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A critical review is given of the widely used method of canonical transformations in the 
Hamiltonian theory of weakly nonlinear waves with a nondecay dispersion law. It is shown in 
particular that a reduced evolution equation, from which nondecay three-wave and nonresonant 
four-wave processes are excluded, can be derived by a canonical transformation in the form of an 
integer-degree series up to cubic terms inclusive. An explicit form of this transformation is given 
and the kernel ofthe reduced equation, having all the required properties, is presented. 

1. INTRODUCTION 

The Hamiltonian formalism for nonlinear waves in con- 
tinuous media, developed in the early seventies by V. E. Zak- 
harov, is now generally accepted and has many applica- 
t ion~. ' -~  In this Hamiltonian method the equation of motion 
of what is known as a complex normal variable a (k )  (k is the 
wave vector), related by Fourier-type transformations to 
physical variables of a problem, is written in the following 
final form: 

. ) a ( k )  -- = - 
611 

i --- 
a L 6a' (k) ' 

where H = H(a,  a*) is the Hamiltonian of the system (real 
functional of a and a*); i = m; the symbol 6 denotes a 
variational derivative; an asterisk is used for the complex 
conjugate. Equation ( 1 ) together with its complex conju- 
gate forms a pair of canonical Hamiltonian equations with 
canonically conjugate variables a ( k )  and ia*(k) (for sim- 
plicity, we shall consider the case with one type of wave with- 
out polarization). 

In the case of weakly linear waves the Hamiltonian can 
be expanded as an integer-degree series in a and a*, which 
can be limited to a finite number of terms. Up to the quartic 
terms inclusive, this expansion can be written in the form 

where 

= U(')(k,k, ,k, ), wJ = o(kJ  1, a, = a(k,,t), 
S, _ , -, = S(k  - k, - k, ), etc. The differentials are de- 
noted by dk, = d k, dk,,, = d kd k, d k,, etc. and the sym- 
bols denoting integration imply integrals of the appropriate 
multiplicity between the limits of - w and W .  For simpli- 
city, the coefficients U '"' and V'") are regarded as real and 
w (k )  is assumed to be an even function of the wave vector k, 
i.e., it is assumed that w(k) = w( - k) .  

It is convenient to assume that the coefficients U '"' and 
V'") satisfy the "conditions of natural symmetry," which 
specify that the integrals in Eqs. (4)  and (5 ) are unaffected 
by relabeling of the dummy integration variables. For exam- 
ple, the coefficient U/,,':,, is symmetric under the transposi- 
tion of the arguments 1 and 2, whereas UA?;,, is symmetric 
under all the transpositions of 0, 1, 2; similarly V;,',),, is 
symmetric under the transpositions of 1, 2, 3, whereas 
VA:1,f,'2,3 has the same property under the transpositions of 0, 
1, 2, and 3, and Vhf,',,, remains symmetric under transposi- 
tions of the arguments within the groups (0, 1 ) and (2, 3 ) .  
Moreover, the coefficients should satisfy the symmetry con- 
ditions which represent the real nature of the Hamiltonian. 
In the case of the Hamiltonian described by Eqs. (2)-(5) 
there is one such condition: the coefficient Vhf),2,3 should be 
symmetric under transpositions of the argument pairs (0, 1 ) 
and (2, 3). We note that coefficients calculated from the 
evolution equations of a medium do not usually satisfy the 
natural symmetry conditions and should be made symmetric 
by replacing them with a sum of unsymmetrize/d coefficients 
of all the transpositions of the relevant groups of arguments, 
divided by the number of such transpositions. In contrast to 
the unsymmetrized coefficients, those which are symme- 
trized are unique. The symmetry, which indicates that the 
Hamiltonian is real, should be obtained automatically if the 
equations describing a medium are written in the Hamilto- 
nian form. 

