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The spinodal decomposition of glasses accompanied by the formation of an intermediate 
decomposition structure is analyzed. A statistical approach is taken, and a nonlinear diffusion 
equation is used, to study all the stages of the spinodal kinetics. The analysis encompasses all 
possible relations among the mean composition, the size of the initial fluctuations, and the 
difference (at a fixed temperature) between the "upper" and "lower" spinodal concentrations. 
Near the critical point the spatial scale of the intermediate decomposition structure is determined 
by the relation between the contributions from nonlinear and "gradient" effects. 

1. INTRODUCTION 

During the rapid cooling of several metallic and inor- 
ganic melts, a solidified material (a  glass) can be produced 
in a metastable or even labile state. In general, the material is 
unstable with respect to both fluctuations of the density (or 
of the free volume) and variations in composition (in two- 
component and multicomponent systems). To simplify the 
description we assume that the system is a two-component 
glass AB with a limited solubility of one component (B, say) 
in the solid state. In this case, the metastable region, bound- 
ed by curve 6, the two-phase equilibrium curve, on the T-c 
diagram is accompanied by a region in which the system 
loses its stability even with respect to infinitesimal variations 
in the concentration c ( r ) .  This second region is bounded by 
the spinodal curve s (Fig. 1 ). 

If the system is rapidly shifted from the high-tempera- 
ture region in which the homogeneous state is stable (point 
A, in Fig. 1) to the low-temperature region in which the 
homogeneous state is unstable (A, in Fig. 1 ) , the medium, in 
a labile state, rapidly loses its spatial homogeneity. Undergo- 
ing a relaxation, it acquires a special grainy or cellular struc- 
ture without any sharp phase boundaries. This sort of evolu- 
tion of a continuous inhomogeneous structure (a  spinodal 
decomposition) has been studied previously by several in- 
vestigators (see, for example, Refs. 1-6). 

Actually, a homogeneous initial state characterized by 
the (mean) concentration c, is never realized at low tem- 
perature. Random variations in composition (and density ), 
fixed in space, essentially always form during the quenching 
of metallic melts (from the liquid state). This circumstance 
stems in part from technological factors: a spatial variation 
in the cooling conditions, turbulence of a flow, etc. Further- 
more, even during a rapid quenching along the path from 
point A, to A, there is time for a partial concentration strati- 
fication to occur. 

In a theoretical description of the kinetics of spinodal 
decomposition of glasses, one should therefore specify as pa- 
rameters not only the temperature and the mean concentra- 
tion c, but also the probabilistic characteristics of the initial 
concentration distribution, e.g., the initial correlation func- 
tion. As we will see below, "frozen" initial fluctuations 
strongly influence the course of the entire concentration 
stratification of a glass in the spinodal region. 

The evolution of frozen fluctuations was studied in Ref. 
7 in the case in which the mean concentration of the melt is 

presence of a second spinodal concentration c,, was ignored. 
It was therefore not possible to describe the late stages of the 
spinodal decomposition or to draw a complete picture of this 
phenomenon. In particular, it was not possible to explain the 
formation of intermediate decomposition structures. The 
analysis below is free of these limitations. We will work from 
Landau's concept8 and the complete nonlinear Cahn equa- 
tion9 to find the basic characteristics of the concentration 
stratification of glasses in all stages of spinodal decomposi- 
tion. 

2. FORMULATION OFTHE PROBLEM 

Our starting point for writing a dynamic equation for 
the concentration c(r, t )  is the standard expression for the 
diffusion flux density1' in terms of the functional derivative 
of the free energy F{c(r, t ) ,  T}  with respect to the concentra- 
tion: 

Here M is a product of the concentration by volume and the 
mobility u of the atoms of species B. 

The (infinite-dimensional) order parameter in this the- 
ory is the concentration c(r,  t ) .  A distinctive feature of this 
order parameter is that it satisfies a conservation law written 
as a continuity equation: 

We wish to stress at the outset that Eq. ( 1 ), in contrast with 
exact relation (2),  is valid only in the limit of a small gradi- 
ent of the chemical potential. It cannot describe, for exam- 
ple, the fluctuational formation of nucleating regions and 
their subsequent growth. In other words, we can work from 
Eq. (1)  to describe only spinodal decomposition; binodal 
decomposition lies outside the scope of this analysis. 

