Nonlinear strings in relativistic MHD
V.S. SemenovandL.V. Bernikov

Leningrad State University

(Submitted 27 April 1990; resubmitted 25 July 1990)
Zh. Eksp. Teor. Fiz. 98, 1627-1634 (November 1990)

A special Lagrangian coordinate system is constructed in which a magnetic force tube is the focus
of attention. This tube behaves as a nonlinear string with respect to tangential forces. General and
particular varidtional principles are given. The results show that a plasma in a magnetic field can
be thought of in the MHD approximation as a gas of nonlinear strings which interact through
pressure forces. A method is developed for reducing multidimensional nonlinear problems of
relativistic MHD with boundary layers to a sequence of two-dimensional problems for force

tubes, i.e., nonlinear strings.

1.INTRODUCTION

- Relativistic magnetohydrodynamics (RMHD), like
nonrelativistic MHD, has the property that magnetic field
lines. become frozen in a plasma, so the force tubes can be
tagged with plasma particles and thereby individualized.
The existence of Maxwell stresses along a field line is fre-
quently used as justification for drawing an analogy between
a magnetic force tube and a rubber band or cord, i.e., an
entity capable of stretching and contracting. The picture of a
force tube as a spring often leads to a clear qualitative de-
scription of complex phenomena. In nonrelativistic MHD,
this analogy between a force tube and a spring or, more pre-
cisely, a nonlinear string, is not only qualitative but also
quantitative, as was shown in Ref. 1. The quantitative analo-
gy is by far the more important of the two. This concept
underlies a method which has been proposed for reducing
several difficult MHD problems, including three-dimen-
sional-and time-varying problems, to a sequence of two-di-
mensional problems for nonlinear strings (force tubes). Be-
low we generalize the technique developed in Ref. 1 to the
relativistic case.

2.RELATIVISTIC FROZEN-IN FRAME OF REFERENCE

We will be discussing a plane Minkowski space with a
metric tensor 4, = diag(l, —1, — 1, — 1), but all the
calculations can be generalized in an obvious way to the case
of the general theory of relativity. The medium in RMHD
can be described by the energy-momentum tensor®™*

in__ 1_ 2) ih_( _1__ z)ih__i 1Pk

T —(p+e+ Zmb u'n p+8nb h 4nbb’ (1)
where p is the pressure, € is the internal energy per unit vol-
ume of the plasma, u' is a time-like velocity 4-vector,
uu'=1; b’ is the space-like magnetic-field 4-vector,
b= F**U,, F**is a dual electromagnetic field tensor, and
b= — b,b". The vectors u'and b ‘are orthogonal: b,u’ = 0.
In the dissipation-free RMHD discussed below, Ohm’s law
reduces to

F*u,=0, (2)

which simply means that there is no electric field in the co-
moving frame of reference:

1
E+ —? [VB] =0.
The magnetic-field 4-vector satisfies the same equation:
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Fﬂ'bh=0. ( 3 )
The system of RMHD equations can be written

V.ou'=0, (4)

V. T*=0, (5)

V.(b'u*—b*u’) =0. (6)

Here p is the density, Eq. (4) expresses conservation of mat-
ter, Eq. (5) expresses energy-momentum conservation, and
Eq. (6) is the magnetic-induction equation.

We will attempt to construct a frame of reference such
that a magnetic force tube in it is the focus of attention. For
this purpose, the vectors b/ or u’ (or vectors proportional to
them) must become the basis vectors in the new frame. The
general theory>® shows that two vectors @} and a) can be
basis vectors of some frame if and only if their Lie bracket
vanishes:

(aiivi) azk— (aziV{) a(k——‘o. (7)

We will attempt to choose scalar functions &, (x) and &, (x)
such that the Lie bracket of the vectors k, u'and k, b ‘vanish-
es.