For example, the coefficient V;f),2,3 should satisfy the 
following symmetry conditions: 

An expansion of the Hamiltonian (2)-(5) should con- 
A compact notation is used above in which the arguments kj tain the minimum number of terms needed to investigate the 
of the coefficients of the expansions U '"' and V'"', of the "important" features of the evolution and instabilities of 
dispersion law of linear waves w, of the normal variable a, weakly nonlinear waves characterized by a nondecay disper- 
and of the delta function S are replaced with the indices j, sion law. The Hamiltonian of Eqs. (2)-(5) corresponds to 
where the index zero refers to k. For example, UA,'),, the following equation of motion: 
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In a study of the stability of waves, in the derivation of 
the kinetic (transport) equation for a random field of waves, 
and in some other tasks it is usual to replace Eq. (7)  with an 
equation of the type 

for a new auxiliary function b, = b(kj,t) with the coefficient - 
V'2' (which represents the kernel of an integral equation) 
related in a certain manner to U'"' and V'"'.  Instead of Eq. 
(8)' use is frequently made of an equation 

which is derived from Eq. (8)  by the substitution of vari- 
ables b(k, t )  = B(k, t)exp [ - iw(k) t ]  . These equations 
(which will be called reduced) describe slow evolution, due 
to weak nonlinear interactions, of the wave field with a non- 
decay dispersion law. 

Equation (9)  was first derived by Zakharov4s5 from an 
heuristic equation of the ( 7 )  type (with V"' = V'4' = 0) 
by heuristic reasoning (similar to the Van der Pol method), 
formalized later somewhat to an equivalent method of two- 
scale expansions in time.6.7 In both methods it is assumed 
that a slow evolution of B(k, t)  is due to the interaction only 
of quartets of waves, which satisfy approximately 

(we note that these "resonance conditions" may be obeyed 
for any dispersion law). These methods yield a reduced 
equation whose kernel does not satisfy all the symmetry con- 
ditions of type (6)  [this equation is symmetric only under 
transpositions of the arguments (2)  and (3  ) ] and, therefore, 
we can readily show that it does not conserve energy, i.e., it is 
not a Hamiltonian equation. In particular, in the problem of 
gravitational waves on the surface of an ideal liquid, this 
aspect is still causing c o n f ~ s i o n ~ - ~  because of the Hamilto- 
nian nature of the original theory, although such reduced 
equations remain quite popular. It has also been suggested 
(and "supported" by numerical calculations) that this ener- 
gy nonconservation is related to inclusion of just the cubic 
nonlinearity in an equation of the (9)  type, whereas inclu- 
sion of quartic and higher nonlinear orders apparently re- 
sults in energy conservation with increasing preci~ion.~ 

However, in fact this energy nonconservation is unre- 
lated to inclusion of just the cubic nonlinearity in the re- 

duced equation (9 ) ,  but is due to a defect of the methods of 
the Van der Pol type. This defect can be removed by the 
classical method of canonical transformations, generalized 
to the case of a continuum, in which the replacement of the 
variable a ( k )  with b(k)  is a canonical transformation.' The 
transformation from a ( k )  to b(k)  is canonical if the equa- 
tion of motion for b (k)  retains the form of Eq. ( l ) : 

db(k)  -=- 
6 8  

i- a t 6 b- ( k )  ' 

whereg = k ( b ,  b *) is the Hamiltonian H = H(a,  a*) when 
the transformation a = a(b, b *) is substituted in it. The 
transformation a = a(b, b *) should be in the form of a finite 
number of terms in an integer-degree series of the type 

where 

I( , )  (k) =IOLz)= j ~ ~ ~ ~ ~ ~ b , b ~ 6 ~ - ~ - ~  dk,, + j ~ ~ ~ ! , , b , * b ~ 6 ~ + , - .  dk,, 

and so on. We shall assume the coefficients A '"' and B'"' to 
be real and satisfying the necessary natural symmetry condi- 
tions. The transformation is canonical if certain conditions 
are satisfied and these establish specific relationships be- 
tween the coefficients A '"' and B '"' discussed in the next 
section. 