As a completely acceptable form of the functional de- 
pendence of the free energy on the concentration we adopt 
the functional 

wherep is the number of atoms per unit volume. At tempera- 
tures below the critical temperature T, the free-energy den- 
sity f l  (c) can be written in the form proposed by Landau,' 
which is a form convenient for our purposes: 

close to the spinodal concentration c,, . In particular, the f, ( c )  = g o [ -  (c,~-c,,)~(c-c.)~+~/~(c-c.) I ' l  , (4) 
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the time adopted as the initial time, e.g., at an instant when 
the temperature of the sample is fixed: 

FIG. 1. 

where c, = ( 1/2) ( c,, + c,, ), and c,, and c,, are defined as 
points at which the second derivative of the free-energy den- 
sity with respect to the concentration vanishes, i.e., 

The spinodal curve s in Fig. 1 combines the plots of c,, (T)  
and c,, ( T) ; its vertex (the critical point) has the coordinates 
c, and T,. The constant E, agrees with T, in order of magni- 
tude. Expression (3) incorporates the interaction of regions 
with different concentrations (the nonlocal nature of the 
problem) through the introduction of a term proportional to 
(VC),. The constant y here satisfies y-&,a2, where a is the 
atomic interaction range. 

It is natural to assume that near the critical point we 
have c,,., = c, f + ( 1 - T/T, ) and thus 

We introduce the deviation u(r, t )  of the concentration from 
its mean value c, : 

An equation for v(r, t )  is found by combining Eqs. ( 1) and 
(2)  and using (31, (4) ,  and (7) .  The resulting equation is 
extremely complicated and obscure. We will accordingly re- 
strict the discussion to the simplest (and most important) 
case, that of small fluctuations: 

We also transform to a dimensionless time and to dimension- 
less spatial coordinates by making use of some scale values: 

t.=a2/D, ( where D o = ~ ~ o ) ,  Zr=a= ("(~Eo)'" 

Without any loss of generality, in the case of an isotropic 
medium such as a glass, we can restrict the discussion to the 
one-dimensional case, in which the concentration depends 
on only the single coordinate x. As a result, we find the fol- 
lowing equation within small terms of up to third order: 

We need to supplement this equation with an initial condi- 
tion, which consists of the specification of the fluctuations at 

We will first carry out a preliminary qualitative analysis of 
Eq. (9) .  

If the system is, "on the average," outside the spinodal 
region, i.e., if c, (c,, or c,)cS2 (Fig. I ) ,  the coefficient in the 
first (and dominant) term on the right side of (9)  is positive. 
Correspondingly, we are ignoring the other terms represent- 
ing ordinary diffusion with a progressive smoothing of the 
fluctuations. If, on the other hand, the mean composition is 
inside the spinodal region, i.e., if c,, < c, < c,, , the effective 
diffusion coefficient is negative, a rising diffusion occurs, 
and the fluctuations correspondingly grow (the concentra- 
tion irregularities become larger). The length scale of the 
irregularities decreases as time elapses. In Cahn and Hil- 
liard's linear theory,' the fluctuations are stabilized by the 
last term on the right side of (9) ,  which stems from the gra- 
dient term in the free energy, (3).  - - 

It can be seen from Eq. (9)  that it is important to incor- 
porate the nonlinear terms (first) when c, is close to one of 
the spinodal concentrations (for definiteness, we will say 
c,, ) and (second) in the late stages of the decomposition, in 
which the relation v 2 (c,, - c,, ) holds. The term which is 
quadratic in v "pulls" the system into the spinodal region 
and gives rise to an asymmetry of the fluctuations, as was 
shown in Ref. 7. The cubic term, in contrast, stabilizes the 
fluctuations. 

It is thus permissible to ignore the "gradient" term in 
the early stages of the decomposition. In the late stages, this 
term can be dealt with in a qualitative way by comparing it 
with the other terms in order of magnitude. 

