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A field-theory approach is used in a study of the critical thermodynamics of a slightly disordered 
Ising model in a (4 - &)-dimensional space. The equation of state is calculated in the second- 
order ~hmel'nitskil&ex~ansion. This equation of stateis then used to find universal 
combinations of the thermodynamic critical amplitudes. Estimates of the quantities obtained in 
the three-dimensional space are given. 

Much attention is currently being given to studies of the 
influence of immobile (frozen) nonmagnetic impurities on 
the critical behavior of spin systems.' The renormalization 
group (RG) was first used to consider this 
problem in Refs. 4,5, and 6. The critical exponents of an m- 
vector impurity model with a frozen disorder were calculat- 
ed in Refs. 4 and 5 for m > 1 in the first and second orders of 
the E expansion3 (here, E = 4 - d,  where d is the dimension- 
ality of space). It was shown for the first time in Ref. 6 that in 
the case of a disordered Ising model (m = 1 ) the parameter 
of the expansion in the vicinity of d = 4 is &. This is due to 
degeneracy of the relevant RG equations considered in the 
single-loop approximation. Later it was pointed out in Refs. 
7 and 8 that the numerical coefficients obtained in Ref. 6 for 
the first terms of the 6 expansion for the critical exponents 
are subject to some inaccuracies, and the correct expressions 
were given there. The next order of the &expansion for the 
critical exponents of the impurity Ising model was ob- 
tained9,I0 using a three-loop approximation. However, defi- 
nite conclusions about the numerical values of the critical 
exponents for the three-dimensional space were difficult to 
obtain on the basis of the short &-expansion series given in 
Refs. 9 and 10. 

The first attempts to calculate the critical exponents of 
disordered systems directly in the three-dimensional space 
were reported in the early eightie~."-'~ A field-theory ap- 
proach to the three-dimensional problem'5 was used in Ref. 
11 in the three-loop approximation to calculate the RG func- 
tions and the critical exponents for the impurity Ising model. 
Asymptotic series of the renormalized form of perturbation 
theory were not summed in Ref. 11. Moreover, it was found 
recentlyi6.17 that the expressions for RG f l  functions given 
in Ref. 11 were inaccurate. The RG functions were calculat- 
ed in Ref. 13 for a slightly disordered m-vector model on the 
assumption that d = 3 and d = 2; this was done using the 
two-loop approximation. The expansions were summed by a 
simple procedure of the Padt-Bore1 type, which made it pos- 
sible to obtain more reliable values of the critical exponents. 
Summation of the RG functions found in Ref. 1 1 was carried 
out in Ref. 14. In spite of the fact that the critical exponents 
given in Ref. 14 were calculated using incorrect expressions 
for thep functions, they were numerically close to the values 
obtained using the field-theory approach in Ref. 16 (three- 
loop approximation) and in Ref. 17 (four-loop approxima- 
tion). The critical behavior of disordered Ising systems was 
investigated in Ref. 12 by the scaling field method, based on 

the exact RG equation obtained by Wilson and K ~ g u t . ~  Cal- 
culations were carried out in the range of the dimensions of 
space 2 .8~dG4.  The shortcoming of the approach used in 
Ref. 12 was a low precision of the critical exponent 7 of the 
pair correlation function. 

The critical behavior of disordered spin systems at tem- 
peratures below the critical value had been investigated 
much less. The equation of state and the correlation func- 
tions as well as the dynamics of a "dilute" m-vector model 
were first investigated in Ref. 18. Some of the results given 
there on the static pair correlation function were reviewed 
and supplemented in Ref. 19. The single-loop approximation 
of the equation of state was used in Ref. 20 to obtain the 
leading terms of the & expansion describing universal rela- 
tionships between the critical amplitudes of the impurity Is- 
ing model. 