The ~ami l t on i ank i s  obtained by substituting Eq. ( 13) 
in Eqs. (2)-(5): 

where kn ( n  = 3 or 4 is the order of linearity in terms of b) 
are described by expressions similar to Eqs. (4)  and (5)  in 
which Hn is replaced by K, a, by b,, and U '"' and V'"' by 
new coefficients e'") and 7'"' obtained as a result of the 
above-mentioned substitution. In the case of a nondecay dis- 
persion law the coefficients A '"' and B '"' can be selected so 
that the Hamiltonian H i s  of the form 

This reduced Hamiltonian corresponds to the equation of 
motion - (8) .  It follows from Eq. ( 17) that the coefficient 
V'2' should satisfy the symmetry conditions of the type giv- 
en by Eq. (6) .  The Hamiltonian ( 17) is an obvious integral 
of motion, i.e., the reduced equation (8)  conserves energy. 

This method of deriving the reduced equation, which is 
natural within the Hamiltonian formalism framework, ap- 
parently - has not been developed in detail. The expression for 
V'2' derived both by Zakharov,' who first proposed such a 
scheme, and by authors of subsequent reviews and mono- 
g r a p h ~ , ~ , ~  satisfies the symmetry conditions of the (6)  type 
only on a resonant surface described by Eqs. ( 10) and ( 11) 
(which again results in energy nonconservation), whereas 
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two of the advantages of the canonical transformation meth- 
od are generalization of the symmetry conditions of the (6)  
type throughout the space of the vectors k, k, , k,, k, and 
also that the "resonance frequency difference" 
Aw = w, + w, - o, - o, can be arbitrary and need not be 
small (it will be recalled that, for example, modulation insta- 
bilities appear when Aw +O). It therefore follows that in the 
cited sources the expression for r'2' was not derived by a 
canonical transformation, but was simply based on methods 
of the Van der Pol type on the assumption that the results 
should be the same on a resonance surface (which is, in fact, 
correct). However, the appropriate canonical transforma- 
tion method differs from that described in the cited sources 
in at least two respects. Firstly, a correct reduced Hamilto- 
nian of Eq. ( 17) is obtained if the canonical transformation 
h in the form of Eqs. (13)-(15), i.e., if it is accurate up to 
cubic terms in b and not up to quadratic terms, as stated in 
the cited sources. Secondly, the contribution to k4 (and, 
consequently, to t'2') appears not only due to H, and H4 
(which has been assumed implicitly earlier), but also due to 
H, . Only if we allow for these two differences can we obtain 
the general expression for p'2' satisfying all the necessary 
symmetry conditions and transforming on the resonance 
surface described by Eqs. ( 10) and ( 1 1 ) to an expression 
deduced by methods of the Van der Pol type. We shall review 
the Hamiltonian reduction procedure in this spirit below. 

2. CONDITIONS FOR CANONICAL TRANSFORMATIONS 

Different forms of conditions for canonical transforma- 
tions are known in classical mechanics. They are readily gen- 
eralized to the continuum case. The best known of them (but 
perhaps not the most economic in the volume of calculations 
needed for transformations in the form of an integer-degree 
series) are based on the Poisson brackets: 

In order to ensure that the transformation ( 13) is ca- 
nonical up to cubic terms in b, the conditions ( 18) and (19) 
should be satisfied up to quadratic terms in b. The variation- 
al derivatives in Eqs. ( 18) and ( 19) are then quadratic in b. 
In calculation of the Poisson brackets it is sufficient to find 
Sa(k)/Sb(q) and Sa(k)/Sb *(q); the other variational de- 
rivatives are obtained by complex conjugation and by replac- 
ing k with k'. For example, in the case under consideration 
the conditions (18) and (19) assume the following struc- 
ture: 

P(O)+P(l)+P(2)=O, Q(V+.Q(i)+Q(2)=6(k-k'), 

where the upper indices of P '" and Q '" denote the degree in 
b. Hence, it follows that the following relationships should 
be obeyed: 

p(o)=p(1)=p(Z)=Q(i)=Q(Z)=O, ~(o),g (k-kr). 