3. ANALYSIS OF THE EQUATIONS 

We will thus study the truncated equation 

Since the function u, (x )  which appears in the initial condi- 
tion is a random function, the solution v(x, t )  of Eq. ( 1 1 ) is 
also a random function of the coordinate x. The time enters 
this functional dependence parametrically. We are thus in- 
terested in finding correlation characteristics of the random 
function v. As was found in Ref. 7, the binary and ternary 
correlation functions are the ones of primary interest: 

(v(x, t)v(xr, t)>=K(x, x', t)=K(lx-x'l, t)=K(s, t ) ,  (12) 

(uZ(x, t)u(xl, t))=G(x, x', t)=G(Ix-xrjt)=G(s, t) .  (13) 

The angle brackets here mean an average over an ensemble 
of realizations of the function v(x, t )  . We recall that by de- 
finition we have (v(x, t)  ) = 0. 

A system of coupled equations for the correlation func- 
tions of various orders is found from our basic equation, 
( 11 ) , by multiplying both sides by different powers of v(x, 
t ) ,  beginning with the first, and then taking an average. The 
chain which results is uncoupled in the standard way, by 
writing the quaternary correlation functions as a sum of 
products of binary correlation functions: 
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(u3(x, t) v(xf, t)>+3K(O, t) K(s, t ) ,  (14) 
(v2(z, t) u2(x', t) >-+K2(0, t)+2K2(s, t). (15) 

The correlation functions of odd order (the third and fifth) 
play an important role here. We note in this connection that 
by working from the considerations in Refs. 6 and 7, primar- 
ily regarding the single-scale nature of the problem, we con- 
clude that G(s, t)  can be replaced by [G(O, t)/K(O, t] K(s, t)  
and that (u3(x, t)v2(x', t ) )  can be replaced by K(0, t)G(O, 
t)  + 6G(O, t)K(s, t ) .  It thus becomes possible to reduce the 
problem from an infinite chain of coupled equations for cor- 
relation functions of arbitrarily high order to the problem of 
analyzing a system of equations for the correlation function 
K(s, t)  and the quantity G(0, t )  = (u3(t)),  which is a mea- 
sure of the asymmetry of the one-dimensional fluctuation 
distribution: 

where 

K.1" (s, t) = 
dzK (s, t) , KS2"(O, t) = 

dsZ 

It can be verified directly that Eq. ( 16) is satisfied by a Gaus- 
sian correlation function 

KoRo S' 
~ ( s , t )  =-exp[----;--] R (t) 

2R (t) 

under the condition that the correlation radius R ( t )  satisfy 
the nonlinear equation 

dR (t) - lBcoDo[ (CO-c.1) (CO-C~Z) (CO-c*) G(O7 t) -- + 
dt R (t) KoRo 

Working from ( 17), and using ( 18), we can derive a second 
equation relating G(0, t )  and R ( t ) .  Before we write the cor- 
responding system of equations, we switch to the new dimen- 
sionless quantities 

Parameters of the initial concentration distribution, specifi- 
cally, the correlation radius Ro of the frozen fluctuations 
and their initial dispersion K, (the square of the size of the 
fluctuations), appear in ( 18) and (20). We also introduce 
the parameters 

and the normalized unknown function 

The system of equations for r ( r )  and g ( r )  then takes the 

form 

with the initial conditions 

By solving system of equations (23) and (24) we can obtain 
basic generalized information about the concentration 
stratification, since this stratification determines the corre- 
lation radius, i.e., the length scale of the irregularities, the 
size of the fluctuations, f(r) = [K,/r(r) ] and the asym- 
metry parameter g(.r). The latter makes it possible to evalu- 
ate the concentration in the precursors of the precipitates of 
the new phase and the volume of these precursors. 

The parameter which primarily determines the evolu- 
tion of the system is a .  Its sign determines whether the sys- 
tem is, "on the average," inside or outside the spinodal re- 
gion. The value of a is itself determined by the relation 
between the size of the initial fluctuations and the depth to 
which the system penetrates into the spinodal region ( a  < 0)  
or into the region of stability of a homogeneous state (a > 0).  
The parameterpprimarily determines the asymmetry of the 
fluctuations. The temperature dependence of a and p stems 
from the temperature dependence c,, ( T) and c,, ( T). 

