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The relationship between the effective permittivity tensor of a layer of a rough surface and its n- 
dimensional height distribution functions F, is established through a solution of Maxwell's 
equations. The local part of the effective permittivity tensor is determined by F, ,and the nonlocal 
part by F, with n>2. 

The introduction of an effective permittivity operator 

is a natural way, and also the most convenient way, to de- 
scribe the mean field (E) in composites and in randomly 
inhomogeneous media.'-4 The procedure for calculating &'" 
is completely definite for three-dimensional composite ma- 
terials and leads to various approximate expressions of the 
Lorenz-Lorentz type, the Maxwell-Garnett type, the Brug- 

h h h 

where Pll = 44, P, = 1 - Pi( are operators of projection onto 
the normal and onto the z = const plane, respectively. The 
quantity Ai.(r) on the right side of (2) is the difference 
between the permittivity of the original medium (Fig. l ) ,  
which contains a rough interface z = h (p), 

, 8 ( z )  is the unit step function], and the function 8, intro- 
duced in ( 3 ) : 

gemann type, and so forth. 
A procedure for calculating the effective permittivity of As(r)  = [ E  (r) - E L  (z ) ]  Pl+[ e (r) -ell (z)]  P,,. 

a rough layer is also used widely in the theory of the diffrac- 
tion of electromagnetic waves by rough surfaces, but there is 
no justification for calculating P" of such a layer from one of 
the expressions named above for the theory of composite 
media.'-' Since they are strong functions of the size, shape, 
and density of the inclusions, none of which are considered 
in the original formulation [a contact of homogeneous and 
isotropic media along a rough interface z = h ( p ) ;  Fig. 1 1 ,  
the applicability of the approach taken in Refs. 5-8 is proble- 
matical and requires demonstration. 

The properties of a rough surface are determined com- 
pletely and unambiguously by the n-dimensional height dis- 
tribution functions of this ~u r f ace .~  In the conventional ap- 
pro ache^,^-^ on the other hand, the relationship between the 
effective permittivity and the statistics of the surface is com- 
pletely severed. 

Our purposes in the present paper are to develop a gen- 
eral procedure for calculating the effective permittivity of a 
layer of a rough interface between homogeneous and iso- 
tropic media and to relate the effective permittivity to the 
statistics of the rough surface. We will impose no limitations 
on the statistics of the surface. 

1. FORMULATION OF THE PROBLEM 

In the original equation of macroscopic electrodynam- 
ics for a monochromatic electromagnetic wave, 

The only restriction on the behavior of the functions E, (2) 

and (z) is that outside the rough layer, at z>h,,, and 
zgh,,, , these functions take on the constant values of the 
permittivity of the original media: 

for z&h,,, 
EL (2) (z) = :: for z<hmi,,. 

Within this layer, the values of E , ~ ~  (2) are arbitrary. Condi- 
tion (6 )  localizes perturbation (5 )  in the layer 
h,,, <z,<h,,, . Outside this layer we have A&(r) -0. 

Equation (2)  can be put in integral form in the standard 
way: 

where E, ( r )  is a general solution of the homogeneous ver- 
sion of Eq. (2)  (with a zeLo right side). For this purpose we 
use the Green's function G(r, r') of Eq. (2), 

(rot rot-ko2&,) G(r, r l )  =ko~i16 (r-r') (8) 

which saiisfies the radiation condition at infinity. An expres- 
sion for G(r, r') for an arbitrary function i., is derived in the 
Appendix. 

The solution of Eq. (7)  is expressed in terms of the 
scattering operator'0 T (we will be using symbolic operator 
notation below) : 

(rot rot-1tO2~,) E (r) =/iO2Ai? (r) E (r) (2)  

(k, is the wave number in vacuum), the permittivity tensor 
&, (which we are leaving arbitrary at this point; it will be 
determined below) of a layered, inhomogeneous, uniaxially 
isotropic medium with a principal optical axis directed along 
the normal to the mean plane of the interface between the 
media, z = (h(p))  = const, is written as follows: 

@,=EL (2) P L + & I I ( ~ )  4, ( 3 )  FIG. 1.  Rough interface between homogeneous and isotropic media. 
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E - ( l + U f  )Eo. ( 9 )  

