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It is shown that a regular representation for the self-energy part exists in the Hubbard model, in 
the form of a series in powers of the tunneling integral t(f - f'). The single-particle Green's 
function that appears in first order in t(f - f') satisfies four exact relations for the spectral 
moments corresponding to the Kalashnikov-Fradkin canonical transformation, and is the best 
single-particle approximation of the problem for the class of solutions with two delta-functions. 
We investigate the homogeneous solutions in the Hubbard model for U = co ( t  > 0).  Of 
fundamental importance for the obtained Green's function is the presence of a term ( X  PX r) 
that represents the connection between the kinematic and spin degrees of freedom. Such a 
correlator determines the spin-dependent shift of the gravity center of the spin subbands and leads 
to a ferromagnetic ground state in the density region 0.7 5 n< 1 (n is the electron density in the 
lower Hubbard band). A phase diagram is constructed for the relative magnetization of a 
ferromagnetic metal. The contribution to the self-energy part is obtained in a self-consistent 
manner in second order in t(f  - f' ). The region of applicability of this theory is discussed. 

1. INTRODUCTION 

The investigation of the possible existence of ferromag- 
netism due to electron correlation in a narrow nondegener- 
ate band dates back to Bloch's work.' The main quantitative 
and qualitative aspects of this question, however, are con- 
nected with the investigation of the magnetic properties of 
the Hubbard Hamiltonian:' 

The main argument in favor of the existence of a ferromag- 
netic solution in the framework of the Hamiltonian ( 1 ) is 
based on the accurate result obtained by N a g a ~ k a . ~  He has 
shown that addition (removal) of a small number of elec- 
trons in a three-dimensional system described by the Hamil- 
tonian ( 1 ) with n = N , / N  = 1 ( N ,  is the number of elec- 
trons in the Hubbard band and N is the number of sites) 
stabilizes the ferromagnetic ground state. Whereas for di- 
visible lattices (PC, BCC) the ferromagnetic state is invar- 
iant to simultaneous reversal of the signs of the occupation 
parameter n , = N, - N  and the matrix element t, 
(n - c 0, t > 0- n + > 0, t < 0)  no such symmetry was pres- 
ent in FCC and HCP. Note that the rigorous results of Ref. 3 
were obtained for n * = * 1 and U = co . A thermodynam- 
ic generalization to finite densities was made in the linear 
approximation on the basis of the hole density (i.e., pt,, 
p =  1 -n ) .  

The problem of thermodynamic generalization 
(O<n<l) of the rigorous results of [3]  is now very timely. 
This is connected first of all with the discussed possibility of 
nonphonon mechanisms in the HTSC problem. Thus, in An- 
derson's theory4 the Nagaoka mechanism (kinematic ex- 
change) limits substantially the probable onset of RVB 
states on lattices with PC and BCC symmetry. In the 
Schrieffer theory5 the kinematic exchange plays a construc- 
tive role, ordering the electron spins in ferromagnetic fash- 
ion in a certain spin bag. 

Notwithstanding the extensive use of the results of Ref. 
3, the method of construction of the effective self-consistent 
field generated by the kinematic interaction is still unclear. 
We propose in the present paper an effective-field theory 
that takes into account the connection between the kinetic 
and spin degrees of freedom ( (X f'X r) ) in vacuum-vacu- 
um hole translations over a lattice with arbitrary spin config- 
urations. This connection is none other than the physical 
mechanism on which the theorems of Ref. 3 are based. 

Before we proceed to an exposition of the main results, 
however, let us consider the Nagaoka results3 as interpreted 
by Brinkman and R i ~ e . ~  Their purpose was to investigate 
the kinematic effect of the presence of one hole ( t  > 0) in an 
N  x N  x Nsystem with different types of spin configurations. 
The example chosen was a PC lattice (2 = 6 )  and three 
types of spin configurations: R-random spin orientation; 
AF-antiferromagnetic (alternant) ordering; F-saturated 
ferromagnetic ordering. Using, just as in Ref. 3, expansion of 
the resolvent in a series in t /a, they were able to establish a 
simple analytic connection between the spectral moments 
( M y )  of the density of states and the number of hole trajec- 
tories on the lattice: 

where z is the number of nearest neighbors, A ;'is the number 
of trajectories when the hole starts from a state i with spin 
configuration ai and returns (without omissions) to the 
same (iai ) state after I steps on the lattice (vacuum-vacuum 
transition). Solving the combinatorial calculation of A 7, 
they arrived at the following deductions (see Table I of Ref. 
6 ) .  