4. DISCUSSION OF RESULTS 

Equations (23) and (24), which constitute a system of 
first-order equations, fall in a category which is the subject of 
a voluminous literature (e.g., Ref. 1 1 ). Since the solution of 
our equations cannot generally be written in quadrature 
form, we will go through a semiquantitative analysis of the 
behavior r ( r )  and g ( r )  by making use of the well-known 
concept of the phase diagram of the system. For this purpose 
we first determine the singular points of our system of equa- 
tions, by setting the right sides of (23) and (24) equal to 
zero. There are two singular points, with the coordinates 

and 

These points are labeled 1 and 2 on the phase portraits (Fig. 
2, a and b).  A further analysis by the standard procedure 
shows that the first of these points is a saddle point, while the 
second is a stable node. 

For the analysis below it is convenient to study the cases 
a < 0 and a > 0 separately. We also assume go = 0, i.e., that 
the initial fluctuations have a symmetric distribution. For 
definiteness we assume c, < c, , i.e., p < 0. 

4.1. We assume a < 0, i.e., that the glass is in the spino- 
dal region on the average (Fig. 2a). 

As can be seen from Fig. 2, the separatrices are arranged 
in such a way that the phase trajectory corresponding to the 
initial condition which we have adopted terminates at the 
stable node ( r ,  ,g, ). Consequently, a decomposition neces- 
sarily occurs; it terminates in the formation of an intermedi- 
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FIG. 2. 

ate decomposition s t r u c t ~ r e ' ~  characterized by a length 
scale r,, a fluctuation size (Ko/r2 )"', and an asymmetry 
parameter g, . 

In the important limiting case la14 1, in which the 
mean concentration in the system is close to the spinodal 
concentration (co zc,, ), we have r, - ( 1/2)P and 
g, =: - 40 3. Converting to dimensional quantities in accor- 
dance with (20), we find that the intermediate decomposi- 
tion structure has a length scale 

R, = 2RoKo 2RoKoTc - 
(~ .2-~ . i )~  Tc-T (28) 

and a fluctuation size 

The direction in which the process goes is determined by the 
relationship between the size of the frozen initial fluctu- 
ations, f, =K A", and the distance between the spinodal con- 
centrations, 

c.z-cSI= [( T c - T ) / T , ] "  

(Fig. 1). This distance depends on how close the tempera- 
ture is to the critical point. 

If the initial fluctuations are small, i.e., if fo $ Ic,, 
- c,, 1 ,  they will grow from an initial value fo to a final value 

c, - c,, as time elapses. The spatial scale of the fluctuations 
falls off from Ro to a finite value R , ,  given by (28). The 
asymmetry parameter simultaneously increases to ( u 3 )  
= (cs2 - c,, ) 3 .  

If the initial fluctuations are instead extremely large, 
i.e., if fo % Ic, - c,, 1, they will decrease to a size Ics2 - csl I, 
while the correlation radius will increase. Note, however, 
that the latter case could hardly be realized, since for initial 
fluctuations this large there would more probably be a bino- 
dal decomposition, i.e., a formation of nucleating regions of 
a new phase and their subsequent growth. 

Our use of the term "intermediate decomposition struc- 
ture" is justified by the circumstance that the actual spinodal 
decomposition has ended by the time at which point 2 is 
reached. The structure formed remains stable for a certain 
length of time.' A binodal decomposition then apparently 

occurs and terminates in a stratification of the system into 
stable phases. One might say that the intermediate decompo- 
sition structure is the initial structure or starting point for 
the phase transition by the mechanism of nucleation and 
growth. 

