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An electromagnetic wave of frequency w incident on the surface of a crystalline conductor whose 
symmetry axis is parallel to the normal to the surface induces in the conductor (under conditions 
of normal skin effect), through the thermoelectric effect, inhomogeneous temperature 
oscillations of the same frequency w. These oscillations excite a sound wave via the thermoelastic 
stresses (at the frequency a). The amplitude u of this wave is calculated; it is linear in the 
amplitude of the electromagnetic wave, and is a function of the frequency w and of the 
characteristics of the conductor (resistivity, thermal conductivity, Thomson coefficient, etc. ) . 

An electromagnetic wave of frequency w incident on a 
half-space ( z  > 0) induces in the latter a sound wave of the 
same frequency w. This phenomenon' -electromagnetic 
acoustic transformation (abbreviated EMAT), is driven by 
several mechanisms. In the absence of a constant magnetic 
field the EMAT is due to the Stewart-Tolman and strain 
transformation  mechanism^.^ No attention has seemingly 
been called so far to the fact that in a single crystal whose 
symmetry axis does not coincide with the normal to the sur- 
face there should exist one more EMAT mechansm due to 
the thermoelectric effect. In fact, according to Ref. 3 (see 
also Ref. 4,$59), in a conductor whose symmetry axis is not 
parallel to the normal to the surface there are produced inho- 
mogeneous temperature oscillations, T = T(z, t )  having the 
frequency w of the incident electromagnetic wave; the tem- 
perature oscillations cause sound excitation via thermoelas- 
tic stresses. 

Let 8(z, t)  = T(z, t)  - To (To is the equilibrium tem- 

direction everywhere inside the crystal. Recognizing that 
the quantities depend only on the coordinate z  and on the 
time like e-  "*', we readily write down the complete system 
of equations for the nonzero components of the fields and 
currents, and also for the temperature 8: 

A prime denotes differentiation with respect to z. We 
shall not need the last of these equations, which defines E,. 
All the tensors in (3)  (the resistivity pik, the thermal con- 
ductivity x,, the tnermoelectric coefficients a,) are sym- 
metric." We present the dependences of the quantities ( 3 )  
on the angle q, using as an example the components of the 
tensor pik : 

p..=p,~ sinzq+p, cos'cp, p, ,=(p, , -p , )s in cp cos (F, (4)  . - 

perature of the body, and the subscript "0" will henceforth p I  andp, are the principal values of the tensor p, . A uniax- 
be omitted). The thermoelastic stress tensor is then5 ial crystal is assumed. 

oikT=-Bike (2 ,  t )  . (1)  The solution of the system (3)  can be written in the 
form 

The tensor Bik is proportional to the tensor of the thermal- 
expansion coefficient 0, , and in order of magnitude we have E , ( z )  =A,e'R~Z+A2eikri, z>O, Imk,, ,>O, (5)  
Bik = p,s2Pik, where p, is the density of the metal and s is e ' ( ~ )  = L [ A ,  (1 -$) e ' k ~ 7 + ~ , ( 1  - $) e e . ' . ] .  
the speed of sound. ar r 

The displacement vector (the sound amplitude) is cal- 
Here 

culated from the equations of motion of the elastic medium 

a 0 o 3 0 2  aOfkT B d k - ,  Pmjj,--=., -=- l+b&[ ( l - b ) 2 - 4 a b ] ' h  4 n i o  k2  = - dxk dxh dxk dxk 2 (I+-a) c2p, ' 
oth=A,k lm U l m .  ( 2 )  c2cpZZ ( 6 )  

Tax: b - a = -  
We use the standard notation (see Ref. 5).  The sound-exci- 

L)..~CZZ 4nxzz  . --  - - 

tation problem reduces thus in this case to calculation of the The connection between the coefficients A, and A ,  
the temperature = ' ( ~ 9  ') and to of the should be determined from the boundary conditions for the 

acoustic problem (2 )  with temperature. The isothermal boundary corresponds to the 
ing to the free boundary: condition 8(0)  = 0, and the adiabatic one to 6 ' (0) = 0. The 

oi,=O. (2' ) oscillation amplitudes Ex (z) and 8 ' (z) should be connected 
with the value of the magnetic field on the boundary: 

To calculate 8(z, t )  we must solve a related system of 
equations consisting of the Maxwell equations and the ther- k,A,+k,A,= ( o l c )  H .  ( 7 )  
mal-conductivity equation. We choose the crystal surface to 

Thus: 
be thexy plane; thez axis is the inward normal to the surface; 
the principal symmetry axis makes an angle q, with thez axis. 1 ) the isothermal boundary (8(0)  = 0 )  

The magnetic field of the wave on the crystal surface is di- (8)  
rected along they axis: H ,  = He-'"'. It has then the same 
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2) the adiabatic boundary (O'(0) = 0) only in the expressions for the squared wave-vectors k and 

0 H k 2,, we can recast the equations for lu 1 in the form 
(8') I f :  1 = , (k , -k , )  (l+k,k Jk') IuI==---- (eB)gcTaxz(I + 0,') -y1+pT') -11, 

4m- s2C , .,. 
For a, = 0 we have 

Here and below the numbering of the wave vectors begins 
with the limiting transition (9). Here 

The parameter a in good metals is as a rule small.2' It oc2p, $ r = ~ .  W X Z Z  

can therefore be assumed that k, - k and k, - k,. Using the 
smallness of a and the standard expressions for p, and x,, 

To estimatep,, and& it is convenient to use their order-of- 
we readily obtain magnitude values 

I kt/k21Ml k/kTI=b-'"k1/6a, 
oc2 

where fie, -- 
oo22s2 ' p . - U T ( P ) '  . 

