
prove the convergence of the variational calculations by one 
to one and a half orders of magnitude. 

By way of a second illustration we present calculations 
of the energies of the ground state of the helium atom and 
helium-like ions, the results of which are shown in Table 11. 
In this case Z ,  = Z ,  = - 1 ,  m l  = m ,  = 1, m ,  = CO, and 
the charge of the third particle Z ,  = Z runs through the 
values + 1 to + 10. The first column of Table I1 corre- 
sponds to calculations with a purely exponential test func- 
tion of the form 

System I Hs+ (m) 

the second column corresponds to calculations with the ex- 
ponential-trigonometric test function of the form ( 13), the 
third column presents results of calculations with a 15-term 
Hylleraas basis,19 and in the final column, the correspond- 
ing rounded-off results of exact  calculation^.^^ From this 
table it is clear that the compact exponential-trigonometric 
test function ( 13) in the given case is almost as accurate as 
the calculations of the energy in the 15-term Hylleraas basis 
and substantially more accurate than the results obtained 
with the purely exponential test wave function ( 14). 

Let us discuss briefly the values of the variational pa- 
rameters found by minimizing the mean value of the energy 
for systems with different ratios of the masses of the light and 
heavy particles, shown in Table I. Since for each of these 
systems the natural unit of length is determined by the re- 

p t p t e -  

1,0878 
0,2121 
0,4421 

-0,0510 
-0,0212 

0,7183 
-0,2442 

0,57376 
0,59714 [ I51 
3,9 

o 

? 
1 
6 

e 
tg rl 
- Eva, 
- EexaL, 
W E ,  % 
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y+y te -  

1,0842 
0,2105 
0,4421 

-0,0531 
-0,0202 

0,6912 
-0,2200 

0,56940 
0,58512 [ I61 

1,0881 
0,2123 
0,4420 

-0,0508 
-0,0213 

0,7220 
-0,2474 

0,57433 
0,60263 [15] 

4,7 

System 

- 
a 

k! 
'Y 

6, e 
t g  n 
- E,,, 
-E,,,,t 
AEIE, Oh 
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P+P+P- 

1,0314 
0,2086 
0,4000 

-0,0700 
-0,0107 

0,4155 
0,022 I 

101,801 
102,224 [ I21 

0,41 

I I I'O 
e-e-e+ yte-e-  pte-e-  

0,9554 
0,4470 
0,0359 

-0,0638 
0,0031 
o,0800 
0,2714 
0,52675 
0,52745 [ I71 
0,13 

0,9421 
0,2842 
0,2542 

-0,0408 
0,0023 
0,0892 
0,1107 
0,26155 
0,26200 [ I21 
0,17 

0,9536 
0,4444 
0,0405 

-0,0600 
0,0027 
0,0760 
0,2531 
0,52436 
0,52506 [ I21 
0,13 



TABLE 11. Absolute values of the ground state energy of the helium atom and helium-like ions, 
calculated with various variational test wave functions. 

duced mass of the bound and binding particles, in place of 
the values of the quantities a, B, y, 8, E, and 5, Table I gives 
the values of the quantities 5, B, f ,  &t, and 8 defined by the 
formulas 5 = a/p, = @/p, i. = y/p, etc., where 

c~=m~m~/(rn~+rn~) .  

Purely exponential Exponential- I 15-term wave I Precise 
function ( 14) trigonometric calulation 'W.20 

The parameters ti, B, y, and 5 are positive for all the systems 
considered here and the value of 8 is negative for all these 
systems, while the quantity t is negative for the molecular 
hydrogen ion and grows as one moves toward the atom-like 
systems, passing through zero between the positronium ion 
and the mesomolecular ion p + p  +p - . The closeness of the 
absolute values of the parameters 8 and t to zero means that 
the trigonometric correction to the exponential dependence 
of the wave function ( 13) on the distance between the oppo- 
sitely charged particles r,, and r,, is relatively small. At the 
same time, the larger values of the parameter (particularly 
for the molecule-like systems) points to the important role 
of such a trigonometric correction to the dependence of the 
test-wave function on the distance r,, between the like- 
charged particles. Of the three purely exponential param- 
eters of the test wave function (Z,B, y ) ,  as one goes from the 
molecule-like systems to the atom-like systems the param- 
eter ?falls off, while the parameters Zi andB fall off gently at 
first, have shallow minima in the vicinity of the positronium 
ion and the mesomolecular ions, respectively, and then 
grow. 