The critical behavior of disordered systems has been the 
subject of many experimental investigations (for reviews see 
Refs. 21-23 and the literature cited there). The problem of 
the influence of frozen nonmagnetic impurities on a second- 
order phase transition in a spin system was however found to 
be very difficult to tackle experimentally. Over a period of 
years it was found that dilute magnetic materials exhibit a 
broadening of phase transitions. This could be related to real 
physical processes occurring in a given system or due to im- 
perfections of the investigated samples. The problem was 
solved only in the early eighties when it became possible to 
grow high-quality crystals suitable for experimental investi- 
gations.22 It is now fully ac~epted'~-~' that, in agreement 
with the theoretical predictions, dilute Ising magnetic mate- 
rials exhibit a narrow (and not a broadened) second-order 
phase transition with critical exponents and critical ampli- 
tudes clearly different from the corresponding quantities for 
ordered Ising systems. One should, however, point out that 
the interpretation of the experimental results is in some cases 
ambiguous.29-3' In particular, this applies to the determina- 
tion of the correct ratio of the critical amplitudes of the mag- 
netic specific heat A + / A  - . 

The values of the critical exponents obtained experi- 
mentally2"28 are, in principle, in agreement with the corre- 
sponding theoretical estimates obtained for the d = 3 
case. 12-14,16,17 The values of the universal ratios of the criti- 
cal amplitudes found experimentally were compared in 
Refs. 22,23,25, and 26 with the results of a theoretical calcu- 
lation reported in Ref. 20. However, the calculations of Ref. 
20 were carried out in the lowest order of the 6 expansion 
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and were highly unreliable. 
We shall calculate the equation of state of a slightly 

disordered Ising system using the second order of an expan- 
sion in powers of &. We shall then apply the equation of 
state to find the universal combinations of the thermody- 
namic critical amplitudes in the vicinity of d = 4. We shall 
propose estimates of these quantities in the three-dimension- 
al space. In particular, we shall show that the universal ratio 
of the critical amplitudes of the magnetic specific heat obeys 
the inequality A + / A  - < 0. 

1. EFFECTIVE HAMlLTONlAN 

In the presence of an external magnetic field h the impu- 
rity Ising is described by the Hamiltonian 

Here, . and r, are the radius vectors of the sites in a d- 
dimensional regular lattice occupied by magnetic atoms. 
The total number of magnetic atoms is M and they are mod- 
eled by spins s,, s,, ... which assume the values + 1. If the 
total number of the lattice sites is N, then N - M sites are 
occupied by nonmagnetic impurities or are vacant. In an 
analysis of the impurity Ising model it is assumed that the 
concentration of magnetic atomsp = M/Nis  close to unity. 
In a system with an uncorrelated frozen disorder all the mag- 
netic and nonmagnetic atoms are distributed at random 
between the lattice sites and are rigidly pinned in a certain 
fixed spatial configuration. The spins s, and s, located at the 
sites with the radius vectors r, and r, interact via a ferro- 
magnetic translation-invariant short-range exchange inte- 
gral JAB = J( 1 r, - r, I ) > 0, where JAA =O. It is assumed 
that there is no interaction between the magnetic and non- 
magnetic subsystems. 

In describing the thermodynamic properties of a system 
we must calculate first the configurational average of the 
free energy' F =  - T (lnZ,),, where 
Z, = Sp exp ( - P Z )  is the partition function of a certain 
spatial configuration. In the expressions given above the ab- 
solute temperature is denoted by T and its reciprocal is 
p = T - '; it is assumed that the Boltzmann constant is uni- 
ty. The symbol Sp denotes the operation of summing over all 
the M states of the spin variables s, , s ,,... . 

The problem under discussion has been frequently tack- 
led by the replica method,33 which makes it possible to alter 
the order of the thermodynamic and configurational averag- 
ing procedures. In this method the logarithm of the configu- 
ration-dependent partition function InZ, is represented by a 
boundary limn-, n - ' ( Z  :-I), the value of Z : is averaged 
over the various configurations, and the free energy of the 
system is described by 

F=- T lim n-' (<Zen>,-1). 
n+O 

In the case of the model described by Eq. ( 1 ) the nth 
power of the partition function is 