The equalities P ' O '  = 0 and Q 'O) = S(k - k') are satisfied 
identically. The equalities P" '=P(*'=O and 
Q ' I '  = Q (2' = 0 specify the conditions which should be sat- 
isfied by the coefficients A '"' and B '"' of the transformation 
defined by Eqs. (13)-( 15) in order that this transformation 

should be canonical. We can also call them the canonicity 
conditions. 

The equality P '" = 0 yields two conditions: 

(2)- (2 )  (3)- (3' A0,t.z-Al,o,z, Ao,t,z-Ai,a.z. (20) 

It follows from the second condition in Eq. (20) and from 
the natural symmetry of the coefficient A that this coeffi- 
cient should be symmetric under transpositions of all three 
arguments 0, 1,2. The equality Q '" = 0 yields two identical 
conditions, which are 

( 2 ) - - 2 ~  ('1 Ao,l,z- 2,i.o. (21) 

The conditions (20) and (2 1 ) represent a complete set of the 
conditions of canonicity of the transformation 
a ( k )  = b(k)  + I ',' (k) .  It should be noted that the first of 
the two conditions in Eq. (20) follows from Eq. (2 1 ) as a 
result of the natural symmetry ofA A,'/,, in respect of 1 and 2. 
Therefore, out of the three conditions specified by Eqs. (20) 
and (21) only two are independent, namely the second one 
in Eq. (20) and that given by Eq. (21 ). 

We shall now consider the equality P ',' = 0. It repre- 
sents a sum of three integrals which contain factors b, b,, 
b Tb, , b rb : in the integrands. The kernels of the integrals 
with the factors b, b, and b yb : should be symmetrized with 
respect to 1 and 2, and then the kernels of all three integrals 
should be equated to zero. This yields three canonicity con- 
ditions. Similarly, the equality Q '*' = 0 yields three more 
conditions, two of which are however identical. We thus ob- 
tain a total of five canonicity conditions: 

( 2 )  ( 2 )  ( 2 )  
Ba,i,~,~-Bi,o,2,3=Go,i,z,sI (22) 

0)  ( 8 )  (3) 
Bo,i,a,3-B1,0,z,3=Go,i,z,3r (23) 

( 4 )  (4) 
3~o,i,z,3-3~i,o.a,3=~o,'~~,3, (24) 

(3) (1) ~~,~,z,3+3~3,z,l,~=~o,~~!3, (25) 
(2'  ( 2 )  (22) B~,~.~,J+BJ,Z,I,O=GO,~,~,J~ (26) 

where 
(1) A (1)- 

~ o , : , ~ ! , = 2 [ ~ i , Y , : - , ~ 3 , ( ~ , L + ~ 1 , 3 , i - 3  2,o.z a 

(1) (1) '1) (1) -AO.Z,O-~AS.L,J-I-AO,~.~-~A~,~,~-~~, (27) 
(1) ( 3 )  (1) - 

~0,1(,J2~3=2[~O,3,o-3At,z,-i-~+Ao+2,o,,z 3 . i . ~  i 

(1) ( 8 )  (1) A($) - ] 
-Ai,3,1-3Ao,2,-o-2-Ai+z2~,~ S,O,S o r (28) 

( 4 )  (1) (3) (1' A (3)- - G~,~,~,~=~[A~+z,~,zAo,s,-o-s+A~+~,I,J 0,2, o a 

(1 )  (3)  (1) A (3)- ] 
-Ao+z,o,zAi,~,-1-s-Ao+3,0,3 1 9 ,  1-2 t (29) 

