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The mean field approximation is used in an investigation of a phase transition in a two- 
dimensional lattice nematic described by the O(3) amodel on a projective sphere RP '. The tight- 
binding approximation is used to show that a phase transition takes place at a certain temperature 
to a vortex free phase relative to a gauge field which determines the projective sphere topology; 
there is no nematic order in the system on either side of the transition point. 

I .  INTRODUCTION. FORMULATION OFTHE TWO- 
DIMENSIONAL a MODELON A PROJECTIVE SPHERE R p  

By analogy with collinear two-dimensional (2d) mag- 
netic materials described by the a model on a sphere S2 [or 
S '-SU(2) 1 ,  a natural description of a planar nematic is giv- 
en by the a model on a projective sphere RP = S ' / Z  2.  The 
projective sphere RP appears because the order parameter 
of a nematic (i.e., its director d)  specifies only a line in space 
but not its direction. Therefore, the action of the RP2 model 
can be represented in the form 

or using the Berezinskii-Villain (BV) formali~m'.~ 

1 s = - n - n -  kz n,njvij+const, 
'g2 v , j  g i,j 

where vv is a gauge field ensuring a transition of the vector n 
to the director d. The partition function of the model is 

The action (1.2) for vii - 1 is identical with the lattice 
action of the O(3) a model, whose continuous limit is 

We cannot obtain the continuous limit of the action . 
(1.2) for an arbitrary distribution of uij because the field vo 
assumes the discrete values f 1 and it cannot be described in 
the continuous limit, which is the general property of all 
discrete-valued fields. Therefore, in the continuous limit we 
have to use directly the action ( 1.1 ) . 

Nontrivial configurations of the field vv are described 
by classical vortex configurations of the field of d. Bearing in 
mind that d&P = S 2 / Z  2, in the case of single-vortex solu- 
tions we can select the following parametrization 
[ n = ( n , , n , , n ,  I ] :  

where (r, p) is the coordinate in a plane. We can see that if 
we go around the point r = 0 along a closed contour, the 
angle q, changes by 2 ~ ,  so that we have ni -+ - n,. On an 
ordinary sphere S this would not have been a topologically 
nontrivial solution, but on a projective sphere RP obtained 
by identification of diametrically opposite points ( n =  - n) 
such a vortex solution is valid. As usual (see Ref. 3), it is 
characterized by a logarithmically large action 

where A is the volume (total area) of the system and a is the 
ultraviolet cutoff parameter, which in the case of the lattice 
model is identical with the size of a packet. 

Using the standard arguments of the Berezinskii-Kos- 
terlitz-Thouless (BKT) theory1-' and comparing Eq. ( 1.6) 
with the vortex entropy, we find that the BKT transition 
should occur for g2 = 1/16, but this is incorrect. In fact, the 
theory of Eq. ( 1.4) is asymptotically free and the coupling 
constant (charge) g depends on the gauge ofp. In the one- 
loop appr~ximation,~ we obtain 

wherep, is the correlation radius governing the mass gauge 
of the theory. Including the quantum corrections, we can 
modify Eq. ( 1.6) to 

Comparing Eq. ( 1.7) with the entropy ln(p/a2) of a pair of 
vortices of size p, we can see that if p z p , ,  the entropy is 
always higher, i.e., irrespective of the unrenormalized 
(bare) value of g, the quantum corrections always make 
g,, =g(p )  sufficiently large, so that the vortices always 
"survive" in one plasma phase where the excitations have a 
gap. We shall confine our treatment to just the tight-binding 
approximation. 

The gauge field v,, introduced above and governing the 
topology of the projective sphere RP can be regarded as an 
order parameter which is an indicator of the presence of vor- 
tices in the system. 

We shall show in Sec. 2 that in the mean field approxi- 
mation at some critical temperature T, a phase transition 
takes place to a state (which is stable below T, ) correspond- 
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ing to the absence of vortices in the system. However, such a 
transition does not create a nematic order. 