1. Starting with the fourth spectral moment ( I  = 4) on 
the PC lattice (in this case the hole follows a cyclic passage 
through the slab), M P acquires a specific dependence on the 
type of spin configuration in the lattice (kinematic ex- 
change). 

2. With increase of the number of steps, the difference in 
the number of trajectories between the F, R, and AF configu- 
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rations increases rapidly, and always M  :> M  f > M y  
( M I .  

3. The series in I (or, equivalently, in t, ) always con- 
verges within each configuration. 

4. The convergence is slowest in the F configuration, 
where the smallness parameter is the ratio r,/zl < 1 ( r ,  is the 
total number of trajectories made up of I steps). 

The "decreased" value of the spectral moments for R 
and AF structures compared with the F configuration leads 
to a stronger correlation narrowing of the Hubbard subband 
in accordance with the loss in the kinetic energy of the hole. 
Thus, a hole in the R or AF configuration is a considerably 
more localized object than in the F configuration, and it is 
this which determines the ferromagnetic choice of the 
ground state. 

2. BASIC EQUATIONS OF THE THEORY IN FIRST ORDER IN 
t(f -fl). EFFECTIVE FIELD OF KINEMATIC ORIGIN 

A perturbation theory for the Hubbard Hamiltonian 
( 1 ) from the atomic limit encounters a substantial difficulty 
because the ground state of the system is degenerate at 
t(f  - f' ) = 0. For n = 1 (system 2N-fold degenerate in spin) 
the degeneracy is lifted in second order in t(f - f') and the 
ground state is either antiferromagnetic7 or singlets with 
Jcc t '/U. If n < 1 (the system is 2NN!/N,!Np!-fold degener- 
ate in spin and in the hole locations Np ) , however, the degen- 
eracy is lifted in first order in t(f - f'). It is particularly 
important in this case to take correct account of all the ef- 
fects that are linear in t(f - f ') .  

The main distinctive feature of the perturbation-theory 
formalism used by us is the method of finding an analytic 
equation for the self-energy part (8) with the aid of the 
method of equations of motion for the retarded and ad- 
vanced Green's  function^.^ Differentiation of the equations 
with respect to the right time ( t  ') yields an expression for the 
Green's function in terms of a scattering matrix T made up of 
partial T, matrices of the corresponding orders in the inter- 
action potential, the role of which is played by the tunneling 
integral t,. : 

where Go is in the general case the zeroth-approximation 
(atomic limit) matrix Green's function; E is the formal pa- 
rameter of the expansion in the interaction parameter. On 
the other hand, using the Dyson equation and an expansion 
of the self-energy part in powers of E 

we obtain the connection between T and 8: 

Consider the single-particle retarded Green's function9 

Gff, ( w )  = G F ' ( w ) .  
aa' 

where A,, = n&af, are Hubbard operators with the follow- 
ing permutation properties: 

Differentiating the Green's function ( 6 )  with respect to the 
time t and next with respect to the time t ' we obtain a system 
of closed equations (see Ref. 9), the solution of which can be 
written in the form (3): 

aa' aa' 
{TI) tr.  =( {ZIao, A : ~ , ~ )  ), {Tz) tt, =((Ztaa; Z:a,o))m. 

(11) 

The matrices TI  and T, are proportional, respectively, at 
least to the first ( E )  and second (E') powers of the interac- 
tion potential ( t ,  ), since Z,, is an operator of the form 

= t (f-f') [af,dz,"-a (Xfz0af~z+q (o)x1o2a;:) 1, 
1' 

We call attention to the fact that the matrix element 
{GO(O));;"' (9)  has one simple pole, whereas GO, ( w )  has 
two pole terms. It is natural to expect the spectral density of 
the complete single-particle function G(w,k) to have at 
W& U ( W = zlt I is the half width of the bare band) two 
peaks that converge in the metallic phase ( U &  W ) .  This pre- 
supposes the use of the Dyson matrix equation for a matrix 
formulation of the self energy 2.  The Dyson equation, in the 
class of spatially homogeneous solution, takes in the k repre- 
sentation the form 