The scattering operator is determined by the solution of 
the equation 

f'=Ai?(i+GF). (10) 

Substituting (9)  into ( 1 ), and noting that the choice of 
E, is arbitrary, we find the following expression for the effec- 
tive permittivity of the rough layer, using ( 10): 

ceff (r, rr) = g Z 6  (r-r') +%(r, r'). (1 1) 

The nonlocal part of the permittivity, g ( r ,  r '), is exp~essed 
in terms of the mean value of the scattering operator T over 
the ensemble: 

The calculation of the effective permittivity ( 11 ), ( 12) 
of the rgugh layer thus reduces to solving Eq. (10) for the 
matrix T and then taking its average. However, the general 
method for calculating the effective permittivity outlined 
above is incomplete. It requires refinement, since expansion 
( 11 ) is ambiguous and can be carried out by an infinite num- 
ber of methods because of the arbitrariness in the choice of 
the local part 2, of the effective permittivity. 

2. LOCAL PART OFTHE EFFECTIVE PERMITTIVITY TENSOR 
t z  

To make expansion ( 11 ) for the effective permittivity 
unambiguous, we require that in the approximation of inde- 
pendent scatterers, in which the relation 

holds, the mean value of the scattering vanish: 

A 

Since Tis a function of E,, Eq. ( 14) is an equation for E,, 
whose solution gives us the local part of the effective permit- 
tivity ( 11 ). Under conditions ( 13) and ( 14), the nonlocal 
part of the effective permittivity, ( 12), also vanishes. By vir- 
tue of our conditions ( 13) and ( 14), the nonlocal part of the 
effective permittivity is nonzero only because of the statisti- 
cal dependence of the scatterers. Expansion ( 1 1 ) thus ac- 
quires a clear physical meaning: The local part, E,, stems 
from single scattering (F-particle scattering) of waves, 
while the nonlocal part, 2, stems from multiple-scattering 
effects (effects of multiparticle or collective scattering). In 
Sec. 4 this assertion is verified by direct calculations. It is 
shown there that 2, is determined exclusively b~ the one- 
dimensional height distribution F, (h),  while 2 is deter- 
mined exclusively by multidimensional distribution func- 
tions F, ( h ,  ,..., h,) with n22. 

A 

To solve Eq. ( 14), we replace the scattering operator T 
by an iterative series expansion in powers of AE, 

and we use condition (13). If the Green's function (A4) 

(see the Appendix) had no singular part, the solution of Eq. 
( 14) under condition ( 13 ) would be 

( A E  (r) )=O. (16) 

From this equation and (5)  we find E,(z) 
= (z) = (E( r )  ). However, the presence of a local part 

a6(z  - z') in Green's function (A4) makes Eqs. ( 14) and 
( 16) nonequivalent, sinze terms of the type (AEn(r)) with 
n>2 ar%present when T is averaged, because of the local 
t e r ~ i n  Gin expansion ( 15). The contribution of these terms 
to ( T ) is nonzero even under conditions ( 13 ) and ( 16). To 
solve ( 14), we must therefore either sum all the terms of this 
type or put our original equation, ( lo),  in a form such that 
the Green's function in it contains no singular increment. 
Below we first find the transformation which we need, and 
we then show that it is equivalent to the summation metho$ 

Substituting expansion (A4) for thecreen's function G 
in Eq. (10) for the szaEering operator T, and moving the 
local part - AEE,, - lPll T to the left side of Eq. ( lo),  we fi%d 
an equation equivalent to ( 10) for the scattering operator T: 

A 

In this equation G ', defin%d by (A5), no longer has a singular 
increment; the operator 9, depends on the permittivity (4)  
of the original medium, perturbed by the rough surface: 

The perturbed permittivity E ( r )  in Eq. ( 17) appears in both 
9, and AE(r), so it poses several inconveniences in the cal- 
culation of mean values. We separate ~ ( r )  into a single fac- 
tor, making use of the following identity for this purpose: 

where ir is the new perturbation of the problem, which also 
vanishes outside the rough layer: 

The operator @ does not depend on ~ ( r ) ;  it renormalizes the 
z components of the fields: 

The reason for singling out the factor E,  E ,  in ( 19) and (20) 
will be seen later [see (28) below]. 