Here, a = 1, ..., n is the replica index and for each value of a 
we have s'"' = 1. Application to Eq. (2 )  of the Stratono- 
vich-Hubbard version of the Gaussian transformation, sum- 
mation over the spin variables, and configurational averag- 
ing of the resultant expression for 2," by a cumulant 
expansion yield the following functional representation for 
the free energy in the impurity Ising model: 

where 
n 

Here, X [ 4 ]  is a translation-invariant Ginzburg-Landau- 
Wilson effective Hamiltonian whose critical behavior in the 
limit n -0 is formally identical with the critical behavior of 
the i ~ p u r i t y  Ising model of Eq. ( 1 ) (see Ref. 7). The vector 
field 4 = 4 ( r )  has n components 4,, where a = 1, ..., n: 

where {e, ' O ' )  are the unit vectors in the fundamental coor- 
dinate system; rn; is the "free mass" which is a linear func- 
tion of temperature; u, and u, are the unrenormalized 
(bare) coupling constants which obey u, < 0 and u, > 0 
(Ref. 7).  In the last term of the effective Hamiltonian (4)  
the external field H i s  related in $he same manner to all the 
components of the field variable 4 [see Eq. (2)  1. This rela- 
tionship implies that in the ordered phase at temperatures 
T < T, ( T, is the critical temperature) all the components of 
the field +,, where a = 1, ..., n, have the average valu? $ 
equal to one another, i.e., the "magnetization vector" 4 is 
then oriented along the direction ( 1,. . ., 1 ) . An ordered phase 
of this type is possible in a model with the cubic anisotropy 
(cubic described by the effective Hamiltonian 
of the 44 type, which is formally identical with that given by 
Eq. (4) .  

It is convenient to rotate the system of the fundamental 
coordinates {e~O')-+{e,) in such a way that one of the old 
fundamental unit vectors, for example eIO', becomes the unit 
vector e l  directed parallel to the magnetization vector 
11, ..., 1 ) .35 This results in a linear transformation of the field 
4-p and the effective Hamiltonian of Eq. (4) becomes 
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The symbol denoting the d-dimensional spatial integration 
is omitted and so is the symbol denoting summation of re- 
peated indices. This simplified notation will be used from 
now on. The tensor b is related to elements 
e; = (ea,ehO') of the matrix describing rotation of the coor- 
dinate system and it is given by 

An external magnetic field H i s  now related only to one com- 
ponent p, of the field variable p .  

The next step is the separation in the effective Hamilto- 
nian of Eq. (6)  of a longitudinal component of the field p, 
and then determination of the average value of p, (see, for 
example, Refs. 36-38 and the bibliography given there): p, - 
is represented by a sum L + M,, where Mo = p,  is the mag- 
nitude of the magnetization and L is the deviation of p, from 
the average value Mo . After these algebraic transformations, 
we can now describe the effective Hamiltonian by a sum: 

% [L,  $1 =%o(Mo)+%c[L. 1\71. (8 

The first term in Eq. (8)  is the Landau free energy 

The second term, which is the Gaussian part of the effective 
Hamiltonian, includes contributions which are quadratic 
functions of the field variables: 

Here, L is the longitudinal component of the field, whereas 
qhi represents the transverse components ( i  = 2, ..., n);  ro, 
and ro, are the unrenormalized reciprocals of the longitudi- 
nal and transverse susceptibilities: 

The last term in Eq. (8) Z,,, [L,$]  contains a number of 
contributions which are cubic and quartic functions of the 
field variables and we shall deal with this term using pertur- 
bation theory: 

where 

A similar expression for the effective Hamiltonian was de- 
rived in Ref. 35 using slightly different notation. 

Equations ( 8)-( 12) are the starting points in calcula- 
tion of the thermodynamic potential T(M, ) and of the equa- 
tion of state of the impurity Ising model presented below. 