Gaa'(o,  ~ ) = G , ~ ~ ' ( W ) + G ~ ' '  (o)~P""'(k)  GTa'(m, k), ( 13) 

where BYvY(k) is the self-energy part calculated in an ap- 
proximation linear in t(f - f') (i.e., 2, = T, ) .  Solving the 
system of equations ( 13) and using next the representation 
(6)  we find that the single-particle Green's function takes in 
the approximation linear in t(f  - f ') ,  in the limit as U -  a, 
the form" 

n-" 
G,I(o, k )  = a-n-"e (k) -52,' (k) ln-" ( 14) 

~ , ' ( k )  = ~ , ( h ) ~ ( k ) - W A o ( h ) ,  (15) 

A, ( h )  = (Xo"OXh05>, (16) 

~ ~ , ( h ) = ( n , ' n ~ " > - ( n ' ) ~ + ( ~ ~ " " ~ ~ " " > .  (17) 

& (k) =x t (h) eikh, xXPo=~:-,5. (18) 
h 
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Note the main features of the Green's function ( 14). 
1) If we neglect the nonlocal contribution to the mass 

operator [i.e., put flf, ( k )  = 01, then (14) goes over into a 
Green's function that corresponds to the single-node ap- 
proximation of the coherent-potential method (CPM) (or 
the Hubbard-I approximation2 ). It is easy to verify l o  that 
there is no magnetic solution in this variant of the theory 
(i.e., R = nu - n" = 0 for all n = nu + n") .2' We show in 
Appendix I that the local-effective-field approximation does 
not satisfy the fourth spectral moment of the theory, which is 
the decisive factor in the Nagaoka mechanism (kinematic 
exchange). 

2)  The Green's function with allowance for the nonlo- 
cal contribution fl; ( k )  satisfies all four exact spectral mo- 
ments and is according to the Kalashnikov-Fradkin classifi- 
cationI3 the best single-particle approximation of the 
problem, where account is taken of all (local and nonlocal) 
effects that are linear in the tunneling integral t(f - f'). The 
proof of this fact is deferred to Appendix I. 

3) The nonlocal contribution to the effective field is due 
to the kinematic nature of the vacuum transitions, which 
relates the kinetic (collective) degree of freedom with the 
spin configuration on the lattice (localized degree of free- 
dom). As noted in the Introduction in connection with Ref. 
6, it is just this relation which causes the ferromagnetic or- 
dering in a system of strongly correlated electrons. It will be 
shown later on that allowance for the nonlocal contribution 
RL (k )  leads to a new energy balance between the ferro- and 
paraphases, which can be classified as due to two contribu- 
tions: (a)  the change of the chemical potential as a result of 
the shift of the gravity centers of the spin subbands [second 
term of ( 15) 1; (b)  the corrections to the chemical potential 
due to the change of the correlation width of the spin sub- 
band [first term in ( 15) ]. Both terms are functions of the 
density n, the temperature T, and the relative magnetization 
R, and vanish as expected for n = 1. 

We obtain now a system of self-consistent equations for 
the single-particle spectrum (14). The Green's function 
( 14) determines the equations for the occupation numbers 
nu(n") 

no= ( I -nz )  dep (8) f [ (I-n" e+nQSl.e) ] (19) 

and for the kinematic field $"( p) 

i=WA"h)= ( I -nu)  J d e p ( e ) e f [  ( I - n a ) ~ + n a R ; ' ( e )  I .  

It is shown in Appendix I1 that in the approximation linear 
in t(f - f) the binary correlation function Ku(h)  is qua- 
dratic in the kinematic fields $"($"), so that 

vO(U = t (h) eikhKO(h) 

Equations ( 19)-(21) determine the complete system of re- 
normalizations of the single-particle spectrum and can be 

used to construct the phase diagram of the homogeneous 
state in the Hubbard model for U = m .  

3. SOLUTION OF EQS. (19)-(21). ENERGIES OF 
FERROMAGNETIC AND PARAMAGNETIC PHASES. R(n, T)  
PHASE DIAGRAM 

Analytic expressions for R (n )  and T, (n)  can be ob- 
tained for the rectangular state density p(e)  = p  = 1/2 W. 
Integrating in ( 19) and (20) at T = 0 we get 

where p + is the chemical potential in the spin subbands - 

(the plus and minus signs correspond to a- t and a= 1 ); 
R = n +  - n - a n d n = n +  + n p .  

