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We show that stationary one-dimensional supersonic magnetized plasma flow with heavy ion 
loading is possible only for Mach numbers larger than 2. Under such conditions mass loading 
leads to a smoothing of the flow perturbations with time whereas for Mach numbers less than 2 
the loading of the flow facilitates the steepening of the plasma flow perturbations and the 
formation of a standing shock wave in that flow. In the case of plasma flow motions which are 
exactly at right angles to the magnetic field the dispersion caused by the heavy ions cannot stop 
the steepening of the plasma flow and this indicates the unavoidable inclusion of smaller scales at 
the front of the shock wave, i.e., the appearance of a proton compression discontinuity. 

1. INTRODUCTION 

The interaction of a magnetized plasma flow with a neu- 
tral gas manifests itself first of all in the form of the effect of 
the loading of that flow with ions which are formed in the 
flow thanks to the ionization of the atoms of the neutral gas 
both by the external ionizing radiation and by the magne- 
tized plasma flow itself. The best known example of this kind 
is the interaction of the solar wind (a magnetized plasma 
flow from the solar corona into interplanetary space) with 
comets. The new ions in the flow of the solar wind are formed 
here mainly by the photoionization of the atoms in the come- 
tary gas evaporated from the nucleus of the comet by the 
ultraviolet solar radiation.' The ionization of a neutral gas 
by a magnetized plasma flow at flow velocities above the 
critical V,, = (2eq,/m) ' I2 (q, and m are the ionization po- 
tential and the mass of the atoms in the neutral gas) was 
predicted by H. AlfvCn and became well known as the criti- 
cal ionization velocity phenomenon (see the review in Ref. 
2) .  

Although the consideration of the dynamics of the flow 
of a plasma loaded by new ions is given in the present paper 
in a very general form, it is first and foremost aimed at eluci- 
dating the mechanism for forming a shock wave near a com- 
et. The fact is that the outgoing shock waves in the super- 
sonic solar wind that flows around the planetary 
magnetospheres and ionospheres are formed in exactly the 
same way as those in front of blunt bodies in a supersonic gas 
flow. The position of the front of these shock waves can easi- 
ly be calculated using the ordinary hydrodynamic equations 
for a given shape of the body or of the planetary magneto- 
spheres and ionospheres. 

A feature of the interaction of the solar wind with com- 
ets is that the gravitational field of the fragmentary cometary 
nucleus (altogether about a few tens of kilometers from edge 
to edge) is unable to retain the gaseous atmosphere formed 
when the matter evaporates from the surface of the nucleus 
under the action of the solar radiation. As a result atmo- 
spheric atoms and molecules fly away from the nucleus with 
a velocity of about 1 km/s before they are ionized by the 
ultraviolet solar radiation and penetrate millions of kilo- 
meters into the interplanetary space. An ion formed in the 
solar wind flow is immediately captured by this flow, in- 
creases in mass and decelerates. Biermann et al.' were the 
first to note that the interaction of the solar wind with a 

comet starts already at distances of a few million kilometers 
from its nucleus. Moreover, Biermann et al.' reached the 
conclusion that such a loading of the solar wind by cometary 
ions is the cause of the formation of shock waves far in front 
of the comet, where the effect of fragmentary nucleus of the 
comet or its ionosphere can be completely ignored. 

This conclusion was reached in the framework of a sim- 
ple stationary one-dimensional hydrodynamic kind of mod- 
el. The analysis showed that the deceleration of the super- 
sonic solar wind flow proceeds until the local Mach number 
M is decreased to 1, which corresponds to an increase of the 
mass flux to a well defined critical value. A further loading of 
the solar wind would lead to acceleration of the flow. As a 
solution for this paradox Biermann et al.' assumed that a 
frontal shock wave is formed prior to Mach numbers M > 1. 
A numerical simulation confirms this and 
gives a value of the local Mach number for which a shock 
wave is formed. For comets with a large gas production the 
local Mach number of the shock wave, found by numerical 
calculations, is independent of the parameters of the solar 
wind and of the cometary atmosphere and is equal to M = 2. 
The observations by space instruments can, unfortunately, 
not give sufficiently exact information about the Mach num- 
ber of the cometary shock wave; at least M = 2 does not 
contradict the observations. 