( S t )  (1) ( i )  ' I )  (1) 
Go,i,2,3=2[A~,i,~-iAa+z,o,~-A~3-zAo+~,o,i 

(1) (3) (1) (3) 
-Ai,s,i-3Aa.z.-0-2-Az.3.z-3Ao.i.-0-11, (30) 

(22)-  (3) (3) (1) (i) 
Go,~,z,~-2[Ao.i.-o-iAz2sS-z-s+Az20,z-oA~,~,~-3 

(1) (0 (1) (1) -Ao.z,o-z~J,I.J-I-~o+I,~,~~~+s,~,sI~ (31) 

Here, the conditions of Eqs. (22)-(24) are obtained from 
the equality P',' = 0, whereas the conditions of Eqs. (25) 
and (26) are obtained from Q = 0. 

A direct check shows that the functions G have the fol- 
lowing properties: 
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Among the five canonicity conditions given by Eqs. 
(22)-(26) only three are independent and they are given by 
Eqs. (24)-(26). 

Let us turn back to Eq. (26) and transpose the argu- 
ments 0 and 1, and then subtract the resultant equality from 
the original one given by Eq. (26). Then, using the natural 
symmetry condition B = B :;ivQ, and Eq. (32), we ob- 
tain Eq. (22). Therefore, the condition (22) follows from 
Eq. (26) and we can thus exclude Eq. (22) from the group of 
independent conditions among the five given by Eqs. (22)- 
(26). We can similarly show that the condition (23) follows 
from Eq. (25). It should be noted however that in practical 
applications it may be useful to employ all five conditions 
(22)-(26). 

It therefore follows that the coefficients A '"' in front of 
the quadratic (in respect of 6)  terms of the canonical trans- 
formation are subject to two independent canonicity condi- 
tions, whereas the coefficients B '"' in front of the cubic 
terms are subject to three independent conditions. Obvious- 
ly, we can show that the canonical transformation coeffi- 
cients in front of terms of the nth degree in b should obey n 
independent canonicity conditions. 

3. REDUCED HAMlLTONlAN AND CANONICAL 
TRANSFORMATION 

The reduced Hamiltonian of Eq. ( 17) can be derived by 
finding first the representation of the Hamiltonian g i n  the 
form of an expansion, given by Eq. (16), in powers of the 
variable b. Substitution of Eqs. ( 13)-( 15) into Eqs. (2)-(5) 
gives expansions of the type 

where Lm' is the contribution to & of the order of m in 6, 
which follows from the term Hn of the order of n terms of a. 
If we make the substitution mentioned above and use at this 
stage only the canonicity conditions (20) and (21), we 
find-after appropriate symmetrization of the kernels of the 
integrals in H, and &--the following expressions for the 
coefficients E'")  and v'"': 

where 
(1) (1)  A (i '  - 

R o . i , ~ , 3 = - ~ / 3 [ ~ 1 + 3 A 1 + 3 , < , 3  0,2,0 2 

1 i - + ( 1  '1) 
+ O ~ + ~ A , + ~ , ~ , Z  0,3,0 3 2+3 2+3,2.SAt'.1.o-1 

+ o z + 3 ~ ! , 3 ~ i - o ~ 2 ' , ~ ! - 2 - 3  

(1) (3)  
+ O ~ + ~ A ~ ~ ~ ) , ~ - ~ A ~ , ~ ~ - ~ - ~ + O ~ + ~ A ~ , O , ~ - O A ~ , ~ . - ~ - ~ ] ,  (42) 

Here, R ("', S '"), and T '"' with n = 1 and 2 are the kernels 
of@ i4', whereas for n = 3 they are the kernels of H :4'; V "', 
V ' 2 ' ,  and V '4) are the kernels of of Eq. (5).  