It can be seen from (23) that we have 
dr/dr = - 21a( + 2 at the initial time. Under the condition 
JaJ > 1, the correlation radius decreases monotonically. Un- 
der the opposite condition, la1 < 1, there is first an increase 
in r, i.e., a smoothing of the irregularities, and then r de- 
creases to r, , while the fluctuations grow to f, . The temporal 
characteristics of the spinodal decomposition and the role 
played by the gradient term in the energy are conveniently 
found in the particular case f i  = 0, in which the mean con- 
centration is equal to the critical concentration (c, = c, ). 
In this case, with a = - (c,, - c,, )'/4K0, Eq. (24) is satis- 
fied by the trivial substitution g ( r )  = 0, and Eq. (23) takes 
the form 

Introducing r, - 1/Ja / ,  we can write a solution of this equa- 
tion which implicitly gives the functional dependence r ( r )  
as follows: 

It follows from (3  1 ) that the correlation radius initially var- 
ies linearly with the time; it then approaches a limiting value 
r, exponentially. The time scale of the relaxation to the in- 
termediate equilibrium is T, - r, = l / la  1 ,  or, in dimensional 
quantities, 

The spinodal decomposition thus occurs over the cus- 
tomary diffusion time R ;/Do, but in this case this time is 
renormalized by a factor 

which increases as the critical point is approached. In other 
words, the decomposition slows down strongly near the 
critical point. 

The limitation on the growth of fluctuations during 
spinodal composition results from either nonlinear terms or 
the last term (the gradient term), according to (9) .  The 
corresponding criterion can be found by comparing the first 
and last terms on the right side of (9 )  or (equivalently) by 
comparing the value of r, with the Cahn length scale' for the 
fluctuations which are growing most rapidly, 
Ac -a(cs2 - cs, ) - I .  If 

the growth of the fluctuations is limited by the nonlinear 
terms in (9) ,  the size of the fluctuations at the end of the 
decomposition process is c,, - c,, , and the spatial scale of 
the irregularities is on the order of R,, i.e., depends on the 
initial scale size. 

If the inequality sign in (33) is reversed, the fluctu- 
ations are limited by the gradient terms. In accordance with 
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Ref. 1, we single out the length scale 

The fluctuations, on the other hand, stabilize at a level 

which depends on the initial state of the glass. 
These estimates remain qualitatively the same for essen- 

tially all c,; the only exceptional cases are values of c, very 
close to c,, (or c,, ). In the latter case, a special analysis will 
be required in order to distinguish the role played by the 
gradient term. 

4.2. We assume a > 1; i.e., the glass decomposes outside 
the spinodal region "on the average." 

It can be seen from the phase portrait (Fig. 2b) that 
under the condition a 4 1 the phase trajectory corresponding 
to the "symmetric" initial condition go = 0 terminates at a 
stable node. In other words, although the system is outside 
the spinodal region on the average, the decomposition oc- 
curs by the spinodal mechanism7 because of the initial fluc- 
tuations. It terminates in the formation of an intermediate 
decomposition structure corresponding to point 2, i.e., to a 
stable node. 

Before we take up the time dependence r(7) we would 
like to point out that the temperature dependence of R, is 
quite different from that of A,, according to ( 6 ) ,  (33), and 
(34). The two most important situations can be identified 
here on the basis of the distance between the temperature at 
which the spinodal decomposition is observed, T, and the 
critical temperature T,: (a)  R, >A,; (b)  R, <A,. At tem- 
peratures very close to the critical temperature, relation (a )  
definitely holds; with distance from T,, there is a transition 
to case (b) .  

We first consider the first situation (R, >A,  ). With 
B- 1 and a 4  1, the correlation radius r=R /R, varies 
monotonically from unity to r, (curve 1 in Fig. 3).  At suffi- 
ciently large values of a ,  the r ( r )  dependence ceases to be 
monotonic. Specifically, r ( r )  initially increases, as if it were 
approaching r, , and then goes through a maximum and de- 
creases, asymptotically approaching r, (curve 2 in Fig. 3).  
At a certain definite value a = a, - 1 the phase trajectory 
terminates at the point ( r ,  ,g, ); i.e., r ( r )  asymptotically ap- 
proaches r, (curve 3 in Fig. 3). Finally, at a > a,, a smooth- 
ing of the fluctuations occurs from the outset, with a subse- 

FIG. 3. 

quent transition to a uniform distribution of the components 
(curve 4) .  

In the situation R, <A,, the evolution of the correlation 
radius r(7)  is generally like that in the case R, >A,,  but now, 
under the condition a < a o ,  the value of r ( r )  asymptotically 
approaches A S2' after a long time (curves 5 and 6 in Fig. 3). 
The meaning here is that under the condition R, <A, the 
length scale of the intermediate decomposition structure is 
basically determined by the gradient terms in expression (3)  
for the free energy after a long time. In other words, the 
linear Cahn theory can be used in this case. 