From this point of view the understanding of the phys- 
ical mechanism of the cometary shock wave is particularly 
important. The first part of this paper is devoted to this prob- 
lem. It was recently shown6 that the linear analysis of the 
stability of the stationary solution of Ref. 1 reveals oscilla- 
tion instability of magnetosonic type in the region of solu- 
tions with a local Mach number less than 2. Here we show, 
by means of an analysis of motions using characteristics, that 
this instability is the consequence of the development of a 
more dramatic effect than the simple instability of plasma 
oscillations, namely, a gradient catastrophe. It is just by 
means of the gradient catastrophe that a shock wave is 
formed in the flow of a loaded plasma; its fine structure is 
considered in the second part of the paper. 

2. GRADIENT CATASTROPHE IN A LOADED MAGNETIZED- 
PLASMA FLOW 

The Mach number and the position of the cometary 
shock wave are, clearly, determined by the physical nature of 
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the shock wave. Whereas in the case of a supersonic flow 
interacting with a solid obstacle the shock wave is complete- 
ly determined by the boundary conditions of the problem- 
the conditions in the unperturbed solar wind and the condi- 
tions on the obstacle, in the case with a comet the obstacle is 
"fragmentary" and therefore the boundary condition on the 
obstacle loses its meaning. Strictly speaking, one can change 
the distribution of the neutral matter arbitrarily in the region 
where the plasma flow becomes subsonic and, if in that case 
the distribution of neutral matter in the supersonic region 
remains unchanged, this can in no way affect the conditions 
in the supersonic region, and hence the shock wave. The 
cometary nucleus can affect the supersonic region of the so- 
lar wind flow and the shock wave only mediated through 
changes of the parameters of the neutral cometary atmo- 
sphere. One may thus assume that in the case of a comet the 
information about the shock wave parameters does not come 
from the "solid obstacle" as in the case of a piston but is 
produced in the solar wind flow itself in the loading process. 
We take this statement as a working hypothesis in the 
further analysis of the loading of the plasma flow. 

From the mathematical point of view the present prob- 
lem is reduced to the determination of the transition layer in 
the solution of a differential equation with a small coefficient 
of the leading derivative (the dispersion term in the wave 
equation in the case of a collisionless shock wave or the dissi- 
pative term in the Burgers equation). In the stationary var- 
iant the solution of the problem with a piston is equivalent to 
the solution of the boundary problem with boundary condi- 
tions determined from physical considerations as in the 
above mentioned example of a circumplanetary shock wave. 
These boundary conditions ultimately determine all the pa- 
rameters of the shock wave. 

From this point of view the nature of the cometary 
shock wave is not so clear. It is impossible to formulate the 
problem in terms of a boundary-value problem; essentially 
the second boundary itself is absent because the obstacle is 
friable and extended in space. However, there remains the 
possibility of formulating it in terms of the initial problem 
that mathematically corresponds to our working hypothesis 
that the cometary shock wave is completely determined by 
the prehistory itself of the loading of the solar wind flow. 

Strictly speaking, Biermann et al.' were the first to 
solve the initial problem for the loaded solar wind in the 
vicinity of the comet; they found a stationary-one-dimen- 
sional solution for the magnetohydrodynamic solar wind 
with homogeneous conditions far from the comet. This re- 
sult was widely used in what follows, with small modifica- 
tions, for an analytical study of the interaction of the comet 
with the solar wind.'.' The modifications usually reduce to 
taking into account the isotropization of the distribution of 
the new ions of cometary provenance in the case when these 
ions have a finite velocity component along the magnetic 
field; this leads to the excitation of strong Alfvtn turbulence. 
The adiabatic index of the plasma then changes from y = 2 
in the case when there is no isotropization (the new come- 
tary ions have a distribution in the shape of a ring in velocity 
space) to y = 4 in the case of total isotropization. In the 
y = 2 case this result was studied with regard to stability in 
Ref. 6 in which it was shown that in the linear approximation 
the local dispersion equation gives a positive local growth 
rate for magnetosonic oscillations in the flow region where 

the local Mach number is less than 2. 
For a further analysis of a loaded plasma flow we con- 

sider a nonstationary one-dimensional magnetohydrodyna- 
mic system describing such a flow:' 

herep is the mass density, u the mass velocity, P the thermal 
plasma pressure, B the magnetic field of the solar wind, m 
the mass of a cometary ion loading the flow, and v the rate at 
which they are formed. This system is exactly the same as 
that used by Biermann et al.,' except that we are taking the 
temporal dependence into consideration, and it has thus the 
stationary solutions found in that paper. 