We can go over from the complete Hamiltonian to its 
reduced form by excluding from k the cubic terms and the 
nonresonant terms of the fourth degree in 6. The cubic terms 
can be excluded by assuming that G"' = U"' = 0. Then, 
Eqs. (37) and (38) yield directly the expressions for the 
coefficients in the quadratic part of the canonical transfor- 
mation, which exclude the cubic terms of the Hamiltonian: 

The coefficient A Af:,, is found from Eq. (21 ). 
The nonresonant fourth-degree terms correspond to the 

coefficients F'" and F'4'. Vanishing of these coefficients 
makes it possible to find B "', B "', and B '4'. However, the 
calculations are not as simple as in the case of exclusion of 
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the cubic part of the Hamiltonian and we have to consider 
them in greater detail. 

Assuming in Eqs. (39) and (41 ) that v ( "  = v ( 4 )  = 0, 
and using Eqs. (43) and (491, we can rewrite the resultant 
equations in the form 

where for brevity we introduced the notation 
D ( 1 )  = R ( 1 )  + R ( 3 )  + ~ ( 1 )  D ( 4 )  = ~ ( 1 )  + ~ ( 3 )  + ~ ( 4 ) .  

We shall now turn back to Eq. (52). The definition of B ' ' I  is 
based on the canonicity condition (25), from which we can 
find the coefficients B (3' for all the combinations of the ar- 
guments occurring in Eq. (52). The result is an equation for 
B &l12,, , whose solution gives 

We can now find B ',' from Eq. (25) : 

where after algebraic transformations we can use Eqs. (33) 
and (35). We can find B '4' from Eq. (53) using the condi- 
tion (24) and then deriving the coefficients B '4' for all the 
combinations of the arguments occurring in Eq. (53). Al- 
lowing for the natural symmetry of B ' 4 ' ,  we find that all 
these coefficients can be expressed in terms of B A:,',, . We 
then obtain 

A direct check shows that the coefficients B ( I ) ,  B ' 3 ) ,  

and B '4' satisfy all the necessary properties of the natural 
symmetry. It should be noted that the canonicity condition 
of Eq. (23) is not used to find the coefficient B ')', but it is 
naturally satisfied when the expression (55) found above is 
used. This can be demonstrated by a direct check. In fact, it 
is a consequence of the fact that the condition (23) follows 
from the condition (25). 

Using the above explicit expressions for the functions 
G ' 3 1 ' ,  G and G '4' as well as for the functions R "', R "', 
T ' I ) ,  T"' occurring in D "' and D '4 ' ,  as well as the expres- 
sions in Eq. (5 1 ), we can simplify greatly the expressions for 
B ' I ) ,  B ' 3 ' ,  B ( 4 )  in Eqs. (54)-(56): 

We shall now find the kernel of the reduced Hamilto- 
nian v'2' and the canonical transformation coefficient B '2 ' .  

Using Eq. (46), we shall rewrite Eq. (40) in the form 

We shall find B from Eq. (22) and B and B ~ ~ ~ o , l  

from Eq. (26). Using these expressions, we can modify Eq. 
(60) to 

where 

~ ~ , ~ , ~ , s = ~ ~ ~ ~ , ~ 2 , s + ~ o ~ ~ , ~ 2 , 3 + ~ , ' , ~ ~ 2 , ~ - ~ i ~ ~ , ~ ~ ~ , ~ + ~ 2 ~ ~ f ~ , ~ , 2 + ~ s ~ ~ ~ ~ , ~ , 3 .  

(62) 

Calculations similar to those leading to Eqs. (57)-(59) 
yield a fairly simple expression: 

We can determine the explicit form of v(2) and of the 
canonical transformation itself if we now find the coefficient 
B ' 2 ' .  It should satisfy the canonicity conditions (22) and 
(26) (where the first follows from the second, as demon- 
strated above). However, these conditions are insufficient 
for an unambiguous determination of B ' 2 ' .  This is due to the 
fact that the canonical transformation admits a certain free- 
dom (in the case of the coefficients B '" ,  B ' 3 ' ,  and B ( 4 )  this 
freedom is limited by the condition of exclusion of the nonre- 
sonant terms from g4 ). We can easily show that the coeffi- 
cient B ' 2 )  should be represented in the form 

where A is an arbitrary function satisfying the conditions 

and 
(22) (2) ' 2 )  

