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An investigation is reported of the linear conductance of a system of two massive electrodes 
connected by point tunnel junctions to a small metallic granule. Quantum fluctuations of the 
granule charge lift the Coulomb blockade and give rise to a nonzero linear conductance Gat any 
temperature T. A periodic dependence of G on the granule potential p is determined at T = 0. 
Coherent transmission of electrons across the granule has the effect that at T = 0 the value of the 
conductance at the maxima of the G(p )  dependence exceeds greatly its high-temperature value. 
Near the corresponding values of p the amplitude of quantum fluctuations of the granule charge 
rises to a value of the order of the electron charge e. 

1. INTRODUCTION 

The first experiments' on tunnel junctions containing a 
layer of metallic granules in the barrier revealed nonlineari- 
ties of the current-voltage characteristics. The observed sup- 
pression of the current at low voltages was attributed in Ref. 
1 to the fact that a tunneling electron alters the charge of a 
granule by an amount equal to the elementary charge e and 
increases its electrostatic energy by E, -e2/C (where C is 
the granule capacitance). An electron can tunnel from a 
junction bank to a granule if its energy exceeds Eo, which 
can be ensured only by the application of sufficiently high 
voltages V- e/C. Recent years have seen the development of 
point-contact junctions in which the tunneling occurs main- 
ly through one particular g r a n ~ l e . ~ - ~  These experiments 
have revealed5 a series ofjumps in the current-voltage char- 
acteristic between which the granule charge remains con- 
stant and has the values e, 2e, 3e, ... . The granule charge is 
then governed by the voltage applied to the junction. In the 
case of the more complex devices the granule charge can be 
altered independently by applying a voltage Vo to an addi- 
tional gate e le~t rode ,~  as shown in Fig. 1. The linear conduc- 
tance dependent on Vo manifested in these experiments ex- 
hibits periodic oscillation maxima (see also Ref. 7 ) .  The 
origin of these maxima (and of the jumps in the current- 
voltage characteristic) is related to the degeneracy of the 
electrostatic energy of a granule 

calculated in this way1' exhibits an activation-type tempera- 
ture dependence in the limit T-0: 

Here, the activation energy E, (p) is positive everywhere 
except at the points defined by Eq. (2)  where it vanishes: 
E, (p, ) = 0; the conductances of the tunnel spacers separat- 
ing the granule from the banks 1 and 2 (Fig. 1 ) are assumed 
to be always small: G, + G2 <e2/fi. The physical meaning of 
Eq. ( 3 )  is that, because of the law of conservation of energy, 
the real transitions between the granule and the banks in- 
volves only those electrons whose energy exceeds the energy 
needed to charge the granule E, and the number of such 
electrons in the limit T -  0 is exponentially small. Therefore, 
the semiclassical approach predicts a Coulomb blockade" 
of the tunneling process: at T = 0 the conductance G(p)  
vanishes for any value of p, except at the charge degeneracy 
points described by Eq. (2).  

We shall show that a self-consistent quantum-mechani- 
cal analysis of the problem of the tunneling across a granule 
shows that the Coulomb blockade [understood in the sense 
of vanishing of G(p )  at T-0] does not appear. In fact, the 
law of conservation of energy does not forbid transitions be- 
tween states close to the Fermi level in the banks involving 
virtual high-energy states in the granule. We shall show in 

E (Q )  =QZ/2C+rpQ (1)  

in respect of the magnitude of the charge. Equation ( 1 ) for 
the granule energy is derived in the Appendix and the pa- I 
rameter p in Eq. ( 1 ) is proportional to Vo. We shall call p 
(not quite correctly) the granule potential. " The conditions 
for charged degeneracy E( (n - 1 )e)  = E(ne)  are satisfied 
if a potential assumes the values p = p,, given by 

The existing experimental data can be explained using a 
semiclassical approach proposed in Refs. 8 and 9. In this 
approach the kinetic (transport) equation method is used to 
allow for tunnel transitions between real states at the banks 
and in the granule. The linear conductance of the junction 