From ( 17) and^( 18) we find the following representa- 
tion of the operator T: 

where 1 is a new scattering operator which satisfies an equa- 
tion like ( l o ) ,  

This representation, however, differs from (10) in that it 
contains only a regular Green's function: 

Introducing the new basis system of functions 
X,, + = Y E , ,  * , where Ej, ' are given in (A2), 
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X,,* (b, z) =;E, (b, z) , vanishes outside the rough layer and reaches a maximum 

A 

1 b i  b d 
Xjp* (b, z)  = - --- * i - -  

k. ( ( E ~ B ~ ) "  e,(z) dz 
h 

we find the following expression for Go ( b , z , z l )  from ( 2 3 )  
and ( A 5 ) :  

do (b, Z, zf) = Ax t , [X,2  (b, Z) Xi.- (b, a') 0 (z-2') 
2%-*,p 

+XI,+ (b, z)X,,- (b, z') 0 (2'-z) I .  ( 2 5 )  

h 

The equation which the Green's function Go satisfies is given 
below [see ( 3 3 )  1. 

To prove that transformations ( 21  ) and ( 2 3 )  are equiv- 
alent to the summation in the expansion in ( 12) of the entire 
set of local terms of the type Atn,  we replace Gin ( 15) by its 
singular part from ( A 4 ) .  With respect to the longitudinal 
part of the permittivity, = E - E ~ ~ ,  we then find a geo- 
metric progression, which can be summed: 

AE -A& E~'AE + AE &;A& 11 ejlAe 1 1  - . . . 

The result gives us the longitudinal part of this term of the 
expansion o f t  in powers of 6 in Eq. ( 2 2 ) .  

Similarly, we convolve all the remaining series in all the 
subsequent terms of expansion ( 15) : 

6 

A & G A E + .  . . +vB,v etc. 

Transformations ( 2  1 ) , ( 2 2 )  have thus reduced Eq. 
( 10) for the scatte~ing operator T, which contains a singular 
Green's function G, to Eq. ( 2 2 )  for the modiged scattering 
operator 1, in which the Green's function Go is regular. 
When we then repeat the arguments following ( 15) ,  we can 
assert that the condition 

gives us the solution of the equation (; ) = 0 under condition 
( 13)ABy virtue ofthe linear dependence in ( 21  ) of the opera- 
tors Tand ; this solution is equivalent to the solution of our 
original equation, ( 14) .  

Substituting ( 19) into Eq. ( 2 6 ) ,  and solving the latter, 
we find the following expressions for the components of the 
tensor local part of the effective permittivity, t, [using ( 4 )  ] : 

e,(z) = < e  (r) ) = & , I -  (el-€,) Fi (z )  , 
( 2 7 )  

Ell -1 (z)  =<E-' (r) ) = ~ , - l +  (E,-'--ez-')Fl ( z ) ,  

where F,  ( z )  = (6  [ z  - h  ( p )  ] ) is a one-dimensional height 
distribution [O<F, ( z )  < 1 1 ,  given by 

andp, (h)  is a one-dimensional distribution density. 
The quantity B(z )  = [ E ~  ( z )  - E l l  ( z )  ] / E ~  ( z ) ,  the rela- 

tive anisotropy of a medium with the permittivity in ( 2 7 ) ,  

on the plane on which F,  ( z )  = 0.5. The typical width of the 
anisotropy region is on the order of H, which is the mean 
square amplitude of the roughness. 

Substituting ( 2 7 )  into ( 1 9 ) ,  we:an transform pertur- 
bation tensor D(r) into a unit tensor l v ( r ) ,  and we can fac- 
torize the functional dependence of v ( r )  on the irregularity 
profile h ( p )  and the permittivities of the media in contact: 

v (r) = (el-&,) h (r) . 
h(r)=O[z-lz(p)]-<8[z-h(p) ]>=O[z-h(p)] .-P,(z) 

This property, which is not shared by the original perturba- 
tion, (5), explains the introduction of the additional factor 
E ,  E~ in ( 19) and ( 2 0 ) .  The function A  ( r )  is zero except in 
the layer h,,, <z<h,,, , where its values are IA(r) 1 < 1 .  