2. EQUATION OF STATE 

There are two main approaches to the derivation of the 
equation of state starting from the effective Hamiltonian 
shown above. The first consists of an expansion of the equa- 
tion = 0 (vanishing of the average value of the field L 
follows directly from its definition) by the Feynman dia- 
gram technique. This approach was used in Refs. 36-38 and 
elsewhere to study critical thermodynamics of pure isotropic 
Ising and Heisenberg systems, and also in Refs. 34, 35, and 
20 where the model of Eq. (4)  was employed in the single- 
loop approximation. The second approach utilizes the meth- 
ods of functional integration, developed in quantum field 
theory to describe spontaneous symmetry breaking. A de- 
tailed account of the method for calculating the effective 
potential r ( M )  by expansion, using a number of loops in 
Feynman diagrams, was given in Refs. 39 and 40 together 
with references to earlier work on quantum field theory. 
This approach was used in Ref. 41 to calculate universal 
combinations of the critical amplitudes employing an n- 
component Heisenberg model accurate to within E*.  A two- 
loop approximation was employed in Ref. 41 to write down, 
in a diagonal form, the equation of state for the Heisenberg 
model,'' which leads to familiar expressions first obtained in 
Refs. 42 and 37 (see also Refs. 38 and 39). A field-theory 
approach employed in Ref. 41 will be used below to obtain a 
similar representation of the equation of state for the model 
described by Eq. (4) .  An explicit expression for the equation 
of state describing the impurity Ising model will be obtained 
in a limiting case when n -0. 

In the two-loop approximation the effective potential, 
which is a function of the magnetic moment and of the abso- 
lute temperature, can be represented diagramatically as fol- 
l o w ~ : ~ ~ , ~ ~  
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The ring in Eq. ( 14) represents the contribution of a Gaus- 
sian integral with an integrand exp( - A?, [L,$] ). Vertices 
with three and four lines in the last two Feynman diagrams 
represent terms of the 4' and 44 type from A?,,, [L,$]. The 
constant in Eq. ( 14) denotes the same expression, but with 
the minus sign when M, = 0% ; it is independent of M, and, 
consequently, does not influence the equation of state. We 
shall omit it. The results of calculations carried out using 
standard rules of the Feynman diagram technique can be 
represented as follows: 

The diagrams which occur in the above expression are Feyn- 
man integrals in which the continuous lines represent propa- 
gators ( k  + ro, ) - ', and the crossed lines represent 
( k 2 +  roT) - ' .  

Differentiation of the thermodynamic potential r (M,  ) 
with respect to the magnetic moment yields the equation of 
state: 

which includes unrenormalized coupling constants u, and 
v,, the mass mt,  the moment M,, as well as the Feynman 
integrals which are characterized by ultraviolet divergences 
when d = 4. These divergences can be removed by including 
counter terms that appear as a result of renormalization of 
the coupling constants, of the mass, and of the field. This can 
be achieved by substituting, in the unrenormalized equation 
of state, expressions for the unrenormalized quantities u,, 
v,, mi,  and Mo expressed in terms of the corresponding re- 
normalized values of the coupling constants u and v, of the 
reduced temperature t ,  and of the magnetic moment M. 
These relationships are derived using the normalization con- 
ditions from the mass-free field theory of Ref. 39. This renor- 
malization method makes it possible to utilize later the val- 
ues of the coordinates of a fixed point (u*, v*) calculated in 
the second order of the 6 expansion in Refs. 9 and 10. 

After subtracting the divergences which appear in the 
d = 4 case, we find that the equation of state (16) can be 
rewritten in the form2' 

where t = ( T - T, )/T, is the reduced temperature. In con- 
trast to Eq. ( 15), each diagram (with the index s) in the 
above expression represents a finite (in the d = 4 case) com- 
bination of diverging integrals. These combinations are pre- 
sented in Fig. 1. The renormalized reciprocals ofthe longitu- 
dinal and transverse susceptibilities now become [compare 
with Eq. ( l l ) ] :  

eS= e- J-I oS, 
as= a - J - I  oS, 
= I oS1 
es= @ - J - I  US, - - q K 2  + ,.L)-l;w-. - (Kz+,?T)-'i ---. - x Z ,  

FIG. 1. Finite (for d = 4) combinations of Feynman integrals, which 
occur in the renormalized equation of state ( 17). 

If v = 0, Eq. ( 17) yields the equation of state for an n-com- 
ponent Heisenberg model (see Fig. 5 in Ref. 41 ), which in 
turn reduces to the equation of state of the Ising model if 
n =  1. 