1lo,t,z,3=~/zGo,i,2,~+'/4[Go,t,z,s-Gs,z,i,a] 

( a )  ( 3 )  ( 1 )  ( 1 )  
=Ao,1,-O-iAZ,3,-2-s+At,z2i-zA3,oO~-o 

(1) ( 1 )  (11 ( 1 )  ( 1 )  ( 1 )  ( 1 )  ( 1 )  + A~,j,i-aAz,o,2-0-Ao+i,o,tA~+a12,~-Ao,~,o-zA~,i,~-t-Ao,~,o-~Az,t,z-i. 
(66) 

The function A has the following properties: 

The function A can be selected in a form which is con- 
venient [variation of B "' alters simultaneously both t"' 
and b ( k)  , but leaves unchanged a (k)  in the canonical trans- 
formation]. In particular, we can substitute A = 0. It then 
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follows from Eq. (61 ) that 

This kernel satisfies all the necessary symmetry conditions. 
It should be noted that our calculations do not impose any 
restrictions on the smallness of the resonance frequency dif- 
ference Aw = wo + w, - w, - a,, and this is one of the dif- 
ferences between our approximation and those proposed 
earlier. 

4. DISCUSSION 

If we assume that the resonance frequency difference 
Aw is small, then instead of Eq. (68), we have the formal 
relationship 

The kernel ZO,,,,, no longer satisfies all the symmetry condi- 
tions of the (6) type: it is symmetric only in respect of trans- 
positions of the arguments 2 and 3, but not symmetric for 0 
and 1 or for transpositions of the pairs (0, 1 ) and (2, 3) [in 
Eq. (68) a symmetry of the type described by Eq. (6) is 
exhibited by the whole sum on the right-hand side, but not by 
each of the separate terms]. 

Some comments should be made on the kernel 2. It was 
first obtained by Zakharov4p5 without recourse to the Hamil- 
tonian formalism or the technique of canonical transforma- 
tions, but Zakharov's papers contained a number of inaccu- 
racies. These inaccuracies were corrected by Crawford et 
~ l . , ~  and the kernel obtained by these authors (after removal 
of two obvious misprints) was fully identical with our kernel 
of Eq. (63). In the original English-language edition of the 
book of Yuen and Lake7 there are also inaccuracies, which 
are only partly removed in the Russian edition. 

When the resonance conditions of Eqs. ( 10) and ( 1 1 ) 
are satisfied exactly (i.e., on the resonance surface itself), 
the kernel of Eq. (63) transforms to 

This expression is now explicitly symmetric in respect of 0, 1 
and 2,3 and implicitly [i.e., when we allow for Eqs. ( 10) and 
( 1 1 ) ] symmetric under transpositions of the pairs ( 0 , l )  and 
(2, 3). This was the form used by them in Refs. 1-3, where 
however it was incorrectly stated that it is derived by a ca- 
nonical transformation which includes only the quadratic 
terms. Therefore, on the resonance surface itself where Eqs. 
( 10) and ( 11 ) apply, the kernel Z has the symmetry de- 
scribed by Eq. (6),  but such a kernel is generally incompati- 
ble with the reduced equation (9),  when it is used, because 
the exponential function of the latter contain Aw $0. 

In addition to the Hamiltonian (energy) B, the reduced 
equations (8)-(9) with the kernel given by Eq. (68) contain 
two additional integrals of motion of the type 

In fact, it follows from Eq. (8)  that M evolves in accordance 
with the equation 

from which it follows that M is conserved if f (k)  = 1 and 
f(k)  = k. 

