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A theory is proposed for the description of transmission of a nonlinear electromagnetic wave 
through an easy-axis antiferromagnet subjected to a static external magnetic field directed along 
the easy magnetization axis of a magnetic crystal. An analysis is made of a wave incident normally 
on such a plate. The magnetic field of this wave is circularly polarized and it lies in the plane of the 
plate. A nonlinear interaction between the wave and the spin system of the antiferromagnet gives 
rise to a dependence of the transmission coefficient of the wave on the power of this wave. It is 
shown that under certain conditions the wave transmission gives rise to bistable (multistable) 
states. A dependence of the nonlinear effect on the square of the amplitude of the incident wave is 
derived. Estimates are obtained for FeF, crystals. 

1. INTRODUCTION incident on an antiferromagnetic plate lies in this range, the 

T~~ main trends can be distinguished in studies ofnon- dimensions of this plate cannot be regarded as small com- 
linear properties of electromagnetic waves traveling in anti- pared with the electromagnetic wavelength, as is usually 
ferromagnets, ~h~ first trend concentrates on surface and done in descriptions of the interaction of electromagnetic 

bulk polaritons, i.e., on nonlinear electromagnetic waves in with ferrOmagnets when the wavelength at the reso- 

easy-axis antiferromagnets.ls2 ~h~ second trend concen- nance frequency is usually considerably greater than the di- 

trates on nonlinear effects that appear on transmission of an mensions the investigated 
- - 

electromagnetic wave across an antiferromagnetic film or 
plate when the wave frequency is close to the frequency of an 
antiferromagnetic resonance (AFMR) and the thickness of 
the sample is comparable with the wavelength of the incident 
radiation. A theoretical investigation of the transmission of 
an electromagnetic wave across an antiferromagnet plate re- 
ported in Ref. 3 deals with the case when there is no external 
magnetic field. It is shown there in particular that under 
certain conditions a wave may become unstable when its 
power is increased. 

We shall report a theoretical investigation of the trans- 
mission of an electromagnetic wave by a plate of an easy-axis 
two-sublattice antiferromagnet subjected to a static external 
magnetic field when the interaction of the wave with the spin 
system of the plate is nonlinear and the plate thickness is 
comparable with the wavelength of the incident radiation. In 
this most general case the nonlinear wave process is highly 
complex. The cylindrical symmetry of the spin system of an 
antiferromagnet, which applies in the linear Faraday effect 
geometry, now breaks down. The magnetic susceptibility of 
the antiferromagnet becomes a function of the frequency and 
power of the incident wave, and also of the external magnetic 
field. This firstly has the effect that when a wave is transmit- 
ted across an antiferromagnetic plate we can expect bistable 
and, on further increase in the power, multistable states; sec- 
ondly, it is possible to control nonlinear effects by altering 
the external magnetic field, which becomes useful in experi- 
mental studies of these phenomena. 

A linear theory of the transmission of electromagnetic 
waves by antiferromagnets has been developed sufficiently 
thoroughly.4 Nonlinear effects which appear on increase in 
the wave amplitude are particularly strong when the fre- 
quency of an incident electromagnetic wave is close to 
AFMR freq~encies.~ In the case of an antiferromagnet with 
the rutile structure (such as FeF, or MnF, ) these frequen- 
cies lie in the infrared range. If the frequency of the radiation 

2. NONLINEAR MAGNETIC SUSCEPTIBILITY OF AN 
ANTIFERROMAGNET 

We shall use the Landau-Lifshitz equation to find the 
nonlinear susceptibility of an easy-axis antiferromagnet and 
ignore dissipative processes. This neglect of dissipation is 
due to the high quality of the antiferromagnetic materials 
(with AFMR line widths -20 G)  used in experiments. We 
shall consider a two-sublattice model which describes well4 
the properties of real FeF, and MnF, crystals. We shall 
assume that a static external magnetic field, directed along 
the easy magnetization axis z, is of such intensity that the 
antiferromagnetic sublattices are in the antiparallel state, 
i.e., that the magnetization m, of the sublattice A is directed 
along the z axis, which is perpendicular to the surface of the 
antiferromagnetic plate, whereas the magnetization m, of 
the sublattice B is antiparallel to the z axis. We shall assume 
that m, is the absolute value of the magnetization in each of 
the sublattices. We shall introduce the normalized magne- 
tizations of the sublattices: 