We can obtain the equation of state of the impurity Is- 
ing model explicitly by going to the limit n -0 in Eq. ( 17), 
replacing u and v by their values u* and v* at a fixed point, 
and utilizing the explicit expressions for the combinations of 
the integrals represented by the diagrams in Eq. (17). The 
procedure of going to the limit n -0 in Eq. ( 17) is not trivial. 
This equation includes contributions containing factors 
such as l/n and l/n2. It is therefore necessary to expand the 
coefficients in front of l/n and l/n*, and these coefficients 
are fairly cumbersome combinations of Feynman integrals; 
the expansion is carried out in terms of small values of n up 
to the first and second orders, respectively. All the negative 
degrees of n then cancel out. In the course of these calcula- 
tions we can drop constants (nonlogarithmic terms) of the 
order of E, since this simply alters the scale of the variables 
which can occur in the equation of state of Ref. 38. 

A mixed (u*#O, v*#O) fixed point, stable for n = 0 
and for sufficiently low values of E, has the following coordi- 
nates9.'O 

uW=-3(6153)'"~" +18& [110+63~ (3) ]/(53)'. 
(19) 

v*=4(6/53)"~" k 7 2 ~  [19+21t (3) 1/(53)'. 

where g(3) is the Riemann zeta function whose value is 
g(3) -- 1.202. 

In the limit n -0 the longitudinal and transverse reci- 
procals of the susceptibility r, and r ,  of Eq. ( 18) are equal: 
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at the end of the calculations we obtain just one reciprocal 
susceptibility 

1 
r=t + - v'M2, 

2 
(20) 

as expected for the Ising system. Combinations of the inte- 
grals in Fig. 1 then simplify greatly since now every line 
(continuous or crossed) corresponds to just one Feynman 
propagator (k  + r )  - '. The equation of state includes con- 
tributions of the following integrals obtained when 

s 4 e=$ t n r  + b ~ n ~ r + c o n s t .  

Finally, the equation of state (which is not universal) 
for the impurity Ising model reduces to the unexpectedly 
compact form 

Here, we have y = u*M 2 ,  r is given by Eq. (20), and A is the 
effective parameter of the expansion proportional to 6: 

3. EQUATION OF STATE AND UNIVERSAL COMBINATIONS 
OF CRITICAL AMPLITUDES 

The equation of state (22) describes correctly the be- 
havior of various thermodynamic quantities near a critical 
point (at reduced temperatures ( It ( < 1 ) in a number of spe- 
cial cases given below43 (see also Ref. 38). 

I. At temperatures above the critical value, when t > 0, 
in the limit H+O the magnetic moment M also tends to zero 
and the ratio H /Mis equal to the reciprocal of the isothermal 
magnetic susceptibility 

where C + and yare the critical amplitude and critical pow- 
er exponent in the expression for the susceptibility. In the 
limit M+O the right-hand side of Eq. (22) can indeed re- 
duce to3' 

with the correct exponent y given by9.'' 

11. Along the critical isotherm characterized by t = 0 
the relationship between an external magnetic field and the 
magnetic moment is expressed in terms of a critical exponent 
6: 

Changes of the scales of the quantities H a n d  M (u*H+H, 
u*M- M)  yields the following expression, derived from Eq. 
(22): 

1 
H = 7(1-3~-18h2 In 2 )  Mb+O (cYS), 

b 
(28) 

where 

The expression (29) for S is readily obtained with the aid of 
the scaling relationship 6 = (d  + 2 - q ) / ( d  - 2 + q )  (see, 
for example, Ref. 39) using the values of the Fisher critical 
exponent q taken from Refs. 9 and 10. 

111. On a coexistence curve, defined by H = 0 and t < 0, 
the magnetization in the vicinity of the critical point is pro- 
portional to J t  JB: 

This type of the M( t )  dependence is obtained by solving Eq. 
(22) with the left-hand side equated to zero, which yields 
M2:  

where 

The expansion (32) for the critical exponent of the magneti- 
zation is readily obtained from Refs. 9 and 10 by scaling 
relationships. 