FIG. 1.  Schematic representation of the investigated junction: g is a gran- 
ule; I and 2 are massive electrodes tunnel-connected to the granule; 0 is 
the gate electrode; the present paper is concerned with the conductance 
between the electrodes I and 2 considered as a function of the gate voltage 
V, in the presence of a low longitudinal voltage V-0. 
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Sec. 2 that the conductance calculated in this way for T = 0 
differs from Eq. (3  ) by the replacement of exp ( - E, /T) 
with a small factor of the order of (G, + G, )/(e2/fi). 
Therefore, cooling reduces the conductance to 
G- G, G2 (e2/fi), and not to zero. In this sense there is no 
complete Coulomb blockade. 

The main part of the present paper is Sec. 3, where the 
conductance G ( p )  is calculated for the most interesting case 
of q, near the points of charge degeneracy given by Eq. ( 2 ) .  It 
is shown that if the value /q, - q,, / is sufficiently small, then 
at T = 0 the conductance is higher than at T- e2/C. There- 
fore, near the charge degeneracy points at a low temperature 
the Coulomb interaction does not block the tunneling, but 
conversely stimulates it. The average charge of a granule 
Q ( p )  is calculated in Sec. 4 in the simplest case of zero tem- 
perature and zero longitudinal voltage. The prediction ob- 
tained using the semiclassical approach that the charge 
should be discrete, Q = ne, is approximate. A correction 
SQ-e( G, + G, ) / ( t  '/fi), due to quantum fluctuations, is 
small to the extent that the conductances of the spacers are 
low compared with the quantum unit e2/fi. In the immediate 
vicinity of the charge degeneracy points defined by Eq. ( 2 )  
the correction reaches the value SQ- e. The conditions for 
experimental observation of the predicted dependences are 
discussed in Sec. 5. 

2. TUNNEL JUNCTION HAMILTONIAN. CALCULATION OF 
THE CONDUCTANCE USING PERTURBATION THEORY 

We shall consider a system of two massive electrodes 
connected by tunnel spacers to a granule. We shall describe a 
junction of this type under the Coulomb blockade conditions 
by allowing, inside the Hamiltonian, for tunnel transitions 
between the granule and the banks of the junction and also 
for the electrostatic energy of a charged granule [Eq. ( 1 ) 1 .  
The simplest Hamiltonian satisfying these requirements is 

k p  k~ 

Here, A,, B,, and c, are the electron annihilation operators 
at the left- and right-hand banks of the junction and at the 
granule, respectively; their energies E, and E,, measured 
from the Fermi level, fill uniformly a band - p < E,, E, < p  
with the densities of the states are v and v,, re~pectively;~) t ,  
and t2 are the matrix elements describing the tunnel transi- 
tions between the banks and the granule. The granule charge 
operator is of the form 

The second term in Eq. ( 7 ) ,  containing the Heaviside func- 
tion B ( x ) ,  is selected so that the ground state of the granule 
corresponds to the charge Q = 0 when q, = 0. It follows di- 
rectly from the nature of the Hamiltonian described by Eqs. 
(4) - (6)  that the dependence of the junction conductance 
G ( p )  on the potential q, is periodic. In fact, a shift of the 
potential p-q, +  ̂e / g  is equivalent to a redefinition of the 
charge operator Q- Q + e, which in turn is equivalent to a 

shift of all the levels E, in the granule by an amount v; ' 
representing the separation between the levels (so that the 
number of states under the Fermi level decreases by unity). 
In the case of a granule whose dimensions are greater than 
atomic the separation between the levels is small compared 
with the width of the energy band 2p and compared with the 
characteristic Coulomb energy of the granule e2/C, so that 
such a shift of the levels does not alter the conductance. 
Since the period of the dependence of G on the potential q, is 
e/C, we shall consider only the interval 