In general, the magnetic-field 4-vector & is not solenoi-
dal: V,b'+£0. It is, on the other hand, possible to choose a
scalar function ¢(x) such that

Viqbf=0. (8)

The physical meaning of ¢ will be explained below. Us-
ing (4) and (8), we can rewrite Eq. (6) (the magnetic-in-
duction equation) as

b u* u' /i ] (9 ) '

In other words, the Lie bracket of the vectors u'/gand b /pis
zero. There exist thus coordinates % and a for which the
vectors u'/q and b '/p are basis vectors:

dx‘_ u' (10)
dq ¢’
dz’ b

=—. (11)
do. Iy

Since u,u’ = 1, the vector x;, satisfies
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¢z =1. (12)

We supplement 7, @ with two other coordinates ¥, §, and we
rewrite Egs. (4) and (8) in terms of the new variables 7, a,

Y, &

i

1 0 —
g V—gom
bi 1 9 R
o V—g da

where  — g is the Jacobian of the transformation from the
coordinates x°, x', x?, x* to 7, a, ¥, . From Egs. (13) and
(14) we find pgy — g = F(¥,§). We will leave the introduc-
tion of the coordinates ¥, { somewhat arbitrary at this point;
specifically, we allow the transformations ¥ =9,¢) and
&= (¥,8). We can utilize this arbitrariness to satisfy the
condition F(,§) = 1. We then find
0 1 2 3

Dz, z', 2% %) =i' (15)

D(n,a$,8) g
This is the form of the continuity equation in terms of the
new variables. The induction equation, (6), is now satisfied
identically.

By analogy with the nonrelativistic case,” we call the
frame of reference 7, a, ¥, { the “frozen-in” system. The
justification for this name comes from the frozen-in property
in (2), (6), which also leads to (9), the necessary condition
for the introduction of the new coordinates. Different sets in
the space of frozen-in coordinates have a simple physical
meaning.

By virtue of their construction, the 7 coordinate lines
are inverse transforms of the trajectories of the fluid parti-
cles in physical space, while the a coordinate lines are in-
verse transforms of the magnetic field lines. In formal terms,
the functions x'(7,a,%,¢) with fixed a, ¢, ¢ and variable 7
specify the trajectory of a fluid particle. If instead 7, ¥, § are
fixed while a varies, we obtain a magnetic field line: a solu-
tion of Egs. (11).

The parameter 7 has the meaning of a Lagrangian time
along a trajectory, and the entire frozen-in coordinate sys-
tem is also Lagrangian. It is for this reason that the continu-
ity equation takes the form in (15). The parameter 7 differs
from the proper time 7 by an amount g:

dn=gqdr. (16)
The physical meaning of ¢ can be seen from the equation
Vawb'/p—Tb'V s=0, (17)

which follows from Egs. (4)-(6) (Ref. 3). Here s and
w = € + pare the entropy and enthalpy per unit volume, and
T is the temperature. It can be shown** that the entropy
remains constant along the trajectories of the fluid particles:

u'Vis=0. (18)

Hence s = 5, (a,¥,§). If a thermodynamic equilibrium is
also established along a magnetic force tube, b'V;s =0 or
s =15, (¥,8), it follows from (17) that the role of ¢ is played
by the enthalpy. In general, we find the following relation
from (17):

q=wexpj (T'so/w)do, (19)
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where the integration is along the force tube. Using (2) and
(3), we can show that in the frozen-in frame of reference the
electromagnetic field tensor F;, has only a single nonvanish-
ing component:

Fy=—Fy=pqV—g=1. (20)

This result is generally understandable: The electric field
vanishes in the comoving frame of reference [see (2)], and
the magnetic-field 4-vector b /p is a basis vector. It follows
from (20) that the magnetic flux through a fluid loop, Fjp,
does not vary with the time 7 as it moves at a velocity u'/q or
with the time 7 as it moves at a velocity u’ [see (16)]:

Fy= ".F,-hdx" N dz* = J.F“ dyp A dt = jdq;/\d;. (21)

Here dx’ A dx* is an area element of the surface spanning the
fluid loop. We have thus found that the area dy Ad{ in the
space of frozen-in variables is equal to the magnetic flux
through the inverse image of this area in physical space.
Let us determine the physical meaning of the parameter
a along a magnetic field line. The mass of plasma in the
volume element Ax'Ax?Ax?, integrated over the time Ax°, is

pda® Adz' \da* \dz’=(pY—g) dn Ada\dpAdg
=dtAda AdpAdE. (22)

We thus see that the mass of plasma in a force tube with a
unit magnetic flux per unit proper time is , since (17) must
be broken up into the flux dy Ad¢ and the proper time d7.
The parameter a is thus the mass of plasma in a force tube
with a unit magnetic flux in the proper frame of reference.