The equation for the magnetization R (n)  follows from 
the condition that the chemical potentials be equal 

It is convenient to analyze (23) with consistent allowance 
for contributions (a )  and (b )  [see item 3 of Sec. 2). 
Allowance for only the contribution (a )  (in this case 
a ' = 1 ) leads to the following results: 

1 ) There is always a solution R = 0 corresponding to a 
paramagnetic metal; 

2)  the second solution corresponds to the state with 
maximum number of parallel spins (saturated ferromagne- 
tism) : 

Allowance for both contributions ( a )  and (b)  leads (togeth- 
er with the trivial solution R = 0 )  to the equation 

One of the three real roots of (25) satisfies the condition 
R <n and we have for it 

The solution (26) describes an unsaturated ferromagnetism 
state with a critical point n, ~ 0 . 7  of the concentration tran- 
sition into the parametallic state. 

Let us see which of the solutions has the lowest energy. 
The system energy can be expressed in terms of a single- 
particle Green's function" 

Using the Green's function ( 14) and integrating with a rec- 
tangular density of states, we obtain the self-consistent val- 
ues of the energy for the ferro- and paraphases: 
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W (1-n) 
Eo ( R )  = - c E*(.) ,  

2 i-1 

2(1-n) (nZ-R2) [ (2-n)n-Ral (28c)  
E2 ( R )  = - 

Y2 9 

where E, , E2 and E, are the corresponding contributions to 
the energy from ( 16) and ( 17) .  Comparing E, ( R )  and 
E, ( R  = 1 ) we can verify that 

Eo ( R )  =CEO (R=O) ( 2 9 )  

for all R ( n  ) from the solution ( 2 6 ) .  
Expanding the Fermi functions in ( 1 9 )  and ( 2 0 )  in 

powers of ( T / W )  , we get expressions for T ,  ( n  ) . If only the 
contribution (a)  is taken into account, the phase transition 
in temperature is of first order, with a discontinuity 
AR = R  = n .  The Curie temperature is obtained in this case 
from the equality of the chemical potentials of the ferro- and 
paraphases: 

T c  1 -- -- (6  (I -n)  n)'". 
W n  

Ifboth contributions (a)  and (b )  are taken into account, the 
phase transition in temperature is not accompanied by a dis- 
continuity of the ferromagnetic moment and is determined 
from the condition R  (n ,  T c )  = 0.  The equations for R  ( n ,  T )  
can be obtained by iteration. Analysis shows that the solu- 
tion R  = n  is the better first iteration step. Indeed, calculat- 
ing q, " ( k )  with R  = n  we find that Tc ( n )  is given by 

It follows from ( 3  1 ) that the second critical point n, = 2/3  
is close to the concentration-transition point ( -- 0 . 7 ) .  Figure 
1 shows for a ferromagnetic metal the phase diagram that 
follows from the results ( 2 4 ) ,  ( 2 6 ) ,  ( 3 0 ) ,  and ( 3  1 ). 

4. SECOND-ORDER PERTURBATION THEORY WITH 
RESPECTTOTHE ENERGY OVERLAP INTEGRAL. 
CONVERGENCEOFTHETHEORY 

In second order in t ( f  - f ')  the irreducible self-energy 
part of Z2 (5)  is 

with summation over the intermediate index y. 
We shall be guided from now on by the following rule: 

From among all the spatial sums in the correlation func- 
tions, which result from the calculation of {B2)$o, we retain 
only the correlators of two nearest neighbors, since their ex- 

FIG. 1. Phase diagram R ( n ,  T) of a ferromagnetic metal for U = cc and 
t > 0 (rectangular density of state). 

pected value is maximal. This follows directly from the very 
idea of the existence of an expansion in t ( f  - f' ). Indeed, the 
expected value of the correlators for two nearest sites is at 
least linear in t ( f  - f' ), at least quadratic in t ( f  - f ' )  for 
three non-equivalent sites, etc. As already noted, for n  < 1 
the degeneracy of the system is lifted in first order in 
t ( f  - f' ). It is therefore necessary and sufficient to calculate 
the ensuing correlation functions to first order in the cou- 
pling constant, whence the aforementioned rule. This is at- 
tained in practice by calculating { X 2 ) $  in an approximation 
diagonal in the site indices, namely 