The conductance of each of the tunnel spacers separating the 
granule from the banks is proportional to the square of the 
corresponding matrix element of the Hamiltonian H,: 

As pointed out in the Introduction, the values of the conduc- 
tances G,,, are assumed to be always small compared with 
the fundamental quantity G, = 2?ie2/fi. This circumstance 
makes it possible to consider the tunnel Hamiltonian H ,  as a 
small perturbation when calculating the conductance G(p)  
of the whole junction. In this approach the linear conduc- 
tance G ( p )  is governed by the probability of the scattering of 
a Fermi electron from the left bank to the right because of 
transitions described by Eq. ( 6 )  2nd it can be expressed in 
terms of a matrix element of the T operator 

using the standard relationship 

G = G , ~  l<@lBA~T'(~=O)Ak+l@>126(&k)6(&k*). 
Ah' 

(11)  

Here, I@)  is the ground state of the Hamiltonian H, where 
all the levels below the Fermi energy are filled. 

As the firskstep, we shall substitute in Eq. ( 1 1 ) a matrix 
element of the T operator calculated in the second order of 
perturbation theory, because all the odd terms of the expan- 
sion vanish. It follows from Eq. ( 10) that 

Two terms in Eq. ( 12) allow for the scattering processes in 
which virtual states have an excess electron or an excess hole 
in the granule, respectively. In view of the anticommutative 
nature of the Fermi operators A, and B ,$; , these two terms 
have opposite signs, i.e., the contributions made to the scat- 
tering by the electron and hole channels partly compensate 
one another. Substituting in Eq. ( 1 1 ) an approximate 
expression for a matrix element from Eq. ( 12), calculated on 
the assumption that the width of the energy band is large 
(p  % e2/C), we find that 
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The relationship ( 13 ) describes correctly the dependence of 
the conductance on the potential q, in a large part of the 
interval defined by Eq. (8) ,  but at the ends of this interval, 
where q, = + e/2C, the charge degeneracy of the electro- 
static energy of Eq. ( 1 ) gives rise to a singularity in Eq. ( 13 ) . 
This means that in calculation of G(p) near the points of 
charge degeneracy we have to allow for higher orders of per- 
turbation theory in terms of the tunnel Hamiltonian of Eq. 
( 6 ) .  

3 CALCULATION OF THE CONDUCTANCE IN THE MAIN 
LOGARITHMIC APPROXIMATION 

In studies involving higher orders of a perturbation se- 
ries it is convenient to transform the problem of the tunnel- 
ing of an electron from the left to the right bank into the 
scattering problem. We shall do this by a unitary transfor- 
mation of the Fermi operators describing the electrons in the 
banks: 

a,= ( t ,Ak+t ,Bk) / t ,  bk= (&Ah-t ,Bk)/ t ,  t= (ti2+t,2) ". 
(14) 

In terms of the new variables the Hamiltonian of Eqs. 
(4)-(6) becomes 

The purpose of the transformation described by Eq. 
(14) is to separate those electron states (described by the 
operators 6, and b ,f ) which, in accordance with Eq. ( 15), 
do not interact with the granule. Using the fact that a state of 
the b,f I@) type is not scattered, we shall find the lay de- 
scribing the transformation of a matrix element of the Top- 
erator related to Eq. ( 14): 

The new notation of Eq. ( 11 ) for the conductance becomes 

Tk,,,=<@IakrT (2=O)ak+I@>. (17) 
In this section we shall consider the case when q, is close 