In the absence of damping the Landau-Lifshitz equations 
for each sublattice are 

where y > 0 is the gyromagnetic ratio; HA and HE are the 
effective magnetic fields acting on the sublattices A and B, 
respectively. These fields consist of the external static mag- 
netic field H, directed along the z axis, the anisotropy field 
H,,  the exchange field H e ,  and the incident wave field h ( t ) ,  
and they can be described by4 
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The law of conservation of the total magnetic moment in 
both sublattices can be written as follows: 

If we assume that the variables a, ,  a,, b, , and by are all much 
smaller than unity, then expanding of a, and b, in terms of 
powers of these variables, we can limit our analysis to the 
quadratic terms: 

We shall assume that the magnetic field of the incident wave 
has the circular polarization (wave of the " + " type): 

We shall seek the solution of the system (2)  in the form of 
the following Fourier series: 

a ( t )  =Re[(a ,x+ia ,y)e-  "'+(aZfx+in,'y)e-J'"i+. . . I ,  (7a) 

b ( t )  =Re [ (b.x+ib,y) e-'"'+ ( b , ' ~ + i h , ' ~ )  e-3'm'+. . .] . (7b) 

Solving the system (2)  subject to Eqs. (3)-(7), we obtain a 
system of equations describing the motion of the sublattice 
magnetizations in the nonlinear case and enabling us to find 
the susceptibility of an investigated antiferromagnet at the 
frequency of the incident wave: 

where the following notation is used: w, = yH,, w ,  = yH, , 
W E  = W E ,  

a,=a,*ny, (9a) 

1) ,=Ox+ b,. (9b) 

Z,=h,+h,. ( 9 ~ )  

The terms which appear in the nonlinear case are 

Substituting A + = B + = 0, in Eq. (8) ,  we obtain a system 
of equations describing oscillations of the magnetization in 
the linear case. The system then has the cylindrical symme- 
try and, if we use the coordinates of Eq. (9) ,  it splits into two 
independent subsystems (corresponding to the " + " and 
" - " signs). We shall consider the reaction of our antiferro- 
magnet to one of the circularly polarized waves (namely the 
wave with the circular right-handed polarization) in the 
nonlinear case. 

Antiferromagnets of the type under discussion ( FeF,, 
MnF,) are characterized by an effective exchange field 
( - 500 kOe) which exceeds greatly the effective anisotropy 
field ( -  10 kOe), and also the intensities of the magnetic 
field of the incident wave attainable in experiments ( - 10 
Oe). The main terms in the system ( 10) are proportional to 
w,. The nonlinear magnetic susceptibility of an antiferro- 
magnet for a wave with the circular right-handed polariza- 
tion is found by solving the system (8)  by iteration (begin- 
ning with the zeroth approximation in the form of the 
solution for the linear case) and it is given by 

where 

is the linear part of the magnetic susceptibility of an antifer- 
romagnet for a right-handed polarized wave, and 

When the polarization of an electromagnetic wave incident 
on a plate is not circular, the expressions for the magnetic 
susceptibility of an antiferromagnet depend on the values of 
the squares of the amplitudes of the waves h . and also on 
the modulus of the product of the amplitudes h + and h - . 
We have ignored this case for lack of space. 

When the frequency of the incident wave approaches an 
AFMR frequency 0 + = (2wEwA + w: + w,, the val- 
ues of the linear and nonlinear parts of the magnetic suscep- 
tibility rise strongly. This is due to the fact that we have 
ignored dissipation in the system (2).  The condition of 
smallness of the transverse component of the magnetic field 
compared with the longitudinal component given by Eq. ( 5 ) 
(i.e., the condition of validity of the proposed theory) has 
the following form on approach to a resonance point: 

where Aw = + - w.  In calculations the quantity on the 
left-hand side of Eq. ( 13) does not exceed 10 - '. 

In this way we can find the nonlinear magnetic suscepti- 
bility of an antiferromagnet for an alternating magnetic field 
and its dependence on an external static magnetic field, and 
we can determine the range of validity of the theory. We 
shall now use the results to consider the transmission of a 
circularly polarized electromagnetic wave (with the right- 
hand polarization) through an antiferromagnetic plate. 