As a result the self-energy part Z a Y ( o , k )  can be expressed in 
the form 

where f l b ( k )  is the result ( 1 5 )  obtained in first order in 
t ( f  - f ' )  and 0: ( w )  is the contribution from the second or- 
der: 

where G ? ( w )  is the atomic function (9 ) .  It follows from 
( 3 6 )  that the quasiparticle Green's function calculated in 
second order in t ( f  - f ' )  is connected, through the self-ener- 
gy part { Z 2  ( w ) ) ,  with the unperturbed ( t ,  = 0 )  local 
functions GO,'; ( w )  . 9  The thermodynamic self-consistency 
condition in the lattice model requires the substituthn" 

which transforms ( 3 6 )  into an equation for the self-constent 
values of Re O : ( w )  and Im f l : ( w ) .  

All the calculations that follow will be for U = co and a 
rectangular denstity of states. As a result we obtain 
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To analyze the corrections in second order in t(f  - f') we 
write for the Green's function calculated in second order 

2,  (k) = ~ ( k )  (n-qZ+Q,'(k). Z, (a) =Q," (o). (39) 

With the aid of (26) and (22) [see also (46) below] we can 
obtain expressions for 2,  (k )  and [2, (w) ] ,,, in the low- 
density region: 

' l+n 
- 1 - n ) ,  n+l ,  
1'3 

mar - 1 )  n n n+O (R=o). 
(411 

2 4 ' 

where y(k)  = z - '2, exp ikh. 
From (40) and (41 ) we conclude that a strong inequal- 

ity 

obtains at the center (k  = 0)  and on the edge 
[ k = Q  = (n-/a)(l, 1, I ) ]  oftheBrillouinzoneasn-Oand 
n - 1 and guarantees convergence of the series in this range 
of parameters. 

For the values of the quasimomentum k 
= Q/2 ( y (Q/2 = 0)  we have in the region of interest 'to us 

lim [Z, (o))lrnnr = l im [Z, (k = Q/2)1= 0. 
n -0 

(43) 
R-0 
n -1 ,!-1 

This means that for integration over the total Brillouin zone 
the contribution from the regions with quasimomentum val- 
ues k = Q / 2  will be small as n-1 or n-0. As n-1 this 
behavior of {Z, (w)),,, is a reflection of the fact that the 
ground state in our theory is ferromagnetic (0.7 5 n< 1 ) and 
in the Nagaoka limit (n - 1, R - n) scattering by local spin 
fluctuations is completely suppressed. 

It is important to note that as n- 1 the results of the 
linear approximation in t(f - f') become exact (in the afore- 
mentioned restriction to the class of homogeneous solu- 
tions). This fact requires no assumption concerning the 
model density of states and is general. Indeed, using infor- 
mation on the ground state at n = 1 (the ground state is 
ferromagnetic with a maximum spin R = nu = 1, n" = 0) we 
have 

A,=O, 
(44) 

K,=<s~s~> -3/,=0. 

Substituting (44) in the most general equation (36) for 
fly(@) at U = co we verify that 

For n - 1 the theory becomes thus exact and its result agrees 
with the theorems of Nagaoka.3 

Figure 2 shows the calculated [2, (w) ] ,,, and 2, (k )  
fork = 0 (or k = Q) at arbitrary densities. In density region 
1 >n 2 0.77-0.75 the inequality (42) is valid and this region 
corresponds fully to a ferromagnetic metallic state 
( 1 >n 2 0.7). The convergence of the perturbation-theory se- 
ries in t(f - f' ) is thus ensured in the ferromagnetic phase all 
the way to concentrations close to n, ~ 0 . 7 .  In this region 
there are two small parameters, the numberp = 1 - n of the 
holes and the number no of the flipped spins. 

In the region 0.77-0.75 > n > 0.48-0.45 the inequality 
(42) no longer holds. This region includes the concentration 
phase-transition point, and the intervals Anl-~0.07 to the 
left of n, and An, ~ 0 . 2 5  to the right of n,, which pertained in 
the first-order theory to the ferro- and paraphase, respective- 
ly. A characteristic attribute of this region is the absence of a 
small parameter, since n" = nUzp,  which leads apparently 
to strong critical-fluctuations that cannot be described in the 
framework of the self-consistent-field theory. 