to one of the charge degeneracy points. We shall consider the 
specific potential q, = - e/2C + U, and assume that 
U<e/C. It follows from the results of the preceding section 
that the matrix element described by Eq. ( 17), found in the 
second order of perturbation theory, contains a large loga- 
rithmic factor Tk-, . - v, t ln (e/CU) . The appearance of 
this factor is due to the fact that in summation over interme- 
diate states in Eq. ( 12) some of the electron contributions 
corresponding to energies E, 5 e2/C are not compensated by 
the hole contributions. A similar situation occurs also in the 
case of higher orders of perturbation theory. The maximum 
degree of the logarithm which can be obtained in nth order of 
perturbation theory using a factor of the t " type in front of 
the terms is equal to the number of summations over inter- 
mediate states, i.e., it is n - 1. Since it is not possible to sum 
the whole series for the matrix element Tk-, . , we shall use 

the fact that ln(e/CU) is a large parameter and confine our- 
selves to the main logarithmic approximation. This means 
that we shall calculate the sum of only those terms of the 
expansion in which the smallness of the parameter t is com- 
pensated to the greatest degree by the large logarithm: 

This allows us to simplify greatly the Hamiltonian used in 
the calculation of T,-,, . It follows from Eq. ( 12) that a 
large logarithmic factor appears as a result of summation 
over intermediate states of energies E 5 e2/C. Therefore, we 
shall assume that the half-width of the energy bandp is e2/C 
and exclude from our discussion the states with the granule 
charge different from Q = 0 or Q = e.3' Therefore, in calcu- 
lations carried out in the main logarithmic approximation 
the Hamiltonian of Eq. ( 15) can be replaced by 

h h 

Here, Po and P, are the projectors (on the s!bspaces of the 
eigenstates) of the granule charge operator Q, which corre- 
spond to the eigenvalues Q = 0 and Q = e; the energies E,  

and .cp lie within the interval 

We note that the problem of the scattering by a granule is 
similar to the Kondo problem of the scattering by a localized 
spin. In both cases the logarithmic singularity of the scatter- 
ing amplitude observed at low energies is related to the ab- 
sence of complete compensation of the electron channel by 
the hole channel and to the degeneracy of the ground state of 
the scatterer. The only difference is that in the Kondo prob- 
lem the scatterer has two states, whereas the granule in Eq. 
( 19) has a wide spectrum. Nevertheless, in calculation of the 
scattering amplitude we can use the renormalization group 
method, which is fully analogous to that used by AndersonI2 
in an analysis of the Kondo problem. 

We shall define the renormalization-group transforma- 
tions using a class of Hamiltonians of the type 

kk' P P '  

A P  

The energies E,  and E, occurring in go fill the interval of Eq. 
(20). It is also assumed that the transitions described by Eq. 
(22) occur only between the states with the energies from 
the interval 

-D<ekr eP<D,  (23) 

which can be narrower than the interval of Eq. (20): DGD,,. 
The initial Hamiltonian in the renormalization-group ap- 
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proximation should be the Hamiltonian of Eqs. (19) and 
(20), which gives the following initial values of the param- 
eters: 

Our aim is to calculate the matrix element Tk-, , of Eq. 
( 17). We shall therefore introduce an infinitesimally small 
renormalization group transformation for the class of Ham- 
iltonians of Eqs. (21)-(23) when the width of the band D 
decreases by SD and the parameters of the perturbation de- 
scribed by Eq. (22) are renormalized due to ignored transi- 
tions involving high-energy states in such a way that the 
amplitude Tk-, , is not affected in the main logaritkmic ap- 
proximation. We shall first determine an operator M, which 
projects any state of the system (2 1 )-(23) to the subspace of 
states which do not contain quasiparticle excitations with 
energies I E ,  I and I in the intervalLrom D - SD to D. Ob- 
viously, if E, is close to zero, then Ma: i@) = a: i@). We 
can t h e r e f ~ e  %odifyA%definition of Eq. ( 172 by the r% 
placement T-. T' = MTM. We shall show that T' is also a T 
operator, but it applies to a different renormalized Hamilto- 
nian. In fact, using the definition 

1 T ( z ) = V  + v--- 
z - Ro T  ( 2 )  (25) 

and writing down the second term in the form of a sum of 
two operators, we find that 