In the y = 2 case we can disregard the equation for the 
freezing-in of the magnetic field in the plasma (the second 
equation of this system). Indeed, if we multiply that equa- 
tion by B / ~ T  and equate the result to the equation of the 
plasma pressure (the last equation) it becomes clear that the 
magnetic field can be eliminated from the system if we use 
instead of the thermal pressure the total pressure, taking into 
account the magnetic field pressure: P + B 2 / 8 ~ -  P. Taking 
this remark into account we shall thus consider the contract- 
ed system: 

1 vmu 
plSup.+pu.=vm, ul+ uu,+ - P, = - -, 

0 0 

in which we understand by P the total plasma pressure. 
We rewrite the system (2)  in characteristic form. To do 

this we multiply the equation of motion (the second) by 
+ (2P/p) and add the result to the pressure equation 
(the third one). As a result we get two equations describing 
the propagation of perturbations along the sound character- 
istics C ,  : 

we have here introduced the noiation c = (2P/p) '/* for the 
sound speed and the operators D + = d/dt + (c f u )d /dx 
for differentiation along the sound characteristics C+ . 

Carrying out a similar procedure for the equation of 
continuity (the first one), using the factor 2P/p, we get an 
equation for the propagation of entropy perturbations along 
the contact (or zntropy) characteristic C, with the appro- 
priate operator Do = d /dt + ud /dx. 

It is clear from the set (2)  that it is convenient, for the 
analysis of the features of a loaded plasma flow, to intro- 
duce9 the following combinations of the spatial derivatives 
of the flow parameters: 

1 1 1 
R = u , ~  C, f- - Cp,, L=u,-c, - - cp,, M=c, - - cp,. 

2~ 2p 2p (4) 
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Let us get the transport equations for these qu2ntities. To do 
this we apply the differentiation operator D, = d/dx to 
each of the equations of the set (3) ,  using the commutation 
rules 

that follow directly from the definitions of these operators. 
One easily obtains the required transport equations in the 
following form: 

3 1 1Cf vmu 
D+R + - RZ + - RL + -(R-L) +A=D.[- (U-2C)], 

4 4 4 ~ P C  

where for the sake of simplicity we have introduced the nota- 
tion 

We note moreover that the following useful relations 
for the quantities (4)  follow from the system (3  ): 

If there is no loading ( v  = O), the system (5 )  for isen- 
tropic flow ( c * / ~  = const and M  = 0 )  can be solved analyti- 
 ally.^ We consider, for instance, the first of the equations of 
the system ( 5 )  : 

It is well known that this nonlinear Riccati equation has 
solutions that become infinite on a finite time interval. It can 
be reduced to linear by the substitution R = l/z : 

Using the second of Eqs. ( 6 )  we get 

We note that it is necessary to integrate this equation along 
the characteristic C +  . Denoting all quantities at the time 
t = 0 by an index "O", one can write the solution of (9)  in the 
form 

t 

or, returning to the variable R, we get the following solution: 
t 

A similar expression is valid for the quantity L if one 
carries out the integration in ( 11) along the characteristic 
C -  . Hence it is clear that if R, a 0  at any time t)O we shall 
have R>O, and the plasma flow remains continuous. How- 

ever, if at any point of the flow R, (0, the quantity R will 
remain less than zero along the characteristic C +  at all 
times as long as the denominator in Eq. ( 11 ) does not van- 
ish. At this point of the plasma flow a gradient catastrophe 
occurs. The moment t, at which the gradient catastrophe 
appears is determined by the equation 

1 J A(% ) "kt = - - (Ro<O). 
O(C*) 4 co Po Ro 

For times t>t, a discontinuous motion of the plasma 
flow is impossible and only dispersion effects, neglected in 
the system (2) ,  can in principle stop the wave breaking pro- 
cess. 

Returning to the case of the loading of a plasma flow by 
new ions, we note that there exists a stationary solution of 
the system (2)  (Ref. 1 ) but only the fact of its existence itself 
is now important for us. One can see from Eq. (3a) that for 
the stationary solution of the system (2)  the quantity R 

changes sign in the stationary-flow point of where the local 
Mach number M = 2. In the region of the stationary solu- 
tion where the Mach number M  > 2 the quantity R is positive 
and it follows from the solution (1 1)  that any sufficiently 
small perturbation of the quantity R relative to the station- 
ary value smoothes out with time. On the contrary, in the 
region of a flow with a local Mach number less than 2, where 
the quantity R is negative in the stationary solution, any 
infinitesimally small perturbation inevitably leads to the ap- 
pearance of a gradient catastrophe and, what is more, the 
stationary solution assists the evolution of the catastrophe. 
It was shown in Ref. 6 that the boundary of the instability of 
the region for small sound perturbations w - ku = kc is the 
same in the linear approximation as the Mach number 
M = 2 .  