The system exhibits this behavior not only in the case 
go = 0 but also in the case go # 0. In the latter case, however, 
if there is a sufficiently large initial asymmetry of positive 
sign, the system has a tendency to undergo spinodal decom- 
position in accordance with the value of go. The situation 
changes radically only if, as co varies (so a and fl also vary), 
the two singular points on the phase diagram coalesce. In 
our model, this coalescence occurs under the condition 

If a > a,, = 4f12/(3 + J8), there are no singular points on 
the phase diagram, so there is no spinodal decomposition. 
The evolution of the system in this case is a transition to a 
homogeneous state. 

5. CONCLUSION 

Spinodal decomposition is the time evolution of a sys- 
tem with a continuous inhomogeneous structure of a grainy 
or cellular type as the result of a thermodynamic instability. 

The quantitative characteristics of such a structure and 
even the direction in which the evolution occurs are deter- 
mined to a large extent by the "frozen" initial fluctuations of 
the composition (and of the density). Their role can be de- 
termined completely only if the possibility of large devia- 
tions of the mean concentration from the spinodal concen- 
tration is taken into account, with co - c,, -c,, - c,, . The 
corresponding theoretical description includes a nonlinear 
term a v 3  in the basic equation, (9) .  Equivalently, this de- 
scription incorporates the existence of a second spinodal 
concentration. It thus becomes possible to derive a new re- 
sult, which is evidence of the existence of an intermediate 
decomposition structure; this result could not be derived in 
Ref. 7 specifically because there was no term a v 3  in the main 
evolutionary equation. 

In addition, the incorporation of this term makes i: pos- 
sible to draw completely definite quantitative conclusions 
about the final stage of the spinodal decomposition. Specifi- 
cally, in the case of extremely small initial fluctuations, irre- 
gularities of the Cahn scale A, -a(c,, - c,, ) - I ;  form in the 
final stage. The size of the fluctuations at the end of the 
decomposition satisfies f, gc,, - c,, and [according to 
(35) ] depends on the size of the initial fluctuations. In con- 
trast with the length scale, the size of the fluctuations cannot 
in principle be derived without consideration of the initial 
state of the glass. For comparatively large initial fluctuations 
[the specific condition is given by (33) 1,  irregularities with 
a size well above the Cahn scale emerge in the final stage, and 
the size of the fluctuations reaches its maximum, - (c, - c,, ). In this case the growth of the irregularities is 
limited by the nonlinear term av3, while in the preceding 
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case the limiting factor was the gradient term a d  4u/dx4. Fin- 
ally, for extremely large initial fluctuations, exceeding 
c,, - c,, , the spinodal decomposition goes in the opposite 
direction, toward a decrease in the size of the fluctuations, to 
cs2 - C S 1 .  

Analysis of the complete evolutionary equation reveals 
the temperature dependence of the decomposition time and 
that of the size of the irregularities near the critical point. It 
turns out that both of these quantities increase in proportion 
to (T, - T)-I .  

It can be concluded from numerical estimates that the 
spinodal decomposition of typical metallic glasses causes an 
initial inhomogeneous structure with a mean inhomogeneity 
size R, - l o p 4  cm to transform into an intermediate, rela- 
tively stable decomposition structure with a far smaller in- 
homogeneity size, R ,  -- cm. The time scale of the spin- 
odal decomposition is determined primarily by the 
temperature (through the mobility and the proximity of the 
temperature to the critical point; for metallic glasses in the 
temperature interval 500-700 K, it varies over the range 
lo4-10's. 

Since a discussion of spinodal decomposition pertains 

to inhomogeneities of mesoscopic scale ( lo2-lo4 A), the 
most convenient experimental method for studying this de- 
composition is small-angle x-ray scattering. The correlation 
function K ( s , t )  is none other than the Fourier transform of 
the angular dependence of the scattering intensity. If the 
decomposition time is sufficiently long, this method would 
reveal the time dependence of both the size and composition 
of the inhomogeneities. 
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