Transferring the last term to the left-hand side of the above 
guatio%and using the commutative nature of the operators 
M and HA we obtain an equation of the (25) type for the 
operator T': 

The renormalized operator 

describes transitions between the states with energies IE, 1, 
I < D - SD. Unfortunately, it is not possible to allow ri- 

gorously for the renormalization of Eq. (26) of the Hamilto- 
nian of Eq. (22). We shall therefore expand the exact equa- 
tion (26) u ~ t o  the second order in terms of a small 
perturbation V: 

We shall show that this is equivalent to calculation ot 1 ,-, . 
in the main logarithmic approximation. We can easily show 
that if w%allow for the renormalization of Eq. (27), the 
operator V' remains witiin thezlass described by Eq. (22). 
The difference between V' and Vis that transitions now oc- 
cur between states in a narrower band IE, 1 ,  Isp I < D - SD, 
and the values of the parameters u change. For example, we 
can calculate the renormalization of the coefficient vg), . It 
follows from Eq. (27) that 

If z = 0, the last term vanishes because of the mutual com- 
pensation of the electron and hole contributions mentioned 
above. The first term corresponding to the scattering via a 
granule in the electron channel is not compensated by the 
corresponding hole contribution because the latter is related 
to transitions to the states with Q = - e, which are forbid- 
den in Eq. (22). Replacing the sum remaining in Eq. (28) 
with the integral, we find that 

( 0 )  ( 0 )  6D 
vkkr * VRA' - V g  - D+eU V R P ~ P ~ ' .  

Assuming that the scale or gauge D is large, D $ eU, we 
obtain the first renormalization group equation: 

Similarly, we can obtain equations for the remaining five 
coefficients in Eq. (22) : 

~ U P ,  ( 0 )  ( I )  ( 1 )  ( 0 )  
-- - - v U p k ' ~ k r k  f vvkrk ~ P I I ' - v g V P P '  v ~ ' ~ + v ~ u ~ ~ ~ v ~ ~ '  . 

Substitution of the variables 

( 0 )  ( 1 )  ( 0 )  ( 1 )  
h=-vVkA, =VVAk' =VgVPP' =-VgVpP' , 

(31) 
q= ( Y V ~ )  ' i 2 ~ k p =  ( v v ~ )  ' " ~ p k  

reduces the system of differential equations (29)-(30) with 
the initial conditions of Eq. (24) to a pair cC -"mensionless 
renormalization-group equations: 

where 
h (g=o) =o, q ( E = O )  = ( v v , )  '%. 
The solution of the system (30) is of the form 

h = ' / 2 ( v v g )  'lZt tg [2 ( v v , )  IhtE] , 

( v v g )  I" t (33) 
= cos[2 ( v v , )  '"ttl * 

In observation of the renormalization-group equations 
the parameter e U / D  is assumed to be small, so that the solu- 
tion of Eq. (33) is meaningful only up to the scales D-eU. 
In calculation of the conductance this is sufficient provided 
Ub U *. where 
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In fact, in this case the estimate 72<A < 1 applies and thk 
means that we can calculate the matrix element of the T 
operator by limiting ourselves to the first order of perturba- 
tion theory: Tk- ,  . = u?:,. . This is due to the fact that the 
factor ln(D /eU) which appears in the higher orders is not a 
large parameter on the scale of D - e U. Therefore, it follows 
from Eqs. (31 ) and (33) that 

Substituting Eq. (35) into the expression for the conduc- 
tance given by Eq. ( 16), we obtain 