Each of the coefficients of proportionality which occur 
in Eqs. (25), (28), and (31) is a nonuniversal quantity. 
However, a combination of the thermodynamic critical am- 
plitudes C +  , D, and B (see Refs. 41, 44, and 45 as well as 
papers cited there) is universal and it is given by 

In the adopted model we have 

The equation of state (22) can be used to calculate also 
a universal ratio C +  /C - of the critical amplitudes of the 
magnetic susceptibility. This can be done using the relation- 
s h i p ~  - - ' = d H  /dM valid in the range t < 0 and a nonzero 
magnetization M found on the coexistence curve, writing 
downx 1 ' in the form C _ - ' It I Y ,  and dividing the resultant 
constant of proportionality by C 5 ' from Eq. (25): 

A universal equation of state for slightly disordered Is- 
ing systems can be obtained by writing down in the form of a 
scaling law (see Ref. 46 and the papers cited there) : 

Using then the equation of state (22) to obtain the depen- 
dence of H M  -6 on a variable x = t / M  "O, we obtain a ho- 
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mogeneous function F ( x )  from Eq. (36) and this function 
is in the form of a 6 expansion: 

F ( x ) = l +  x + h F i  ( x ) + h 2 F 2 ( z ) ,  (37) 

where 

9, ( x )  = x - ~ + x  In ( x + 3 ) ,  

x 
X ln (xf 3 )  + - ln2 ( x + 3 ) .  

2 

The equation of state (36) allows arbitrary changes in 
the scales of the variables H, M, and t. We can therefore go 
over to new thermodynamic variables whose scales are fixed 
by the standard normalization ~ o n d i t i o n s ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  on the 
critical isotherm and on the coexistence curve [this alters 
the nature of the function 3 ( x )  so that it becomes 
3 ( x )  -+f(x) I: 

( I)  if t=0, then h=m6, i.e., f ( 0 )  = I ;  

(11) if h=O, t< 0, then m= (-t)@, i.e., f (- I )  =0.  (39) 

Transition to the relevant function 

is then performed using the following relationships from 
Ref. 42: 

where F; denotes a derivative of the function 9, from Eq. 
(38). 

Finally, the universal normalized equation of state for 
the impurity Ising model is given by the following expres- 
sions: 

hm-6=f ( t ! m l / @ )  , f ( 2 )  = l+x+  h f ,  ( x )  +hV2 ( x )  , (42) 

where 

1 + x + Af, (x) ,  were derived in Ref. 20 by a different ap- 
proach. 

Exactly as in the case of the Ising model for a pure mate- 
rial ("pure Ising model"), the function f(x)  is analytic in 
the vicinity of x = 0 and it can be represented by an expan- 
~ i o n ~ ~  

rn 

f ( x )  = hixi  

The universal coefficients hi are readily calculated using 
Eqs. (42) and (43) for the function f(x) .  The first three of 
them are 

As in the case of the pure Ising model, at high values of 
X(X + CQ ) the function f ( x )  can be described by an asympto- 
tic expansion proposed by Gr i f f i t h~ :~~  

The first three coefficients of the expansion (46) are 

The first of them, 

is given by the following expression which follows from the 
definition of the universal amplitude of the magnetic suscep- 
tibility z+ (Refs. 43-451~' 

C+= lim [xTlf ( x )  1.  
%+ m 

On the other hand, we have 

since-by definition [see Eq. (33)]-we have 
R, = Z'+ Ed ', and it follows from the normalization 
rules of Eq. (39) that the universal critical amplitudes are 

= d = 1. The & expansion for R, was found already 
above as a universal combination of the nonuniversal critical 
amplitudes C + , D, and B. 

The universal amplitude of the magnetic susceptibility 
Z'- can be calculated from the equation of state (42) using 
the expression43 

The explicit expressions from Eq. ( 43 ) yield 

The first three terms of the universal function (42), (52) 
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Obviously, the ratio e + /c _ is equal to the ratio C +  /C 
in Eq. (35). 

Knowing the explicit form of the universal equation of 
state (42), we can calculate also the universal ratio of the 
critical amplitudes of the magnetic specific heat using the 
impurity Ising model. The specific heat near a critical point 
is 

where A  + and A  - are the critical amplitudes correspond- 
ing to t > 0 and t < 0; a is the critical exponent of the specific 
heat. In the impurity Ising model we have a <0, and the 
constant in the above equation is C ,  > 0 (Ref. 24). In the 
second order of expansion in & (Refs. 9 and lo) ,  we have 

In the range of variation of the critical exponent of the 
specific heat of interest to us, which is - 1 < a  < 0, the ratio 
of the critical amplitudes A  + / A  - can be represented in the 
following form (see Ref. 47) : 