The inequality (42) becomes valid again in the region 
0.48-0.45 > n>O. This density region is located entirely in 
the paraphase, where the small parameter is the number of 
electrons n" = nu< 1. 

The energy overlap-integral perturbation-theory series 
represented by Eq. (4)  converges thus in the density region 
n > n, + Anf corresponding to a ferromagnetic metal, and in 
the region n < n, - An, corresponding to a paramagnetic 
metal; in the region n, + Anf > n > n, - An, the results of 
the theory must be interpreted as interpolations. 

5. CONCLUSION 

We note certain features of our results and compare 
them with the known solutions. 

As already noted (see the Introduction), an attempt 
was made in Ref. 3 to generalize the results for a single hole 
to include the thermodynamic region. Account was taken 

FIG. 2. Contribution to self-energy part in first order [ J B ,  ( k  = (:I) 1 ] 
(curve 1 ) and in second order [Z, ( w )  I,,, (curve 2 )  in t(f  - f') vs the 
electron density n. 
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there, however, only of effects proportional to t(f - f ') ,  
which are in turn linear in the hole density, i.e., pt(f  - f' ) .  
This result by Nagaoka is the first term of the expansion of 
our theory in terms ofp. In fact, asp-0 we obtain from (26) 

In an approximation linear in the hole density our theory 
reduces thus to Nagaoka's result: R = n (saturated ferro- 
magnetism). 

Callaway (see, e.g., Ref. 19) has developed in a number 
of papers a program for exact diagonalization of the Hub- 
bard Hamiltonian for small clusters (e.g., 2 X 2 X 2, Ref. 19). 
It was shown that the Nagaoka state (R = n )  is unstable 
with a decrease of the number of electrons, starting with 
N, = 6 (two holes). It follows from this numerical calcula- 
tion that the ferromagnetic moment does not decrease lin- 
early with decrease of the number of electrons, in agreement 
with our theory. 

To illustrate the physical mechanisms represented by 
Eqs. ( 19)-(2 1 ), we can calculate the quantities indicative of 
the placement of the spin quasibands relative to one another. 
What is instructive in this respect is the distance, in energy 
scale, between the Fermi level and the bottom of the spin 
quasiband: 

From (47) and (24) one can see why allowance for only the 
shift of the energy centroids of the spin quasibands [the con- 
tribution ( a )  ] does not lead to a transition into a paramag- 
netic state at n #O. In this case the quasiband with spin (T is 
"pushed out" upwards above the Fermi level (y, = 0 )  and 
remains empty all the way to densities n = 0. Therefore the 
decrease of the magnetization R is due only to depletion of 
the quasiband with spin a (the width of this band is 
y, = 2 Wn ) with decrease of n = nu. It is understandable 
therefore that a contribution of type ( a )  corresponds to the 
approximation of Ref. 3, where the "excluded volume ef- 
fect," which takes place generally speaking for all finite hole 
densities, is completely ignored for holes. 

The situation is quite different when account is taken of 
both contributions ( a )  and (b ) .  Recall that the contribution 
(b)  is quadratic in the effective kinematic fields $" and $" 
and renormalizes the correlation width of the spin subband. 
In this case, when the density decreases from n = 1 there 
appear in the system electrons with opposite spins and there- 
fore y, .fO. As n decreases, the arrangement of the spin qua- 
siband is modified as follows: the width of the quasiband 
with spin o decreases, but the width of the quasiband with 
spin (T increases; the distance between the centroids of the 
spin quasibands decreases. It becomes therefore obvious that 
a transition to the state of a paramagnetic metal takes place 
at finite electron density in the quasiband. 

Since the effective kinematic field, which is the analog 
of the exchange interaction, depends not only on the density 
but also on the temperature, the decrease of the magnetic 
moment with temperature is not due to excitation of collec- 
tive degrees of freedom (spin waves), but is the analog of 
Stoner single-particle thermal excitations. 

We are grateful to A. F. Barabanov, I. E. Dzyalo- 
shinskii, K. A. Kikoin, A. I. Larkin, V. L. Pokrovskii, N. M. 

Plakida, and V. Yu. Yushnakhai for helpful discussions dur- 
ing different stages of the work. 

APPENDIX l 

Kalashnikov and Fradkin13 have formulated a princi- 
ple for the choice of the best single-particle approximation: 
an approximation of the spectral density (or of the corre- 
sponding Green's function) will be more accurate the larger 
the number of relations (correlation moments) is satisfies 
rigorously. 