1 GiG2 { ( G c G 2  ) e/2C+p) 
G((P)=-- tg2 2 - ln- . 

4 G,+G2 el2C-cp (36) 

The dependence (36) is the main result of our investiga- 
t i ~ n . ~ '  The argument of the logarithm is written in such a 
form that the function G(p)  describes the dependence of the 
potential throughout the range defined by Eq. (8)  with the 
exception ofnarrow intervals )q, * e/2C ( 5 U * near theends 
of the range. If we allow for the periodicity of the conduc- 
tance, G(q, + e/C) = G(q,), we find that Eq. (36) covers all 
the values of q, with the exception of the vicinities of the 
charge degeneracy points of Eq. ( 2 ) .  On approach to these 
points the solution of Eq. (33) increases and at the point 
U = U * it becomes infinite. This singularity has no physical 
meaning, because it appears as a result of the approximation 
(27) for the renormalization group of Eq. (26). An 
allowance Lor the next terms in the expansion of Eq. (26) in 
powers of V would have given rise to terms of the third and 
higher orders of A and 7 on the right-hand side of Eq. (32). 
Therefore, the range of validity of the main logarithmic ap- 
proximation is limited by the condition A, 7 < 1. At the limit 
ofthis range where A - 1 and the conductance reaches a reso- 
nance value G- G, GI G, /( G, + G, ) (in particular, if 
GI = G2 , the conductance becomes G- e2/fi). 

We shall conclude this section by noting that our result 
[Eq. (35) ] is of the form T k d k .  = tf [ t  ln(e/CU) 1, which 
corresponds to the main logarithmic approximation of Eq. 
( 18). The correction terms on the right-hand sides in Eq. 
(32) are polynomials ofa degree n>3, which are functions of 
A and 7 and-according to Eq. (33)-are of the form 
tnf(t{). Their inclusion leads to corrections of the 
t " tf(t ln(e/CU) ) type to the matrix element T,-,.  . The 
right-hand sides of the system (32) originate from the sim- 
plified form of Eq. (27) of the renormalization transforma- 
tion of Eq. (26). Therefore, as pointed out already, the ap- 
proximation (27) is equivalent to a calculation of T,-,, in 
the main logarithmic approximation. 

4. GRANULE CHARGE 

In a semiclassical analysis the granule charge consid- 
ered in the limit T = 0 can assume only discrete values: 

In this limit we have Q = 0 for the values of q, in the interval 
of Eq. (8) and outside this interval the charge changes ab- 
ruptly by f e. However, it is clear that because of the possi- 
bility of tunnel transitions of electrons between the granule 
and the banks, the value of Q exhibits quantum fluctuations. 
These fluctuations should grow on approach of the potential 

q, to the points defined by Eq. (2),  where the classical value 
Q(p )  exhibits jumps. In this section we shall calculate the 
granule charge Q(q,) in the limit of zero longitudinal vol- 
tage, w h y  e(q,) is governed by the average value of the 
operator Q of the ground state of the system. We shall begin 
with the Hamiltonian described by Eqs. (4)-(6) in the 
transform%d modification of Eq. ( 15). It follows from Eq. 
( 15 ) that Q = dH /a,, so that the average charge Q can be 
calculated as a derivative of the ground-state energy E, (p): 

Equation (38) reproduces the result of Eq. (37) if we substi- 
tute the energy E r '  found ignoring tunnel transitions 
( t  = 0). The quantum correction to Eq. (37) can be estimat- 
ed by substituting in Eq. (38) the energy E, calculated in the 
second order of perturbation theory in terms of the small 
parameter t: 

Differentiation of Eq. (39) with respect to q, gives 

where the dimensionless quantity g = vv,t 
= (G, + G2 )/G, is a small parameter, g< 1. Over the large 
part of the interval of Eq. (8)  the correction (40) to the 
classical value of the charge Q = 0 is small: Q "' <e, but on 
approach to the charge degeneracy points q, = + e/2C it 
diverges logarithmically. As in the case of Eq. ( 13) for the 
conductance G(q,), it is desirable to refine Eq. (40) in the 
range of values of q, close to + e/2C by calculating the 
charge a(q,) in the main logarithmic approximation. We 
shall do this by applying again the renormalization group 
method described in Sec. 3. We shall consider only the inter- 
val of values of q, near the left-hand end of the range defined 
by Eq. (8),  assume that q, = - e/2C + U, and calculate the 
charge g ( U )  as a derivative of the ground-state energy 
E, ( U) of the Hamiltonian of Eq. ( 19). We note the renor- 
malization described by Eq. (27) of the Hamiltonian of the 
type given by Eqs. (21)-(23) narrows the space where the 
perturbation of Eq. (22) acts and, therefore, it makes some 
of the tunnel transitions forbidden. This alters the ground- 
state energy by SEo ( U). The change SE, ( U) can be estimat- 
ed in the second order of perturbation theory: 