We can derive Eq. (72) using all the symmetry proper- 
ties of the type given by Eq. (6).  If we replace t',' in Eq. (8)  
with Z given by Eq. (63), then an equation of the (72) type 
can no longer be obtained and the above laws of conservation 
are not satisfied. However, if we confine ourselves to the 
interactions ofjust four waves, satisfying the resonance con- 
ditions of Eqs. (10) and (1 1) sufficiently accurately [so 
that, for example, the kernel of Eq. (70) is well approximat- 
ed by Eq. (68) 1, then the laws of conservation should be 
satisfied approximately. In this case there should be one 
further approximate law of conservation characterized by 
f(k)  = w (k ) ,  which can be deduced from Eq. (72). How- 
ever, it is not clear a priori to what extent are the laws of 
conservation satisfied. This can be estimated by numerical 
solution of the reduced equations using the exact kernel of 
(68) and the approximate expressions (70) or (63). It 
should be pointed out that numerical solution of the reduced 
equations with the exact kernel is no more complex than 
when the approximate expressions are used; therefore, there 
is no advantage in using the approximate kernels. 

Finally, we shall consider one statistical aspect asso- 
ciated with the canonical transformation (13). The spec- 
trum N(k) of a physically real random wave field is given by 
(a(k)a* (k ' ) )  = N(k)S(k - kt ) .  Its evolution under the in- 
fluence of nonlinear resonant four-wave interactions is de- 
scribed by a kinetic equation which is usually derived from 
the reduced equation (8)  for the "spectrum" n (k) ,  defined 
by a similar expression (b(k)b*(kr ) )  = n(k)S(k - k') 
(see, for example, Ref. 1 ). The spectrum n (k )  includes also 
all the consequences of the kinetic equation. In particular, 
the concepts of what are known as the Kolmogorov power- 
law spectra of weak turbulencelo apply to n (k) .  Usually the 
difference between the spectra N(k)  and n(k)  is either ig- 
nored and these spectra are simply identified, or else is not 
mentioned. In practical applications we need specifically the 
physical spectrum N(k), so that we have to consider its rela- 
tionship to n (k )  . 

We can find this relationship using the canonical trans- 
formation (13) and a statistical hypothesis similar to that 
employed in the derivation of the kinetic equation. Using Eq. 
( 13), we have to calculate the correlation function 
(a (k)a* (k t )  ), and to apply the Gaussian hypothesis 
(equivalent to the random phase approximation) to the cor- 
relation functions of higher orders in b, which appear on the 
right-hand side of the equation; according to this hypothesis 
all the odd moments vanish, whereas the Pven moments can 
be expressed in terms of the second moments (among the 
even moments the only nonzero moments are those which 
contain the same numbers of the factors b and b *). This 
calculation procedure yields 
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where the dots at the end of the equation represent terms 
which are cubic in n (not written down here) and which 
originate from terms cubic in b in the canonical transforma- 
tion. 

In practical applications Eq. (73) calls for numerical 
calculations. However, two simple conclusions can be drawn 
even using its general structure. Firstly, the power-law spec- 
tra n (k)  (for example, the Kolmogorov spectra) when 
transformed to the physical spectra N(k) ,  are no longer of 
the power-law type, at least because of the complex depend- 
ence of A '"' on k. Secondly, in the case of the spectra n(k)  
which are narrow in the k space and concentrated, for exam- 
ple, in the vicinity of the wave vector k,, the spectra exhibit 
additional "secondary" peaks at k + 2k0 and k + 3k0 [the 
latter are due to the terms cubic in n which are not included 
in Eq. (73) 1 .  This is easily seen in the limiting case of a 
monochromatic wave, when n ( k )  = cS ( k  - ko ), c = const, 
and Eq. (73) yields 

N (k) =cij (k-k,) +2c2 {[A"' (2k,, k,, k,) ] '6 (k-2ko) 
3- [ A ( 3 )  (-2ko, k,, k,) ] '6(k+2k0)) + . . . . 

Such secondary peaks are frequently observed in the experi- 
mental spectra of the wind waves induced in the ocean (in 
this case ko is the wave vector of the main maximum in the 
spectrum). 
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