3. TRANSMISSION OF A NONLINEAR ELECTROMAGNETIC 
WAVE THROUGH AN ANTIFERROMAGNETIC PLATE 

We shall consider an antiferromagnetic plate with the 
rutile structure and of thickness d, and we shall assume that 
it is subjected to an external static magnetic field H, directed 
along the easy magnetization axis z of the plate at right- 
angles to its surface. A wave with circular right-hand polar- 
ization is incident along the normal to the surface and the 
magnetic field of this wave has two components h, and h,, 
such that h, = h,. It is shown in the preceding section that 
the magnetic susceptibility of an antiferromagnetic plate de- 
pends on the square of the amplitude of the incident radi- 
ation, i.e., on the wave power. If we assume that the permit- 
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tivity E~ of the plate is constant, we find that the Maxwell 
equations yield a nonlinear equation for the complex ampli- 
tude of a right-handed polarized wave 

are the electric fields of the circularly polarized waves. Sub- 
stituting Eq. ( 18) into Eq. (24), we obtain-subject to Eq. 
(20) : 

where k, = w / c  ( w  is the incident-wave frequency and c is 
the velocity of light in vacuum) and 

Therefore, the constant W governs the energy flux which is 
carried by a right-handed polarized wave across an antifer- 
romagnetic plate. We can find the unknown parameters W, 
A, and @(0) by solving the boundary-value problem. 

The linear and nonlinear parts of the magnetic susceptibility 
can be expressed in terms of the magnetic susceptibility: 

4. SOLUTION OF THE BOUNDARY-VALUE PROBLEM 

A wave incident on an antiferromagnetic plate (Fig. 1) 
can be described by H + exp(ik,z), the wave reflected from 
the plate is R  + H + exp( - ik,z), that transmitted by the 
plate is T +  H+ exp(ik,z) (here, R  + and T +  represent the 
transmission and reflection coefficients, respectively), and 
the conditions of continuity of the tangential components of 
the magnetic and electric fields at the interface between the 
media yield the following equations for the determination of 
R +  and T + :  

It should be noted that Eq. ( 14) is derived in the one-wave 
approximation, i.e., assuming that the amplitude of one cir- 
cularly polarized wave (in this case h ) is much less than 
the amplitude of the other wave (h + ). This approximation 
is valid when the wave incident on an antiferromagnet plate 
has the right-handed polarization and its coupling to the left- 
handed wave is only via the coefficient of nonlinearity. We 
shall seek the solution of Eq. ( 14) in the form of a product 

where H is the amplitude factor, h (z) is the normalized am- 
plitude, and @(z) is the eikonal of the circularly polarized 
wave. Substituting Eq. ( 18) into Eq. ( 14), we obtain a pair 
of equations for the determination of h (z) and @ (z) : 

After some transformations, the system (26) allows us to 
determine the integration constant Win terms of A: 

where k * = k i ~ , p L ,  , A = k i~~pNtL./pL, . Integrating the 
first of these equations, we find that the product of the 
square of the amplitude of a nonlinear wave and the deriva- 
tive of the eikonal is a constant: 

The boundary value of the amplitude of a circularly polar- 
ized wave and its derivative at z = d are then given by 

After substituting Eq. (20) into Eq. ( 19b) and integrating 
the latter, we obtain the following equation for the ampli- Similar conditions applicable to the wave amplitude and its 

derivative at the second boundary (z = 0 )  are implicit and 
are of the form 

where A is the second integration constant. The second inte- 
gration in Eq. (20) gives 

where @(O) is the eikonal of the wave at the point z = 0. 
We shall now identify the physical meaning of the con- 

stant W. The normal component of the time-averaged vector 
of the energy flux density (Poynting vector) is 

L. 