It therefore follows that in the adopted approximation 
the exponential function of the action of Eq. (1.2) can be 
represented by the first two terms of the expansion in powers 
of l/g2: 

Then, the partition function Z,  becomes 

The integration measure is Dn = ndn,,  so that 

j d n i l = f ,  (1.8a) 

1 dni nia=O, (1.8b) 

j d n ,  nian:='/r6Mb, ( 1 . 8 ~ )  

and so on. 
Calculating the integrals with respect to ni in the system 

( 1.8), we can easily show that the partition function Z,  can 
be reduced to a sum over closed contours [open contours 
contain the odd number of n,, and on the basis of the condi- 
tion ( 1.8b), make zero contribution to the expansion] :5 

where C, ,... C, are the close contours on a plane (generally 
speaking with self-intersections), whereas 

is a phase factor along a closed contour, which appears as a 
product of the values of the gauge field specified at the 
bonds. We can show that vij is simply Z and it is an analog 
of the Wilson operator exp ( $A,  dxp)  . 

We shall now sum Eq. ( 1.9) over all the closed contours 
N, but one naturally should reduce this summation to some 
function of one contour. It is natural to detect the geometric 
predictions in the form of an exponential function of Eq. 
(1.91, i.e., 

where exp [i@(C, {v}) ] = V( C, {v}) is the phase factor for 
a contour C corresponding to a given configuration of the 
gauge (vortex) field {v). In fact, Eq. ( 1.10) is not quite an 
exact analog of Eq. (1.9), because integration of the expo- 
nential function of some contours is allowed for using an 
incorrect weight and, in particular, there are difficulties with 
self-intersecting contours. This problem can be avoided ei- 
ther by going over to a hexagonal lattice right from the be- 
ginning, because there are no such contours for this lattice, 
or retaining a square lattice and recalling that Eq. (1.8) is 
only the high-temperature approximation in which never- 
theless the contours with double passes along one line are 

ignored; consequently, the sum over all the configurations of 
the contours {C}  in Eq. (1.10) denote summation only for 
contours that do not self-inter~ect.~ 

It therefore follows that in the tight-binding limit the 
problem of calculation of the free energy of one or another 
vortex configuration reduces to a study of the sum of close 
contours in an "external field" allowed for by a phase factor 
V( C, {v} ) = expi@ ( C, {v}) 1, where the flux across the con- 
tour C is 

whereas m is the number of vortices inside the contour. The 
average flux (i.e., the flux per one placket) does not exceed T 
(see Sec. 2). It should be pointed out that if we consider self- 
intersecting contours, then 

where ni is the algebraic number of passes made by each 
contour around the ith vortex. 

Using the R P 2  model and the high-temperature ap- 
proximation we can write the complete partition function as 
follows: 

=2,.2'  exp { 3  C exp [ -L ( C )  l n  ( 3 1 )  ] 

Here, Z,,  acts as a normalization factor, typical of all the 
field configurations, and equal simply to the sum over all the 
contours, whereas Z,, is the partition function of the vortices 
in the form of a sum of the contributions made by 0, 1,2, ... 
vortices: 

where 

X ~ x p  (- 6 Z e x p [ - - ~ ( ~ -  (a, b ) ) I n ( 3 g z )  I ) ,  . 
C-(a) 

Here, S = Jd  is the number of possible positions of a 
vortex on a plane; C -  ( a )  are the contours containing a vor- 
tex at a point a (in general, there is an odd number of passes 
of contours with self-intersection); C (a,b) are the con- 
tours with round vortices located at points a and 6, where the 
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number of the terms in the sum is odd; we can then proceed 
similarly dealing with the other cases. The fact that 2", which 
we shall omit in future, is the volume of the calibration group 
Z2; in the case of an arbitrary group G, it is replaced in a 
natural manner by (dim G)'. 

2. PHASE TRANSITION IN A SYSTEM OF VORTICES IN THE 
FRAMEWORK OFTHE MEAN FIELD THEORY 

By way of illustration we shall first consider the limit 
when there is a vortex at each placket, i.e., a flux @ = .rr 

crosses each placket in the lattice. Using Eqs. ( 1.10) and 
(1.11), we can easily show that in this situation the total 
number of contours of length L which enclose in "an odd 
manner" a given number of vortices (see above) is equal to 
the number of contours of length L including the whole fixed 
a r eaS=n(2k+  l),wherek=O, + 1, &2,  ...( inthiscase 
the number m = 2k + 1 represents the number of plackets of 
vortices within a contour). 

In the case of a grating not quite filled with vortices, we 
shall use the mean field approximation which involves a dis- 
tribution of the fluxes 

n for a placket with a vortex, 

0 for other plackets, 

which can be replaced by the mean value 

where Nis the total number ofcells in the system (total area) 
and m is the number of vortices. 