3.MAGNETIC FORCE TUBE AS ANONLINEAR STRING

Let us rewrite equation of motion (5) in terms of the
frozen-in variables. This equation can be put in the form
ui R bl' / bk )
g — v(( gq_u_) —0g—V, i—)= R VP, (23)
q q P 4ng p
where P=p+b?%/8r is the total pressure, and
Q=p + € + b*/4x. In terms of the new variables, two oper-
ators involved here take the following form:
u! 9 b* 0
—_— = — N — V = — 24
. Vi o > V= 5 (24)

We can thus rewrite Eq. (23) as
F (Qq ax‘) ) ( o 6:1:‘)__ D(P,z,z" z')
' p On/ 9 4ng da D(n, a9 %) '

where i, j, k, | = 0, 1, 2, 3 constitute a cyclic permutation of
indices. The Jacobian appears on the right side because of the
conversion of the pressure gradient 4 *V,P to the new vari-
ables. This is the general position for any Lagrangian ap-
proach.®

Equations of motion (25) follow from energy-momen-
tum conservation, but they have a different interpretation in
terms of frozen-in variables. A one-dimensional wave opera-
tor describing a magnetic force tube has appeared on the left
side of (25). This circumstance is understandable, since the
force tube behaves as a nonlinear string [the left side of
(25)] and is subjected to a pressure exerted by the neighbor-
ing force tubes [the right side of (25)].

Itis useful to rederive this conclusion from a variational

(25)
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principle. The equations of motion can be found by varying
the action’

1
S=— ( +—b2)dv. (26)
‘[ & 8n
We write the action in (26) in terms of frozen-in variables,
using auxiliary condition (15):

= J‘[e+pzaz/8n_}h( DD(t:;,x;,’::;:;) _é)]

X d do dy dg., (27)

where e=¢/p is the internal energy per unit mass,
x2 = — hyx'x*, and 1 is a Lagrange multiplier. The quan-
tities x' and p are to be varied. The variation of ¢ can be found
from (12):

8q=—q*hux, 0z,

Varying x', we find the equations of motion (25). Varying
the density p, and making use of the thermodynamic relation
p’e, = p, we find the equation

A=p +—1b2, (28)
8n

from which we see that A = P. The force tubes interact under
the condition that the mass of plasma in them is conserved
[see (15)]. This interaction leads automatically to the ap-
pearance of a total pressure P: the Lagrange multiplier

which was introduced in a formal way turns out to be the

total pressure. By analogy with the particles of a gas, one
could say that a collision of force tubes in which the plasma
mass does not change gives rise to the pressure forces of the
magnetic force tubes.

We thus see that in RMHD, as in nonrelativistic MHD,
a magnetic force tube is completely analogous to a nonlinear
string with respect to tangential forces. Pressure forces act
between tubes.

Note also that the frozen-in coordinates cause a natural
stratification of Minkowski space into the space of the force
tube, i.e., 7, @ (a layer), and the rest of space (the base).
This point may prove useful in the development of numerical
algorithms for RMHD problems.'®

4.BOUNDARY LAYER

The picture of a magnetic force tube as a nonlinear
string may prove useful, but, unfortunately, is of little help
for a quantitative description. Solving the system of MHD
equations is a difficult matter in either Eulerian form, (1)-
(3), or Lagrangian form (15), (25). As in nonrelativistic
MHD,' the problem does simplify when we consider an im-
portant particular case, namely, a subsystem of Egs. (25)
which we write in the form

i i
i(_@_"_x)_i(L oz )=i.hf~vhp(x), (29)
on\ p 9dn da 4ng oo pq

P(x)=p+—192xa2. (30)
8

We assume that the total pressure P(x) is a given function of
the Eulerian coordinates in subsystem (29), (30). The equa-
tion of state can be chosen in the form p = p(p, s). The en-
tropy is constant on trajectories (18), so it is determined by
its value at the initial time: s = s, (@, ¥, {). The equation of
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state then gives us an expression for the pressure as a func-
tion of the density:

p=p(p, sole, ¥, T)).