S,=-Re[EH']., 
8n 

(23) 

where E and H are the electric and magnetic fields of the 
wave. In the case of circularly polarized waves, we obtain 

where FIG. 1 .  Geometry of the problem. 
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The third unknown parameter @(O) is found from the 
boundary conditions and is given by, the expression 

The transmission coefficient of a circularly polarized wave 
crossing an antiferromagnetic plate is readily found from 
Eq. (26b) if we multiply this equation by its complex conju- 
gate which yields 

IT+ 1 '=h2 ( d )  . (31) 

The solution of Eq. (2 1 ) depends on the sign of the nonlinear 
coefficient (and this sign depends on the frequency and 
changes on going through the resonance point). The solu- 
tion obtained allowing for the boundary conditions can be 
expressed in terms of the Jacobi elliptic functions5 and are of 
the following form if R > 0: 

h C-C+ 
h 2 ( i )  =c++ [ c - C - 1  c n 2 { [  - - Z ( ~ - ~ - )  ] " / c  ( d - z )  I --} C-C- ' 

( 3 2 ~ )  
If R < 0, we obtain 

F, (z) = (D+-C)  D-+ (C- D - )  D+ CII' I[+ ,D+ - D - 1  I '" 

where R #O, n2 = E,,LL$ . 
The next stages of the solution to the problem have to be 

carried out numerically. 

5. RESULTS AND DISCUSSION 

We shall now consider the order in which the problem 
can be solved numerically. If we specify a definite value of 
the parameter W, which [see Eq. (28a) ] governs the ampli- 
tude of the wave at the boundary z = d, we can find from Eq. 
(32) [or Eq. (33), depending on the sign of the nonlinear 
coefficient A] the solutions for the amplitude at z = 0. We 
can then analyze all possible values of the parameter Wand 
identify those which satisfy the second boundary condition 
of Eq. (29). The solutions which satisfy both boundary con- 
ditions are the solutions of the problem. The range of possi- 
ble values of W is governed by the law of conservation of 

FIG. 2. Dependence of the transmission coefficient of an antiferromagnet- 
ic plate on the amplitude of the magnetic field of the incident wave. 
H, =0.5 kOe, H, =515 kOe, H,, =8 .4  kOe, d =  100 pm, E ,  = 4 ,  
rn, =0.56 kG,Aw/n+ = - 1 x 1 0  ' ( l ) , and  - 1.2X l o 5  (2 ) .  

energy, in accordance with which the coefficient represent- 
ing transmission of a wave across an antiferromagnet plate 
cannot exceed unity. Simple calculations show that 
0 < W< ko&, . In calculation of the Jacobi elliptic functions 
we used the standard subprogram JELF. 

Figure 2 gives the results of a numerical calculation of 
the transmission coefficient of an antiferromagnetic plate as 
a function of the amplitude of a magnetic field of the wave 
incident on this plate. The parameters of the problem were 
selected for FeF, crystals. The frequency of a wave incident 
on such a plate was assumed to be less than the AFMR fre- 
quency by an amount Ao = f2 + .10 -- 5.  Then, ,LL: > 0, 
A< 0. We can see that when a certain amplitude of the inci- 
dent wave is reached, the transmission coefficient of an anti- 
ferromagnetic plate becomes a bistable quantity. For the 
above parameters the value in question is 7 Oe. An increase 
in the amplitude increases the number of the possible values 
which the transmission coefficient of the plate has to assume, 
i.e., the system goes over to a multistable state. The behavior 
of an antiferromagnetic plate in the field of an incident wave 
is in many respects similar to the behavior of a Fabry-Perot 
resonator filled with a medium whose refractive index de- 
pends on the power of the radiation propagating in it. As the 
wave amplitude is increased, the effective refractive index of 
an antiferromagnetic plate changes and so does the wave- 
length in the antiferromagnetic medium. When the number 
of half-wavelengths which can be fitted within the thickness 
of the plate is an integer, the transmission coefficient tends to 
unity. This is the reason for the appearance of new peaks on 
increase in the wave amplitude (Fig. 2). When the incident 
wave frequency approaches the AFMR frequency, the abso- 
lute value of the nonlinear coefficient R increases. A reduc- 
tion in the detuning induces bistable operation and we can 
see from Fig. 1 that this occurs at lower values of the inci- 
dent-wave amplitude. 

6. CONCLUSIONS 

We considered the transmission of a nonlinear electro- 
magnetic wave across an antiferromagnetic plate subjected 
to an external magnetic field. First of all, we found the non- 
linear magnetic susceptibility of the antiferromagnetic plate 
in such a field. We determined the nonlinear corrections to 
the matrix elements, which depended on the square of the 
modulus of the amplitude of the electromagnetic wave field. 
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