3. NONLOCAL PART s(r, r') OFTHE EFFECTIVE 
PERMITTIVITY TENSOR 

h 

The nonlocal part Z ( r ,  r ' )  of the effective permittivity 
tensor can be expressed in terms of the mean value of the 
scattering operator t  according to ( 12) and ( 2  1 ) : 

In contrast with Eq. ( 2 2 )  for the operator 2, which contains a 
regular Green's function Go, expression ( 2 9 )  retains the 
complete Green's function, with the singular increment 

This increment leads to a partial summation and to a change 
in the structure of the series, as was shown in the preceding 
section of this paper. [In the case at hand, it is the struciure 
of series ( 2 9 )  which is changed, in the expansion of C. in 
powers of ( t  ) .]  Below we will see the meanin2 of this cir- 
cumstance, and we will find an expression for Z which does 
not contain singular terms. 

For this purpose we rewrite our original equation ( 2 )  in 
field components: 

where D, ( r  ) = E ( ~ ) E ,  ( r  ) is the z component of the dis- 
placement vector, and ~ ( r )  is given by expression ( 4 ) .  The 
choice of specifying these field components for rewriting 
Eqs. ( 2 )  stems from the cirpmstance that transformation 
( 21  ), ( 2 3 )  by the operator 9 in ( 2 0 )  is in a sense the best 
transformation, since it reduces the perturbation tensor O ( r )  
in ( 1 9 )  to a scalar function ( 2 8 )  with a factorized depen- 
dence on the profile h  ( p) and on the permittivity E ~ .  In place 
of ( 2 )  we then find the equivalent system 

where 2 and 6i are 3  x 3  matrix differential operators of the 
type 

977 Sov. Phys. JETP 71 (5), November 1990 G. V. Rozhnov 977 



and C(r) is given by (19). The differential operators 
d, = d /ax, etc., act on all the functions which follow them. 

The complete set of solutions of the homogeneous ver- 
sion of Eq. (32) (with a zero right side), 
X,,(r) =Xj,,+(b,z)exp(ibp), ti= 1, 2; r = s , p ) ,  is given 
by functions (24). Its Green's function, which satisfies the 
equation 

reo (r, r') =G6 (r-*I) (33) 

and the radiation condition at infinity, is given by (25) in the 
mixed (b, z )  representation. 

UsingJ33), we can put Eq. (32) in integral form, 
X = Xo + G,irX. Its solution 

X= (l+Gof)Xo (34) 

is expressed in terms of the scattering operator 2 given by Eq. 
(22). We define the eigenenergy operator 8 of Eq. (32) by 

(;x>=B<x>. (35 

We then find the following equation for the mean field (X): 

0 <X>=O. (36) 

nonlocal parts [see (,! 1 ) 1,  we find the relationship between 
the operators 6 and Z: 

h 

Alternatively, solvingior 2, we find the nonlocal part of the 
effective permittivity Z as a function of the eigenenergy op- 
erator 8: 

Relation (41 ) can also be found from (22))~expressing (3 ) 
in terms of &in the latter and replacing 9 G P  in accordance 
with (30). 

Relations (40) and (41 ) thus establish a mutually one- 
to-one correspondence betyeen the nonlocal part of the ef- 
fective-permittivity tensor Z and the eigenenergy operator 6 
of Eq. (36). Calculating the latter operator [see (37) ] :e- 
duces to solving the standard equation [see (22) ] Lor t :  a 
scattering operator with a regular Green's function Go. 

4. ITERATIVE EXPANSION OF  AND 2 

Substituting (34) into (35), and making use of the arbi- Let us examine the structure of the nonlocal part of the 

trariness in the choice of X,, we find the following expres- effective permittivity, solving Eq. (22) bynan iterative meth- 
od. Taking the average of an expansion oft in powers of v, we 

sion for the operator d: 
find the series 

This expsssion is an analog of the corresponding expression 
( 12) for XAand contains only the regular part of the Green's 
function, Go, in contrast with ( 29). 