Let us define, in accordance with Ref. 13, the single 
particle density A:. ( t  - t ') and its corresponding correla- 
tion spectral moments M E +  '' as follows: 

A:. ( t- t ' )  =( (at+ ( t )  ; arV ( t ' )  1 ), (AI. 1) 

We represent the connection between A,"(t- t ' )  and 
M E +  ' )  by the series 

Using (AI.3) we find 

To transform the system of exact relations (AI.4) into a 
system of closed equations we must assume a class of func- 
tions that can be chosen to approximate A:. (0). To solve 
the problem of the one-particle approximation with an un- 
damped spectrum it suffices to approximate A,"(w) on a 
class of delta-functions. 

Let us prove that in first-order perturbation theory in 
t(f - f') the Green's function conserves the first four mo- 
ments and is therefore the best single-particle approximaton 
on a class of solutions with two delta-functions. The spectral 
density corresponding to a two-pole single-particle approxi- 
mation with undamped spectrum is of the form 

(AI.5) 
To find the spectrum w" , - ( k )  of the single-particle excita- 
tions and of the corresponding amplitudes a y k )  and 
a" ( k )  we use the first four exact equations of (AI.4):4' 
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where (k)  is the nonlocal-correlation function ( 15), but tained.14 It is necessary next to use the property of Green's 
in the definitions of A, (h )  and KO (h)  account is taken of propagator functions:'' 
spatial correlations with "twofold" excitations (since 
u # c o ) :  -i.lkG(o) =GkO((l)+iO) -Gta(o-io). (AI.8) 

~ , ( h )  = (nOcn, ")-( n" 2+(Xov5X,""> - (Xo02Xh20), 
AS a result we get 

~ , ( h )  =(ao~+ah;noa>-(ah:+ao;; (1-noa) >. (AI.7 

The solution of the system (AI.6) is unique and can be ob- G,'(o, k)={[(7,'(o, k) I-'-& (k))-', (AI.9) 

(AI. 10) 

As U- the Green's function GL(w,k) goes over into 
( 14), thus proving our statement. The single-node CPM 
(Hubbard-I) approximation does not satisfy the fourth mo- 
ment of the theory precisely in view of the presence of the last 
term (a: (k )  ). As already noted, the nonlocal contribution 
flf, (k)  is not the "Nagaoka scale" of the problem, when the 
connection between the spatial and the spin degrees of free- 
dom begins to play a decisive role. 

It is necessary in this connection to approach with due 
caution theories in which a Hubbard-I approximation ap- 
pears in first order in the tunneling integral t(f - f ' ) . I 6  

APPENDIX II. 

In the calculation of binary correlation functions 
KU(h)  in the approximation linear in t(f - f'), successive 
account is taken of the corresponding correlations between 
the single-particle excitations (kinematic fields), and there 
is no contribution from the collective modes.I6 We shall use 
the method of Ref. 9 and calculate the sought correlation 
functions in a variant with a single-particle kinematic inter- 
a~ t ion .~ '  According to Ref. 9, a Green's function of the form 

< X P j  (k, h))a = (AII. 1 ) 

makes it possible to calculate the sought binary correlation 
functions in K, (h)  under the condition that the generating 
operators Pj (k,h) be determined from the relations 

1 (pI (k. h) X$ = (nofn*l')* -1 c ( P ,  (k, h) XP) 
N k  N k  

(X gux ;*) = - A"h) Aa (h) 
l-n ' 

(AII.3) 

Expression (21 ) follows from Eqs. (AII.3). 

I '  The passage to the limit ( U- m ) was made after calculating the func- 
tion G j, (w,k) for finite U. The same sequence of operations will be used 
hereafter. 
Note that the situation is not remedied by the Hubbard-I11 approxima- 
tion," where there are likewise no magnetic  solution^.'^ 

" By analogy with Refs. 3 and 1 1 (see also Ref. 18). 
4 ' F ~ r  simplicity, Eqs. (AI.6) were written for E,, = Obut this, naturally, 

does not make them less general. 
5' It follows from analysis" that this variant of constructing an effective 

self-consistent field is the only one acceptable when it comes to obtain- 
ing a complete closed system of equations that renormalize a single- 
aarticle saectrum. 
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