(we use the standard notation, as above). The ratio I k, /k, I 
can thus be either larger or smaller than unity, depending on 
the temperature and on the sample quality. 

We turn now to a solution of the acoustic problem [see 
(2) and (2') 1. Since the z axis does not coincide with a prin- 
cipal symmetry axis, the sound waves propagating along it 
are generally speaking neither longitudinal nor transverse. 
There are always present, however, three independent waves 
with mutually perpendicular polarizations e, 

and sound velocities s,. The amplitude u, of the jth sound is 
determined by the component of the thermoelastic (in this 
case) force along the e, direction: 

where B is a vector with components B,. We have left out 
the subscript j. According to (2') ,  the boundary condition 
for ( 10) is 

We have used, just as throughout the article, the "tradi- 
tional" expressions px, zm/ne2r, x, - Clv,, assuming that 
the heat is carried by the conductivity electrons. We point 
out that the parameters p,, and 0, behave differently as the 

. temperature changes: when the temperature is lowered fie, 
decreases while P, increases [the free-path time T = T(T) 
depends on temperature]. 

To estimate the scale of the EMAT due to the thermo- 
electric effect, we compare the obtained expression ( 14) 
with us,. The subscript "ST" indicates that we are dealing 
here with a transformation due to the Stewart-Tolman 
force:, 

imo 
fST = - j. 

e 
(16) 

Substituting for (e.B)B '/p,s2 in the right-hand of Eq. (10) 

we can readily show that 
mcH 1 

luST 1 - 
4npMse P,, (P,, ' + 1 ) 

' 

It is easy to find from ( lo ) ,  (5) ,  and (10') that the Assuming that be, and PT do not differ excessively from 
sound-wave amplitude is equal to unity, we get 

or, substituting the values of A, and A, from (8)  and (8'), We shall assume in the estimates that the electron gas is 
degenerate (a, - T/e&,); the heat capacity Cand the ther- 

(eB) wH (1 - k12/k2) (1 - kS2/k2)  ma1 expansion coefficient (which enters in B, see above) 
u=- 

cprn sZaxz (ki2 -k i,) (h2 -k :=) 
can vary in wide ranges, depending on the ratio of the tem- 
perature T to the Debye temperature T,, but their ratio de- 

( k,, , isothermal boundary ( 1 1 ) pends little on the temperature. If B- Ms2nP, we have 

{ 2 :klk2 , adiabatic 
boundary 

Equations ( 11 ) and ( 12) constitute the solution of the 
~roblem in general form. The equations can be simplified by   he dimensionless factor T P / ~  where c i s  the heat capacity 
using the smallness of the parameter a [see (6)  1. Here per particle, is of the order of T/T, if the Griineisen relation 

( 13 ) holds (as is practically always in order of magnitude). Thus 

I u I  M T  T ,.-. 
I=/ -me.fB- Noting, furthermore, that the imaginary unity is present 
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It is clear therefore that at not too low temperatures the 
thermoelectric transformation mechanism exceeds the 
Stewart-Tolman mechanism, which is the only macroscopic 
mechanism in the absence of a constant magnetic field. An- 
other comparison method is to determine the constant mag- 
netic field H,, that ensures, on account of the Lorentz trans- 
formation mechanism, the same efficiency as the 
thermoelectric mechanism considered here. According to 
Ref. 1 

From this and from ( 14) (assuming as before be,, 0, - 1 ) , 
weget lul-Iu,I at 

M T T  
o,=o --- o,=ell,lmc. 

m ep T D 9  

This is a reassuring estimate, although it must be remem- 
bered that the frequency w of the electromagnetic field is 
bounded by the conditions w r 4  1 and I k,,, 114 1, and when 
they are not met one cannot speak of temperature oscilla- 
tions. Note that the estimates ( 17) and ( 18) must be ap- 
proached with caution: they are approximate. On the other 
hand, Eqs. ( l l ) ,  (12), and (14) for the amplitude of an 
excited sound wave contain only macroscopic characteris- 
tics of the conductor and should therefore be regarded as 
exact. 

Observation and identification of a new EMAT mecha- 
nism are apparently possible by using the nontrivial angular 
dependence, according to which the effect vanishes at q, = 0 
(i.e., when the normal to the surface of the conductor coin- 
cides with the symmetry axis of the crystal), and also if the 
magnetic field in the electromagnetic wave incident on the 
crystal is polarized along the x axis (see the beginning of the 
article). 

One more "strange" circumstance is noteworthy: at 
PemflT = 1, i.e., at 

the transformation effect considered here vanishes in the 
case of an adiabatic boundary [ (8 '(0) = 0); see the second 
equation of ( 14) 1. A return to the exact expression ( 11 ) 
does not eliminate the vanishing of lu I ,  but only shifts some- 
what the frequency at which this effect occurs. 

The absence of temperature oscillations (8=0)  at 
q, = 0 as well as in isotropic conductors is a consequence of 
the assumption that all the quantities depend only on one 
coordinate z. Under real conditions the x and y dimensions 
of the conductors are limited, all the field and current com- 
ponents depend not on the coordinate z alone, temperature 
oscillations set in, and all this should be manifest in the de- 
pendence of the electromagnetic characteristics of a sample 
on its thermal characteristics, particularly on the heat out- 
flow conditions. When the thermoelectric coefficient is not 
too small, a distinction must be made between isothermal 
(p)  and adiabatic (pad ) resistivities 

We point out thatp,, - p a a2, and the effect predicted here 
is linear in a. 

The author takes the opportunity to thank A. I. Vasil'ev 
and L. P. Pitaevskiifor a stimulating discussion of the result. 

"The symmetry of the tensor a,, is a consequence of the asumed relative- 
ly high symmetry of the crystal. 
The smallness of a is a consequence of the dgeneracy of the conduction- 
electron gas. 
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