(here, const denotes the sum of terms independent of U due 
to transitions without a change in the granule charge). We 
shall repeat the renormalization group procedure described 
in Sec. 3 by reducing gradually the truncation parameter D 
to the scale eU (as before, we shall assume that U s  U * ) . The 
ground-state energy of the Hamiltonian obtained in this way 
is E r ' ,  apart from a small correction due to the residual 
processes of tunneling in the narrowed band of width 
D-eU. Therefore, the ground-state energy Eo of the initial 
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Hamiltonian of Eq. ( 19) is described by the sum of all the 
corrections of the type given by Eq. (41 ), which appear as a 
result of consecutive stages of reduction in the width of the 
band Do -Do - SD, Do - SD- Do - 2SD, etc.: 

E. (u) =.@' + 8E0 (U) . 

Differentiation of this relationship with respect to U gives 
the required granule charge: 

= e  J vP(t)dl .  (42) 
n 

Comparing Eq. (42) with the first equations in the system 
(32), we find that 

Q ( U )  =eh [t=ln ( ~ l e ~ ) ]  . 

Therefore, the solution of the problem of calculation of the 
average charge a in the main logarithmic approximation is 
given already by the function A ( ( )  of Eq. (33). We shall 
write down the answer in the form convenient for compari- 
son with the results of perturbation theory [Eq. (40) 1, 
which leads to 

Like Eq. (36) for the conductance G(p) ,  Eq. (43) is valid 
throughout the range (8 )  with the exception of exponential- 
ly narrow intervals near its ends where lp + e/2C 1 5 U *. At 
the - end of this region A [l = In(D /eU) ] reaches A - 1, i.e., 
Q-e. 

It therefore follows that the semiclassical theoretical 
prediction of the existence of a Coulomb blockade which 
forbids tunneling of electrons to a granule at T = 0 is only 
approximate. Quantum theory lifts this forbiddenness. 
Quantum fluctuations of the charge, which are small far 
from the points of degeneracy of Eq. (2),  grow and reach 
8Q-e on approach to these points. 

5. DISCUSSION OF RESULTS 

The characteristic temperature To at which the Cou- 
lomb effects begin to manifest themselves is governed by the 
charge energy of the investigated granule, which is 
To = e2/2C. At high temperatures T>  To the resistances of 
two series-connected tunnel junctions are additive and the 
conductance is G = G, G, / (  G, , G2 ). Lowering of the 
temperature of the system to 1'5 To gives rise to a periodic 
dependence of the conductance on the granule potential p 
and the period is e/C. At such temperatures the behavior of 
the conductance is described by a semiclassical theory based 
on the kinetic (transport) equation method." According to 
this theory, cooling reduces the conductance at the maxi- 
mum ofthe dependence G(p)  to G = 1/2Gl G2/(Gl + G, ), 

and for all the other values of p the fall is exponential [see 
Eq. (3) 1. However, as shown in Sec. 2, even at T = 0 there is 
a nonzero residual conductivity described by Eq. (13) and 
due to quantum transitions of electrons via virtual states of 
the granule. A comparison of Eqs. (3) and (13) shows that 

the exponentially observed fall of the conductance stops at 
temperatures 

T-T - To 
- ~ ~ [ G ~ / ( G ~ + G ~ )  1 ' 