Since the flux @ and the area Ssurrounded by a contour 
are conjugate quantities, then in this approximation the par- 
tition function Z, [see Eq. ( 1.10) ], identical with the num- 
ber of all the contours Z (@)  characterized by a fixed flux @, 
can be represented by a path integral in the continuous limit 
[L  = NE = cons t ,N+ w , E-0, whereNis  the number of 
steps along a path, whereas E is the size of a lattice cell 
(length of a step) ] : 

where 

Z(S)= exp[-Lln(3g2)]Z(S,L), (2.2a) 
even L 

and Z(S, L )  is described by the expression 

In Eq. (2.3) the second term in the exponential function 
allows for the fact that the path cannot be self-intersecting 
(7 > O), whereas the last factor with the S function selects 
contours with a fixed algebraic area S expressed in terms of 
the Green formula: 

Using Eqs. (2.3) and (2.4), we can rewrite the expression 
for ~ ( 5 ,  L )  in the form 

(for convenience, we shall from now on assume that E- 1 ). 
The problem of calculation of Z(@, L )  reduces to cal- 

culation of the partition function of n-component gauge the- 
ory \V4 ( \V = ($,,$ 2,..., $,)) inthelimitn-0 (Ref. 7) :  

where 

Unfortunately, the partition functions of Eq. (2.5 ) and, con- 
sequently, of Eq. (2.6) cannot be determined accurately, 
which means that an analysis of Eq. (2.5) can be started 
from the case when 7 = 0, coresponding to lifting of the for- 
biddenness of contour self-intersections. We shall generalize 
our expressions to the case of contours free of self-intersec- 
tions and we shall do this by applying the scaling relation- 
ships. 

For example, if r = 0, the partition function of Eq. 
(2.5), or, more exactly, Po (a, L )  for paths in continuous 
space can be calculated exactly:' 

In the limit @ - 0, we have 

1 
lim Po ( 0 ,  I,) = - 
0-0 JELE ' 

which agrees with the probability density of formation of a 
close contour with a fixed point on the surface and corre- 
sponds to the condition of normalization of the function 
Po (S, L )  to the Gaussian distribution [see Eq. (2.2) 1 : 

The partition function Zo (a, L )  for a lattice with the co- 
ordination number Z can now be represented in the form 

In the Appendix we shall show that calculation of the 
partition function of Eq. (2.5) for r = 0 can be reduced in a 
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discrete case to calculation of the Green function of the Hof- 
stadter problem of the dynamics of an electron in a magnetic 
field on a plane square latticeG9 

Using Eqs. (1.1 I ) ,  (2.2), and (2.7) for Fo(u), we ob- 
tain the following expression for the square lattice with the 
coordination number z = 4: 

F {v) -- F,  (@)  

We recall that the expression for Po (@, L), in Eq. (2.8) is 
obtained in the continuous limit for self-intersecting con- 
tours. 

In order to allow more correctly for the dependence on 
g and @ in the first terms of the sum over L in Fo (Q),  we 

FIG. 1. Relief of the function F z ( g ,  @ / T )  for self-intersecting contours. 
shall write them down explicitly and calculate accurately the 
number of contours of length L = 4 and 6 and employ a - - - 
discrete analog of Eq. (2.2), whereas beginning from L = 8 ces cannot self-intersect. If @ = 0, then instead of Eq. 
we shall replace this sum in Eq. (2.8) with an integral with (2,7a), we now 
respect to L. In this way we obtain the following expression 
for Fo (a) : P(@=O, L) =l/nR2, (2.11) 

16 cos 6, (46656125 + 432) cos 6, + 48 cos 26, 
F ,  (6,) = ----- -t where 

(3g2)4 
a, 

(3g2I6 
RLLZv, 

11rE6, + const. (2.9) 
whereas the critical exponent Y for the two-dimensional 

In the mean field approximation the free energy of a 
vortex configuration with an average flux @ has an entropy 
associated with the possibility of transposition of the vorti- 
ces in the interior of the system. Two vortices at one point 
annihilate each other and, therefore, they satisfy the Fermi 
statistics and the entropy of such transpositions is 

problem is exactly 3/4. 
If @#O, then by analogy with Eq. (2.7) we find that the 

following scaling relationship applies to all closed nonself- 
intersecting contours: 

Subtracting Eq. (2.10) from Eq. (2.12), we find that 
= n + ( l - ) ( I - + ) .  n x (2.10) the total free energy F Z  is given by: 