Equation (30) determines the nonlinear dependence of the
density on x'and x/,. The charges g are related to x, by (12).
We see now that to find expressions for the Eulerian coordi-
nates in terms of the frozen-in coordinates x'(7, a, ¥, &),
at a known function P(x), we need to solve a system of two-
dimensional equations for a nonlinear string (¢ and { appear
as parameters). Solving this problem is of course much
simpler than solving the original system of MHD equations.
Solving two-dimensional string equations poses no particu-
lar challenge to modern computers. A question arises here:
Under what conditions is the total pressure known at the
outset or can at worst be calculated in the first step, without
consideration of the other unknowns?

As an example we can use an Alfvén wave, for which we
have P = const, and for which Eq. (20) becomes the usual
d’Alembert’s wave equation:

i P :

0 Lnn mxaa =0, (31)
A solution of (31) is an arbitrary function of the arguments
[p/q(47Q)"*] 7 + . Let us assume that the wave is propa-
gating along the x axis in the field b,,. We then have
a = (p/b,, )x, and 7 = 7¢, and the argument is rewritten as
[box/(47Q)'?] 7+ x. The Alfvén velocity is therefore
V, =b,./(47Q)"* (Ref. 4).

There is a far wider class of problems in which the total
pressure can be found beforehand. We have in mind prob-
lems with boundary layers, although the solution found in
such cases is admittedly asymptotic rather than exact. An
important property of a boundary layer is that the total pres-
sure remains constant in the transverse direction. The proof
is essentially the same as in the theory of a Prandtl viscous
boundary layer.'' Let us examine the orders of magnitude in
the equation of motion across the layer (for definiteness,
along the z axis):

i(-?ﬁﬂ)_i(_ﬁ_.%)___i 0P (32)
an' p an/ da'ing da/  pg 3z

We assume that the ratios of the length scales of the variation
of the various quantities along (x%x',x?) and across (z) the
layer satisfy z/x°, z/x', z/x* ~e € 1. We also assume that the
magnetic field lines in the boundary layer are stretched out
in the longitudinal direction, so the normal component is
small in comparison with the tangential components. We
then have normal values b,, #,, z~¢ and tangential values
~ 1. The left side of (32) is thus ~¢, and the right side
~1/¢e. Hence JP/Jz=0; ie., the total pressure
P = P(x°x',x?) does not change in the direction across the
boundary layer in the zeroth approximation.

Outside the boundary layer the problem usually simpli-
fies, and the total pressure can be found from a simplified
(limiting) system of equations. The total pressure, being a
function of only the coordinates x°, x!, and x?, tangential
with respect to the layer, does not vary in the direction across
the boundary layer, as we have already mentioned. To deter-
mine how the tangential Eulerian coordinates depend on the
frozen-in coordinates, i.e., to determine x'(7, a, ¥, ), we
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can thus use nonlinear-string equations (29) and (30).
These equations must be solved separately for each individ-
ual force tube at fixed values of ¥ and {. Boundary condi-
tions are found from the condition for joining the asymptotic
expansions in the boundary layer and in the external region.
The final step is to find the function z(7, a, ¥, ) from the
first-order linear equation in (15), in which the functions
x(y, a, ¥, &), i=0, 1, 2, are now known. Continuity
equation (15) can be integrated by the method of character-
istics, which aresimply x'(%, @, ¥, £) = const. Thereis the
hope that all the problems mentioned above can be solved
numerically in many cases, since the original nonlinear
RMHD problem (which is generally four-dimensional)
splits up into a sequence of two- and one-dimensional prob-
lems. In nonrelativistic RMHD, this method has proved
successful in problems concerning magnetic reconnection’
and a magnetic barrier.'?