To relate the compoynts of the tensor nonlocal part of 
the effective permittivity Z to the components of the eigen- 
energy operator 8, we take an average of Eq. (2),  

(rot rot-kO2Eefi) (E>=O (38) 

and we transform it to the same field components [see (3  1 ) ] 
with respect to which Eq. (36) is written. Comparing these 
equations, we find the relationship which we are seeking be- 
tween the operators .?;ff = bv and bv: 

We introduce the n-dimensional distribution functions of 
the heights of the random process z = h ( p )  : 

O<F, < 1; here p, (h ,  ,..., h, ;p, ,..., p, ) are n-dimensional 
height distributions. Using (28), we then find the following 
expression for the mean values of the product v(r, ): 

where6a~ is the and B = xjy' The eigen- Here @, are determined by the central moments of the ran- 
energy operator 6 thus does not determine the actual compo- dom process (,.) : 
nents of the effective-permittivity tensor but only a certain 
combination of them. 

Relations (29 ) t r e  linear in 6,. Substituting them into @,,(I, ..., n)= 
the expression 9,9, and writing 2 as a sum of local and j-* 
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They can be expressed directly in terms of distributions 
functions (43). In particular, for n = 2, 3 we find 

In general we have @, = F, - @, - , F, - ..., i.e., incorpor- 
ating the nth term of the expansion in (42) requires the use 
of an n-dimensional height distribution function. An expan- 
sion of ( t  ) in powers of u is therefore a power series in the 
multiplicity of the collective effects taken into account. In 
this sense the local part of the effective permittivity [ ( 3 ) ,  
(27)],  incorporates all single-scatteri~g effects, while the 
first nonvanishing approximation for ( t  ), 

G(r, r') )= ( E ~ - - & ~ ) ~ @ ~  (r, rr)& (r, r'), (h)  

incorporates all effects of double wave scaEering. 1% the 
same approximation, - u2, we have G = ( I t  ), Z = 9',9 ac- 

cording to (37) and (4 1 ) . For a uniform rough surface the 
dependence of a, (r,rl)  on the coordinates p and p' appears 
only as the difference p - p', in terms of which Fourier 
transforms are taken. In the mixed (b, z)  representation, 
where b is the vector conjugate to p - p' in the Fourier trans- 
formation, we find the following expresgon for the nonlocal 
part of the effective permittivity tensor Z in the approxima- 
tion -u2 :  

5 (b, z, z') -3 (z) 6 (b, z, z') 9 (2') , 

The scale size of the nonlocal part of the effective per- 
mittivity along the variables z and z' is on the order of the 
mean square roughness amplitude H, while that along the 
variable p - p' is of the order of the correlation length I, 
since outside the regions h,,, <z(zf ) < h,,, , Ip - p ' l5  I the 
function @, ( p - p',z,zr) vanishes according to (44). 

Writing (45) in the coordinate system defined by the 
unit vectors 3 ,6 , i  (see the Appendix), we find the following 
complete expression: 

'[(bb')' G,, -k (~b') '  ebb] (bbl) ( p i )  [- Gss $. Gbb] ( b ~ )  Gbz 
uap (br Z, 2') = (&I  - 8')' d2b'@2 (b - b', 2, 2') ( b b )  (G's) 1- G,, -+ Gbb] [(ib)' G,, $- (bb')' Gab] ( b b )  GbZ , (46) S 

(Pa)  cZ, (blb) GZb GZI i 
where a, p = s, b, z and t p  components Ga8 are determined 
by the Green's function Go (bf,z,z'), which is itself given by 
(25) in the proper frame of reference O,6', 2. 

In the general case of anisotropic rough surfaces, all the 
components of the tensor aaB are nonzero. In the case of 
isotropic surfaces, in contrast, in which @, ( b  - bl,z,z') de- 
pends on only the absolute value jb - b'l, matrix (46) be- 
comes cellular, since in this case we have g,, = g,, 

= lJbs = ObZ = 0. 