Here, f ', f ", and f" are the first, second, and third derivatives 
of the universal function f(x),  which occurs in the equation 
of state. In spite of the fact that the equation of state (42) is 
calculated in the second order of the &expansion, the ratio 
A  + / A  - can be found only in the first order in &, since a - ' 
is of the order of E - I/*: 

The leading term of the 6 expansion for the ratio 
A  + / A  - , which amounts to - 1/2, was obtained in Ref. 20. 
Here, we shall simply point out that the negative value of 
A  + / A  - for the system under discussion is permissible, but 
this result will not be regarded as reliable because we have 
not excluded the possibility of reversal of the sign of the ratio 
in question in the next order of perturbation theory. It is 
clear from the last expression that the universal ratio 
A  + / A  - and the ratio obtained in the approximation fol- 
lowing the lowest one remains negative. The structure of the 
expansion of A  + / A  - in terms of 6 suggests that the ratio 
of the critical amplitudes remains also negative in higher 
orders of perturbation theory. 

The last of the universal combinations of thermody- 
namic critical amplitudes which we shall consider here was 
defined in Refs. 45 and 41 as follows: 

I f a < O  (Ref. 47), then 

7 , =-9 J x a f ~ l ~ ( . ~ ~ d r .  

A calculation carried out using Eq. (58) gives the following 

result if we use the impurity Ising model: 
h X+ - ;, 2-"{1-2J.[3 104-fi2; (3) ] /.53)+0 (E"'). (59) 
i 

Combining the last expression with Eqs. (34) and (50), we 
obtain: 

R, = 2-*{I-21 [110+63~ (3) ]/53)+0 ( c \ )  (60) 
3 

4. DISCUSSION OF RESULTS 

Calculations carried out for sufficiently small devia- 
tions E of the dimensionality of space from its upper limit are 
known to give a qualitatively correct description of the criti- 
cal behavior of the systems of interest to us and give rise to 
nontrivial corrections to the classical values of the universal 
quantities proportional to powers o f ~ g  1. Series of this type 
diverge and the problem of finding on their basis some quan- 
titative estimates of the physical quantities in the three-di- 
mensional space is complex and multivalued. The simplest 
method used in extrapolation of the &-expansion series to the 
d = 3 case involves derivation of various Pad6 approximants 
for these series (see, for example, Refs. 41, 45, and 48). A 
more complex, but a more reliable calculation method is 
based on the Bore1 summation of diverging series.49 The ap- 
plication of this method to the E expansions obtained for 
ordered isotropic n-vector models gives quite accurate esti- 
mates of the investigated quantities in the three-dimensional 
space.50.5~.48 Then, the finding of numerical estimates for 

combinations of critical amplitudes becomes more complex 
than in the case of critical power  exponent^.^' 

We shall now consider parts of an &-expansion series 
for the critical exponents y [Eq. (26) 1, B [Eq. (32) 1, and a 
[Eq. (54) 1, as well as universal combinations of the thermo- 
dynamic quantities R, [Eq. (60) 1, C +  / C -  [Eq. (35) 1, 
R, = z+ [Eq. (34)],  e- [Eq. (52)], and A  + / A  - [Eq. 
(56) 1, which can generally be described by 

They obviously represent the values of these quantities in 
three-dimensional space. The critical exponents for d = 3 
are calculated quite accurately in Refs. 12-14, 16, and 17. 
The coefficients of the expansions described by Eq. (61) in 
front of the powers of 6, the absolute values of the ratios 
f,/', as well as the values of y, B, and a obtained by the 
field-theory approach directly in the three-dimensional 
space (see Refs. 16 and 17) are listed in Table I. 