Therefore, the semiclassical theory is valid if 1'> TI . At 
temperatures T- TI the detailed nature of the dependence 
G(T) is unknown and its analysis would require allowance 
for quantum inelastic tunneling processes, which do not oc- 
cur at T = 0. (The contribution of such processes to the de- 
pendence of the conductance on the longitudinal voltage was 
investigated in Ref. 13. ) The dependence G(p )  found in Sec. 
3 [Eq. (36) 1 shows that near the charge degeneracy points 
of Eq. (2) the transmission of electrons by the granule exhib- 
its resonances and at these resonances the conductance is 

'l'he resonance value of Eq. (44) exceeds the conductance in 
the high-temperature limit T >  To because of the large pa- 
rameter eZ/fi(G, + Gz ). This demonstrates an anomalous 
increase in the conductance at maxima of the dependence 
G(p)  when temperature is lowered. 

We considered the properties of a junction with a small 
granule but nevertheless we ignored the discrete nature of 
the electron excitations in the granule. This is justified if the 
typical separation v; ' between the size-quantization levels 
is considerably less than the energy scale eU * introduced in 
Sec. 3 [see Eq. (34) 1. In the opposite limiting case when 
Y,, ')eU* our results are valid only far from the charge 
degeneracy points, when e ( p  + e/2C / ) v; '. Near these 
points, we have elp + e/2C 1 5 v,- ', and in the main loga- 
rithmic approximation we have to replace the argument of 
the logarithm in Eqs. (36) and (43) with e / C q  '. More- 
over, if eU* < v,- ', the discrete nature of the granule levels 
applies to a mesoscopic fine structure of Ref. 14 at each max- 
imum of the dependence G(p )  (Ref. 14): a narrow reso- 
nance peak appears and the width and amplitude of the peak 
may depend on the number of the maximum. 

The tunnel matrix elements t ,  and t, used in the sim- 
plest model Hamiltonian of Eq. (4)-(6) are independent of 
the momenta k andp. This imposes certain limitations on the 
geometry of the system: the tunnel junctions connecting the 
granule to the massive electrodes should be point-like and 
the distance between them should not exceed one electron 
wavelength. Fluctuations of the charge discussed in Sec. 4 
can be observed if the granule is connected to just one mas- 
sive electrode. This simplifies the requirements in respect of 
the geometry of the system. 

The authors are grateful to D. E. Khmel'nitski? for 
valuable discussions. 

APPENDIX 

In this Appendix we shall derive Eq. ( 1) for the electro- 
static energy of a granule and find the meaning of the param- 
eter p (see also Ref. 9).  

The electrostatic energy of a system of charged conduc- 
tors is 
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In the case of the system shown in Fig. 1, the independent 
variables are the granule charge Q and the potentials of the 
massive electrodes pi = d E / d Q , ,  where i = 0, 1, or 2. 
Transforming conventionally Eq. (A  1 ) to these variables, 
we obtained the following quadratic form for the energy: 

2 2 

In the cases p ,  = p, = 0 and p0 = V, which are of interest 
to us, it follows from Eq. (A2) that 

The part of the energy of Eq. (A3) dependent on the granule 
charge Q is identical with that given by Eq. ( 1 ) provided we 
assume that p = a, V, . The dimensionless coefficient a, 5 1 
is governed primarily by the distance between the granule 
and the massive electrodes. 

I '  The true potential of the granule is q, + Q / C .  
2' For simplicity, we shall assume that the left- and right-hand banks of the 

junction are identical. 
3, It follows from Eq. ( 2 )  that the energy of such states exceeds e2/C. 
4'In the initial Hamiltonian of Eqs. (4) - (6)  we ignored the fact that 

electrons have spin degrees of freedom. Inclusion of these degrees of 
freedom would have doubled the values of the conductance given by Eq. 
(36) and of the charge given by Eq. (43) [because the densities of states 
v and v, in Eq. (9)  are given for just one direction of the spin]. 
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