A particularly simple problem is that of the behavior of
a narrow isolated magnetic field tube, with a longitudinal
dimension which is much larger than its transverse dimen-
sion. This condition that the tube be narrow guarantees that
the total pressure will remain constant in the transverse di-
rection.'>!* The pressure P(x) is determined by the distri-
bution of the gas pressure in the plasma. To find the tangen-
tial components of the velocity and the magnetic field, the
density, the pressure, and the shape of the axial line of the
tube, we must solve a Cauchy problem for nonlinear-string
equations (29) and (30). In the zeroth approximation, the
behavior of a narrow isolated tube depends on the gas pres-
sure distribution in the medium and on only this distribu-
tion. In order to find subtler characteristics—the shape of
the tube and the velocity and field components normal to the
axis—it is necessary to know the nature of the plasma flow
around the tube; that problem is vastly more difficult. All
that one can do here is estimate the transverse dimensions,
by calculating the magnetic field and knowing the magnetic
flux. To an extent, the situation here is similar to that in the
guiding-center approximation in the theory of the motion of
charged particles in a magnetic field, in which case one fol-
lows not the particle itself but its guiding center, ignoring the
fine details of the Larmor revolution.

The nonlinear-string method is based on the use of fro-
zen-in coordinates. This approach can be taken only in the
model of a dissipation-free medium, so it would appear that
the same restriction is imposed on the use of this method.
Since the magnetic field lines cannot rupture in the absence
of dissipation, we see that the number of problems which
lend themselves to this approach is small: In these problems,
the final field configuration is found from the initial configu-
ration by means of a continuous deformation. In the real
world, there are relatively few such situations, so the range
of applicability of the method is rather limited. Some help
comes from reconnection or, more precisely, the Petschek
mechanism'® and its time-varying generalizations.” The ac-
tual reconnection of magnetic field lines occurs in a diffusion
region, because of the dissipative processes which occur
there; in the absence of dissipation, there could be no recon-
nection.

In general, the dimensions of the diffusion region are
small at the scale of the system, so in a first approximation
one can assume that the force tubes reconnect not in a recon-
nection region but on a reconnection line. It then becomes
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possible to invoke the model of dissipation-free RMHD, but
with a rupture of the force tubes on the reconnection line. It
is thus possible to substantially expand the range of applica-
bility of the nonlinear-string method.

It is becoming progressively clearer that thin sheets
with high currents and boundary layers in general play a key
role in many MHD problems. Although these sheets consti-
tute only a small fraction of the volume of the entire system,
the processes which occur in them determine the dynamics
of the system almost completely.”'>"'” It is in studies of cur-
rent sheets and other regions with stretched field lines that
the nonlinear-string method is appropriate, so this method
may prove useful in many problems in astrophysics and plas-
ma physics.

5.PARTICULAR VARIATIONAL PRINCIPLE

As in the nonrelativistic case,'? string equations (29),
(30) can be found from a particular variational principle
with an action:

2 2
Spun = j?(; dodn — |-2H0Z/8AHP

dodn. (33)
g *

Here P(x) is assumed to be a given function of the Eulerian
coordinates; the functions x'(y, @, ¢, {) are varied. The
boundary layer does not have to be planar; a particular vari-
ational principle is extremely useful in writing string equa-
tions in curvilinear Eulerian coordinates.

We can work from action (33) to construct two new
conservation laws. Expression (33) can be thought of as an
action with a Lagrangian density

+p%z,/8n+
je pxaé&n p dos (34)
Y

Ly=

we then find that the quantity x;dL;/dx;, — L is con-
served:

Hs= j—Q— dat. (35)
0q

The integral in (35) is conserved as a force tube moves at a
velocity u/q. We recall that we have Q = p + € + b*/4r.
The frozen-in property is of a dual nature, as can be seen
from the symmetry of frozen-in equation (6) with respect to
u' and b'. For this reason, the same action, (33), can be
considered in a different way, with the Lagrangian density

J’ etp’z.*/8n+P
R T .

L,= (36)
Pq
Associated with (36) is the conserved quantity
+
Ho= |22 an, 37

pq

The integral in (37) is conserved as a tube of trajectories is
continued along magnetic field lines.

In the nonrelativistic limit, the string equations and the
general and particular variational principles become their
own analogs.””'? In general, the nonrelativistic technique
can be generalized without any fundamental change to the
case of relativistic magnetohydrodynamics.
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