The positive sign of the parameter ?, which corresponds 
to attraction between the like-charged particles, deserves at- 
tention. This effect of the parameter 7 is cancelled out by the 
dependence of the argument of the trigonometric function 
on the quantity Jr,, , leading (on the average) to a correct 
account of the correlation in the motion of particles 1 and 2. 
Precisely such a distribution of "roles" between the expo- 
nential and trigonometric parts of the test wave function 
(13) is the source of its flexibility, allowing it to compete 
with a linear combination of 10-80 purely exponential func- 
tions. 

The quantity tan 17 = d ' + '/d ' - ', which being the ra- 
tio of the contribution of the "cosinusoidal" function (7)  to 
that of the "sinusoidal" function (8)  to the test wave func- 
tion ( 13 ) , grows monotonically as one goes from the molec- 
ular hydrogen ion H: ( co ) to the atomic ion H - ,  in the 
process passing through zero in the region between the me- 
somolecular ions d + d +p andp + p  +p -. Here the abso- 
lute value of tan 7 has almost identical values for the ions 
H:(co) a n d H - ( a ) .  

Let us dwell now on the problem of the nodes of the 
wave function ( 13) that represent a formal insufficiency of 
this function (in the exact eigenfunction of the ground state 
there are no nodes). Taking into account the numerical val- 
ues of the variational parameters from Table I, one can con- 
vince oneself that these nodes are located in the region of 
configuration space that is of little significance for the ener- 
gy calculations: in these regions the exponentially decaying 
factor is extremely small and, for the H - ion for example, is 
of order 10 - '. 

The results obtained here show that the use of complex 
exponential basis functions (or the exponential-trigonomet- 
ric basis functions corresponding to them) makes it possible 
with a minimum of effort to substantially broaden the possi- 
bilities of variational calculations of three-particle Coulomb 
systems, to improve their convergence, and to decrease the 
number of basis functions needed to achieve a given accura- 
CY - 

The transition from the case considered here of one ex- 
ponential-trigonometric basis function to a superposition of 
such functions does not introduce any difficulties and is easi- 
ly realized with the use of generally available standard pro- 
grams for calculating the eigenvalues and eigenvectors of the 
matrices. Simultaneously, the problem of the nodes is eli- 
minated (in analogy with the possibility of representing a 
node-free function by a truncated Fourier series). 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

APPENDIX. CALCULATION OFTHE MATRIX ELEMENTS OF 
THE HAMlLTONlAN AND THE OVERLAP INTEGRALS WITH 
COMPLEX EXPONENTIAL BASIS FUNCTIONS 

0,52387 
2,89953 
7,27571 

13,65137 
22,02677 
32,40205 
44,77725 
59,15241 
75,52753 
93,90262 

Operating with the Hamiltonian ( 1 ) on the basis func- 
tion ( 5 ), we have 

0,52775 
2,90372 
7,27991 

13,65557 
22,03097 
32,4625 
44,78145 
59,15681 
75,53171 
93,90681 

0,52705 
2,90317 
7,27929 

13,65487 
22,03023 
32,40550 
44,78064 
59,15575 
75,53085 
93,90592 

Hence it is obvious that calculations of the matrix elements 
of the Hamiltonian reduce to the calculation of the matrix 
elements of the operators l/r, and cos 8, and the overlap 
integrals. We denote by e7, a basis function of the form ( 5 )  
with parameters A,, , A,,, and A,, . The required integrals 
are elementary to calculate in perimetric coordinates. We 
have 

0,52718 
2,90319 
7,27939 

13,65505 - 
32,40550 - 
59,15609 - 
93,90630 
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(cp ,  1 cos 01 l cpc) = 
2 (*  +C+C, +CrC ,  Cs-CI +-) . 

(CiCaC8)" Ci Ca Ca 

The complex quantities C, , C,, and C, are given by the for- 
mula 

The matrix elements of the operators l/r,, l/r, , and cos 8, 
are obtained from formulas (A3) and (A4) by cyclic permu- 
tation of the indices. As in the main text, the condition for 
lowering the indices j + 1 and j + 2 by three is used as need- 
ed. 
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