The evolution of the quantity L, the spatial derivative of 
the second Riemann invariant in gas dynamics, is deter- 
mined by the supersonic nature of the flow motion. The fact 
is that its value for the stationary solution remains less than 
zero for all Mach numbers M  > 1: 

1 I vmu 
(u-C) [ (u-c), - -c(ln 2 p), = (o-C)L = --(u+2c), 

2pc 
(13b) 

and has a singularity in the M = 1 point of the flow. A linear 
analysis shows6 that a sound perturbation w - ku = kc 
turns out to be stable for larger Mach numbers M >  1.74, 
owing to loading effects, but for smaller Mach numbers even 
as infinitesimally small perturbation grows and breaks, and 
this gradient catastrophe takes place necessarily ahead of the 
sound point, since the perturbation propagates along the 
characteristic C - , approaching the sound point u = c after 
an infinitely long time. 

We can thus reach the conclusion that the stationary 
solution found by Biermann et al.' has a nonremovable sin- 
gularity at the point where the local Mach number is 
M  = 1.74, and becomes inapplicable in the region of smaller 
Mach numbers. The flow region with Mach numbers 
1.74 < M <  2 also turns out to be unstable. In principle a 
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shock wave can exist in that region, but the region before its 
front, up to a local Mach number M = 2, is in that case a 
generator of sound waves which are carried away together 
with the flow into the region behind the front and are addi- 
tionally amplified on the front of the shock wave.'' The case 
of a shock wave with an intermediate Mach number 
1.74< M < 2  thus turns out to be a dynamic one and only 
shock waves with Mach numbers M>2 guarantee a com- 
pletely stationary structure of a flow with loading. 

It is well known that the steepening of the front of a flow 
in a collisionless plasma is due to the dispersion of the mag- 
netosonic waves in the plasma and to formation of a shock 
wave front with a characteristic dispersion scale of the order 
of the ion cyclotron rad i~s . ' ' . '~  The analysis given here en- 
ables us therefore to state that in the region where the local 
Mach number of the solar wind drops to M = 2 there must 
be formed the front of a circumcometary shock wave. 

We note, finally, that the analysis given is independent 
of the actual nature of the plasma loading. The ionization 
rate Y can not only vary in space because of the inhomogen- 
eous neutral gas distribution, as in the case of a comet when 
the ionization of the neutral gas is mainly caused by the pho- 
toionization by the solar ultraviolet radiation, but can also 
have an arbitrary dependence on the plasma flow param- 
eters, for instance, on the electron density or temperature in 
the case of ionization by electron impact. Taking these de- 
pendences into account can only affect the existence of sta- 
tionary solutions of the kind found in Ref. 1. However, even 
in the case when there are no stationary solutions, the main 
conclusion about that the flow has a singularity at a point 
with a local Mach number M = 2 remains in force. It will 
remain true as long as the magnetohydrodynamic descrip- 
tion of the plasma flow is justified, i.e., as long as the charac- 
teristic time and space scales of the loading process are small 
as compared to the gyroperiod and the gyroradius of the 
plasma particles, respectively. 

3. STRUCTURE OFTHE FRONT OFTHE CIRCUMCOMETARY 
SHOCK WAVE 

In the general case the structure of the circumcometary 
shock wave is described by the mass, momentum, and energy 
flow conservation equations, taking into account thermal 
conductivity and wave dispersion in the plasma:'0 

, jui d2B 
p+ ju-a, -- = 

B dxZ  Pl+j~l ,  

where the index 1 indicates the plasma parameters before the 
shock wave front, a,  is the dispersion parameter, and K the 
thermal-conductivity coefficient. The dispersion of a mag- 
netosonic wave was in the case considered above of adiabatic 
plasma flow strictly transverse to the magnetic field calcu- 
lated in Ref. 13 by the method of expanding the Vlasov equa- 
tion in the reciprocal of the gyrofrequency of the particles. 
The expansion method used in this paper is practically linear 
in the products of the derivatives of the parameters of the 
flow, whereas with respect to the magnitudes of the plasma 
flow parameters themselves the expansion is applicable also 
in the nonlinear case, i.e., in the case when there are changes 

in the flow parameters over distances longer than the gyrora- 
dius of the plasma particles. In the case of a dominant contri- 
bution of the ions to the pressure the expression for the dis- 
persion parameter has the form13 

- 

Here ll is the ion gyrofrequency and rI the second moment 
of the ion distribution function in the magnetic moment of 
the particles p = u:/2B. We note that for a Maxwell distri- 
bution the ratio A = 211p/mP2 equals 4 whereas for a ring 
distribution with respect to transverse velocities A = 2. In 
the first case for small amplitude waves pu2 =:2P + B 2/4.rr, 
we can obtain in the linear approximationI4 an appropriate 
limiting expression which shows that the dispersion of the 
magnetosonic waves is negative so that the magnetosonic 
solitons are compression solitons. 