16coscD 48cos26, 
The flux Q, varies from a state @ = 0, corresponding to the F = - 

(3g2I4 -+ (3g2)6 
complete absence of vortices, to a state @ = T, which repre- 

a 

sents a system filled completely with vortices. + 3 s d E ( 4 )  2E - 1 1,f4E2"@ 
It should be stressed that a state of the system with 8 3gZ nL2' sh (l/, EzVcD) 

Q, = 0 determines uniquely (apart from the gauge transfor- -- 
mation) the distribution of the field { v )  at bonds, so that it n n 
represents the situation when in all cases we have v, = 1 or 
vV = - 1 .  Using geometric considerations, we can readily 
establish that any other distribution of v, leads to a state 
with Q,#O (more accurately, to a state with @ > 0) .  

The total free energy of the system F t  is governed by 
the difference between the contributions (2.9) and (2.10). 
The temperature dependence of the original model is con- 
tained within the binding constant g (we can assume that 
g 2 a T ) .  

Figure 1 shows the relief of the function F t  (g ,  @) . We 
can see that if g < g: (g: = 1.3 1 ), a phase transition takes 
place to a state corresponding to the mean flux @ = 0, i.e., a 
state with a complete absence of vortices in the system. In the 
light of the adopted mean field theory, this is a transition of 
the first order and there is a possibility that a correct 
allowance for fluctuations may alter the order of the transi- 
tion. 

*pplying the for the FIG. 2. Relief of the function F Z ( g ,  @/r) for nonself-intersecting con- 
circumstance that in reality the contours surrounding vorti- tours. 
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where, as in Eq. (2.9) the contributions of the contours with 
L = 4 and 6 are allowed for exactly. 

The corresponding relief of the function F2(g,  @) is 
shown in Fig. 2. The critical valueg, = 1.21 corresponds to a 
first-order phase transition (in the mean field approxima- 
tion) to the phase with @ = 0, which remains thermody- 
namically stable when g < g, . 

The mean field analysis given above agrees with the 
qualitative ideas on the interaction between two vortices 
against the background of vacuum. We know that two vorti- 
ces located alongside each other in a lattice repel tending to 
reduce the mean flux inside the area bounded by vortices. 

CONCLUSIONS 

We posed for the first time the problem of the possibility 
of existence of a "vortex" phase transition in the R P  'amod- 
el. However, it should be pointed out that the mean field 
analysis of the stability of a vortex-free phase in the case 
when g<gc  does not determine uniquely the nature of the 
transition since, as usual, an allowance for fluctuations can 
alter the pattern qualitatively. Formally, a rigorous analysis 
of this problem can be made by considering the conformal 
properties of the O ( n )  model on planar lattices of different 
types. 

The authors are grateful to V. L. Pokrovskii and A. V. 
Chubukov for valuable comments. 

APPENDIX 

We shall show that Eq. (2.5) with T = 0 in the discrete 
case (for a random walk on a square lattice) satisfies the 
Hofstadter equation describing the dynamics of an electron 
on a square lattice in a homogeneous magnetic field. 

The recurrence equation for the partition function 
Z(R, @, L )  is 

~exp(-'/,ia)l[RR'])%(R', a ) , L ) ,  ( A l )  

where g(R - R') is the condition of probability of a transi- 
tion in one step. We must bear in mind that in the discrete 

case we have to make the following simple substitution in 
Eq. ( A l ) :  

where w(R - R') is the matrix of local jumps on a lattice in 
one step. Equations (A1 ) and (A2) yield directly the differ- 
ence equation for a square lattice with a symmetric matrix 
w(R - R'): 

Z(x, y ,  (D, L+l) ='Ir  {exp ('/,ihx)Z(x, y - I ,  (D, L) 
Sexp (-'/,ihx)Z(x, yf 1, 0, L )  S e x p  (-'/,ihy) 

XZ(x-1, y, 0, L )  +exp('l,ihy)Z(x+l, y, (D, L)), (A3) 

where @ is the magnetic flux and Eq. (A3) is written in the 
gaugeA=+( - H y ,  H x ) .  

Equation (A3) cannot be solved exactly for arbitrary 
values of @ and its solutions can be obtained only for rational 
@/T, which gives rise to the familiar ultrametricity and the 
"Hofstadter butterfly" (Ref. 9) .  By way of example, we 
shall write down the values of the partition function corre- 
sponding to the fluxes @ = 0 and @ = T: 
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