CONCLUSION 

tion. This circumstance has several consequences in the re- 
flection spectrum of such a medium for electromagnetic 
waves. 

The nonlocal part of the effective permittivity [see 
(41 ) 1 is determined by solving tbe standard equation [see 
(22)]  for the scattering matrix t and then calculating the 
eigenenergy operator (L7). An iterative solution of (22) 
gives us an expansion of C. (r,rl)  in n-dimensional height dis- 
tribution functions (43), i.e., in powers of the multiplicity of 
the collective effects which are taken into consideration. In 
terms of the variables z, z', it is localized in the slab izl, 
lz'l 5 H, while in terms of the variables along the surface, p 

We have derived a regular procedure for calculating the and p', it is localized in the region I p - p'l 5 I. Consequent- 

effective permittivity of a layer of a rough interface between ly, its contribution to the effective permittivity is small under 

homogeneous and isotropic media. This procedure is not the conditions k ,  H <  1, k,  1 < 1. However, a small change in 

based on a model. Instead, it is based on a systematic solu- the permittivity can lead to important changes in observable 

tion of the original Maxwell's equation, (2).  In general, the physical quantities" 

effective permittivity of such a layer, ( 1 1 ), is a tensor and 
Feaks up into the sum of a local term 2, and a nonlocal term 
Z (r,rl). The local part, (3),  (27), which describes a uniaxial 
anisotropic medium with a stratification nonuniformity, is 
characterized unambiguously by single wave scattering and 
is determined entirely by a one-dimensional height distribu- 
tion function. The components of the tensor 2, [see (27) ] 
are not independent; they are related by 

since they are expressed in terms of the same height distribu- 

APPENDIX 

As in Ref. g, we seek a solution of Eq. (8 )  for the 
Green's function G(b, z, 22 [Fourier transforms are taken in 
the difference argument G(p - p', z, z') ] in the form of a 
bilinear combination of independent solutions Eja ' (b,z) 
(j = 1,2; a = s, p) ,  of the corresponding homogeneous ver- 
sion of Eq. (2)  (with a zero right side). The functions 
E,, * (b,z) are expressed in terms of the independent solu- 
tions E, (b,z) and H, (b,z) of the scalar equations 
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into which system ( 2 )  decomposes with A2 = 0 for the s- 
and p-components of the polarized electromagnetic waves: 

E,#* (b ,  Z) =;E~ (b ,  z) , Ejpt (b, z) 

Here 3 = [h, &I and 6 = b /b ,  i are the unit vectors of a right- 
handed coordinate system. By virtue of restriction ( 6 ) ,  im- 
posed above on the behavior of the functions el,,, (z) at 
z>h,,, and z 5 h,, , solutions of (A1 ) can always be nor- 
malized by the conditions 

E,  (b ,  z )  =ko exp (-ir12z), Hi (b,  2 )  

=kz exp (-iq2z) for ~Ghrnin, 
E, (b. z )  =k, exp ( iq i z ) ,  H, (b ,  z )  =k, exp ( iq iz)  for ~>h,,,, 

where kj - k,~,!'~ is the wave number in medium j = 1, 2; 
and rl, = ( k j  - b 2)1 /2  is the component of the wave vector 
in medium j along the normal to the z = const plane. We 
choose that branch of the root for which the relation 
Re(1m) q,)0 holds with Im&,>O. We the%find the follow- 
ing representation for the Green's function G(b, z, z' ), which 
satisfies the radiation condition at infinity: 

z"- 
G(b , z1z1)=  -- 6 (z-zr)  + G' (b,  z, z') , (A41 

Ell ( z )  

+Elm+ (b,  z)Eza- (b,  z') 8 (z'-z) I .  (A51 

Here t ,  are the amplitude transmission coefficients for the 
case in which an electromagnetic wave is incident from the 
upper medium with the permittivity E ,  . Expressions (A4) 
and (A5) are written in dyad notation. The normalization of 
the solutions in (A3) and the notation used in (A5) are 
consistent with each other. Expressions (A4) and (A5) are 
a generalization of the corresponding  equation^'^-'^ found 
for the case of plane-layer media to the case of media with a 
stratification inhomogeneity. 
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