The equation for the magnetic-field profile in such a 
soliton can easily be obtained from Eq. ( 15) using instead of 
Eq. ( 16) the conservation of the energy flow in the adiabatic 
approximation and the condition that the magnetic field be 
frozen-in. As a result Eq. ( 15) reduces to the Sagdeev equa- 
tion:" 

where 

The introduction of a small magnetic viscosity into Eq. ( 15) 
turns the soliton solution of Eq. (8)  into a shock wave with 
extended oscillatory drift. ' 

Returning to the circumcometary shock wave we must 
note that under the conditions of a solar-wind adiabatic plas- 
ma flow strictly transverse to the magnetic field the come- 
tary ions which give the main contribution to the plasma 
pressure are distributed in velocity space in a ring of finite 
thickness.' Calculating the second moment I1 of the distri- 
bution function of the cometary ions with respect to the mag- 
netic moment M = 2 in the region immediately in front of 
the shock wave we find that the parameter A = 2.12. The 
dispersion length a,  which is positive in front of the come- 
tary shock wave with Mach number M = 2 can thus become 
zero inside its front. The latter occurs at the point where the 
local Mach number drops to M,, = [see Eq. ( 17) 1 .  It 
is clear that at this point the dispersion caused by the heavy 
cometary ions cannot contain thc steepening of the velocity 
profile of the plasma and there occurs thus a condensation 
discontinuity ("subshock") in the electron-proton plasma 
with a thickness much smaller than the ion dispersion 
length. This conclusion is in agreement with the numerical 
simulation of the formation of the shock wave in the circum- 
cometary region.I5 

4. CONCLUSION 

In the present paper we have considered the dynamics 
of the loading of a supersonic plasma flow by heavy ions 
formed in the flow, in particular, the case of plasma flow 
strictly transverse to the magnetic field when in the adiabatic 
approximation one can obtain a set of quasihydrodynamic 
equations to describe the plasma. As a result we showed that 
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the stationary loading of a supersonic magnetized plasma 
flow is possible only for Mach numbers M>2. In the region 
of local Mach numbers 1 ( M <  1.74 a gradient catastrophe of 
the plasma flow becomes inevitable and a small perturbation 
of the flow shows wave breaking. Although a shock wave can 
have an intermediate Mach number 1.74(M(2, in this case 
it turns out that the region ahead the front up to M = 2 is 
nonstationary and sound waves are generated in it at a char- 
acteristic generation rate of the order of the ionization time 
and are carried away by the flow into a region behind the 
front of the shock wave. Such a picture is impossible for 
purely stationary flow but may follow-up the dynamics of 
the changes in the flow parameters of the solar wind. 

Although the larger part of the front of the shock wave 
is controlled by the ion dispersion, and therefore its thick- 
ness turns out to be of the order of the cyclotron radius of the 
heavy ions, inside the front there appears a condensation 
discontinuity ("subshock") with a considerably smaller 
characteristic size. 

In the more general case the hydrodynamic description 
of the plasma8 is based upon the theory of Alfvtn turbulence 
generated by the heavy ions produced in the flow and, in 
turn, guaranteeing an efficient exchange between the differ- 
ent degrees of freedom of the motions of these ions. It turns 
out that in the framework of these equations the loading of a 
supersonic plasma flow by heavy ions leads to a gradient 
catastrophe in the flow region with Mach numbers M(3.  
The change in the numerical value is connected with the 
change in the adiabatic exponent which, thanks to the effi- 
cient exchange between the degrees of freedom, equals here 

5 
y = -. Moreover, in the case of flow at an angle to the mag- 

3 
netic field ( #90") the ion thermal conductivity along the 

magnetic field controls the structure of the shock wave 
which is formed. However, here too a thin condensation dis- 
continuity occurs under well defined conditions inside the 
front (for details see Ref. 16) similar to the isothermal dis- 
continuity in ordinary gas dynamics.1° 
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