It is clear from Table I that in the case of the critical 
exponents y and a the proper sign of the correction 
f, & +f,~ is identical with the sign of the coefficient in front 
of & (this applies also to the index of the correlation length 
Y) .  The inequality r2 /f, 1 2 is then satisfied. Similar prop- 
erties are exhibited by an expansion of a universal combina- 
tion of the critical amplitudes R,, which leads to 

However, the sign of the coefficient in front of the low- 
est degree of the expansion parameter & does not always 
determine the real deviation off(&) from its value f, in the 
four-dimensional space. This situation applies to the critical 
exponent p (and also to the Fisher exponent v). The abso- 
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TABLE I. 
! I 

Parameter I f o  I f l  

lute value of the coefficient f, with the opposite sign is more 
than three times greater than If, I, and the sign off, deter- 
mines the sign of the correction f, & + f2& to fo. Clearly, 
similar properties should be exhibited also by expansions of 
the universal quantities C +  /C- and e- . It is therefore 
natural to draw the conclusion that in such cases the follow- 
ing inequalities are satisfied: 

and 

Then, 

because this critical amplitude corresponds to a constant- 
sign &-expansion series [Eq. (61 ) ] with positive values of 
fo, f, , and f2 . The inequality C + /C _ > 2 is in agreement 
with the experimental results reported in Refs. 22-26. 

A universal combination of the critical amplitudes R, 
can be used to obtain a numerical estimate in the three-di- 
mensional space. In the case of the quantity f(&) = 1 + R, 
the 6 expansion is given by Eq. (61 ) with a nonzero value of 
f, and with the ratio (f, /f, 1 less than 2. We shall apply to this 
expansion the simplest procedure of summation of diverging 
Pad&-Bore1 series,49 using then the Pad& approximant 
[ 1/11 to obtain an analytic continuation of the Bore1 trans- 
form of the function f(&). Calculating unity from the resul- 
tant summed function and assuming that E = 1, we obtain 

Determination of reliable numerical values of other univer- 
sal combinations of thermodynamic critical amplitudes is a 
more difficult task. 

It is worth noting that the universal ratio of the critical 
amplitudes of the magnetic specific heat A + /A - is nega- 
tive, exactly as in the principal approximation. A theoretical 
estimate A + /A - - 1/2 < 0 is in conflict with the results 
of an experimental investigationz4 where a positive value of 
this ratio is reported. This disagreement was already consid- 
ered in Ref. 30. We point out here that this may be a conse- 
quence of the fact that the specific heat was determined ex- 
perimentally outside the critical region. Another possible 
reason3' may be an incorrect determination of the critical 
temperature: the experimental data were extrapolated in 
Ref. 24 on the assumption that a maximum (peak) of the 
magnetic specific heat corresponded to the critical tempera- 
ture. We effectively excluded the possibility of obtaining a 
negative value of the ratio A + /A - . However, if the theoret- 
ically predicted inequality A + /A .- < 0 is satisfied, a graph 
of the magnetic specific heat c, ( T) [see Eq. ( 53) ] of an 
impurity Ising system with a small negative critical expo- 
nent a should be of the form presented schematically in Fig. 
2. The critical temperature corresponds to a point of inflec- 
tion c, ( T ) ,  whereas the specific heat maximum occurs at a 
temperature different from T,. Clearly, the problem of de- 
termination of the sign of the ratio A + /A and of the pro- 
file of the maximum of the magnetic specific heat of impurity 
Ising systems requires precise experimental determination 
of the critical temperature. The critical temperature should 
be identified independently of measurements of the specific 
heat by investigation of other thermodynamic functions us- 
ing the same sample. If it is found that the critical tempera- 
ture is in the region of a fast fall of the specific heat, then 
extrapolation of the results of measurements can give a nega- 
tive ratio A + /A - of the critical amplitudes. 

The author is deeply grateful to A. I. Sokolov, B. N. 
Shalaev, and C. Bervillier for discussing the results. 

" There is a misprint in Fig. 5 of Ref. 41: the factor in front of the diagram 
should be ( n  - 1 ) / 5 4 .  

2' Simultaneously with an allowance for the counterterms, we changed the 
scales of the external field and of the moment: H- Hn'I2 and M -  Mn'". 

3' The logarithms of t are transformed here to the exponential form. A 
"falling" &expansion can be obtained for ,y + ' by expanding t yin Eq. 
( 2 5 )  in terms of the small quantity 6. 

4' In contrast to the critical amplitudes, found above from the equation of 
state ( 2 2 ) ,  the critical amplitudes deduced from the equation of state 
( 4 2 )  are universal quantities. As is usual in the literature, these are 
denoted by symbols with a tilde. 
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