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The method of slow modulations is used to study nonstationary flows in dispersive 
hydrodynamics. The modulation equations are presented in a new form having a clear physical 
meaning and easy to integrate. Analytic solutions are obtained for the asymptotic modulation- 
theory regimes of nonlinear wave generation and soliton formation. The modulation equations 
for Korteweg-de Vries hydrodynamics are considered, as are also equation systems for plasma 
ion-sound and magnetosonic waves having no Riemann invariants. 

1. INTRODUCTION equations are equivalent to Whitham's corresponding sys- 

Investigation of nonlinear stationary flows in dispersive 
hydrodynamics is not only important for many problems of 
rarefied-plasma dynamics, hydrodynamics of waves on wa- 
ter, nonlinear waves in dielectrics, electroacoustic waves, 
and others, but is also in itself of theoretical interest. Indeed, 
neglecting small dispersive terms, the flow is described, as in 
ordinary hydrodynamics, by the Euler equations. The most 
important feature of Euler dynamics is phase conjugation, 
which leads to the appearance of a shock wave (Ref. 1, Sec. 
101). In ordinary hydrodynamics the major role is played 
here by dissipative processes that lead to establishment of a 
shock-wave front of finite width. 

In dispersive hydrodynamics with total absence of dissi- 
pation, the motion following the onset of a singularity has 
principally a different ~ h a r a c t e r . ~  What appears here is a 
region that expands continuously with time and is filled with 
undamped small-scale nonlinear oscillations. It is called a 
nondissipative shock wave (NSW).3 The NSW region can 
be described by using Whitham's method4 based on averag- 
ing, over the oscillations, the integrals of the initial equa- 
tions. The resultant system of averaged equations is quite - 
complicated. It  can be considerably simplified if Riemann 
invariants exist, when simple analytic solutions that describe 
the NSW can be By now, Riemann invariants 
have been found for the system of averaged equations corre- 
sponding to the initial Korteweg-de Vries (K-dV) equa- 
t i o n ~ , ~  the nonlinear Schrodinger equation (NSE),' the 
sine-Gordon equations, and related ones. The general ques- 
tion of the connection between the existence of Riemann 
invariants of averaged equations and total integrability of 
the initial equation has been raised in Ref. 8. 

It is clear, however, that Riemann invariants exist only 
for a rather limited class of nonlinear equations with disper- 
sion. Considerable interest attaches therefore to an investi- 
gation of nonlinear oscillations in dispersive hydrodynamics 
in the general case. This is the subject of the present paper. 

The investigation is greatly facilhated by the fact that 
the averaged equations can be reduced to a form that has a 
clear physical meaning and is easy to interpret. This is done 
in Sec. 2, where the averaged equations are represented in 
the form of a hydrodynamic system of modulation equations 
for the parameters of the motion of the medium and of the 
excited waves, viz., the average density n, the average flow 
velocity v, the energy density A of the oscillations, and the 
wave density (i.e., the wave number) k. The modulation 

tem4 but are substantially simpler. 
The solutions of the averaged equations must be joined 

to the solutions of the Euler equations on the boundaries of 
the region of the nonlinear oscillations, since the latter equa- 
tions are valid as before outside the NSW region. It is impor- 
tant here that the number of averaged equations always ex- 
ceeds that of the Euler equations. The junction points are 
therefore singular points-points where the characteristics 
merge. It follows hence that solution of these equations- 
even numerical-calls for an analytic investigation capable 
of determining the behavior of the solution in the vicinities of 
the singular points. This is the subject of Secs. 3 and 4. The 
modulation equations are joined here with the Euler equa- 
tions in the following manner (in accordance with Refs. 3,5, 
and 6).  The oscillation amplitude vanishes, A + 0, on one of 
the NSW boundaries. The solution of the modulation equa- 
tions near this boundary comprises, in fact, the general theo- 
ry of nonlinear generation of waves in dispersive hydrodyna- 
mics (Sec. 3).  The wave number vanishes, k-0, on the other 
boundary. This is the NSW soliton front, whose structure is 
studied in Sec. 4. 

2. MODULATION EQUATIONS 

a. Hydrodynamic form of modulation equations 

According to Ref. 4, to obtain the averaged equations it 
is necessary to represent the initial system in the form of 
conservation law, i.e., in divergent form. A completely inte- 
grable system has an infinite number of conservation laws. 
In the general case considered here, however, the number of 
conservation laws is restricted. For example, only four inte- 
grals each can be obtained for systems describing ion-sound 
waves in a nonisothermal plasma or else magnetosonic 
waves in a cold plasma moving across a magnetic field. This 
corresponds exactly to the differential order of the initial 
system and is equal to the number of unknown functions in 
the system of averaged equations describing slow modula- 
tion. The modulation system turns out therefore to be 
closed. 

To obtain the modulation system we must average the 
initial equations, represented in conservative form, over the 
period of the stationary wave. A particularly important 
problem here is the choice of the slowly varying variables. 
Recognizing that in NSW problems the modulation equa- 
tions must bejoined to the Euler equations on the boundaries 
of the oscillating region, it is convenient to choose the de- 
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reduces for stationary waves u (x - Ut) to the form sired functions to be the ordinary hydrodynamic variables: 
the average density n, the average velocity v, and also the 
parameter A * having the meaning of the oscillation energy 
density, and the wave number (wave density) k. After trans- 
formations which will be illustrated below with specific ex- 
amples, it is possible to represent the modulation equations 
in the following hydrodynamic form: where C, B, and U are arbitrary constants, U having the 

meaning of the phase velocity. 
It is convenient to use as the intermediate equations the 

roots b, )b, >b, of the polynomial Q(u): 

Q(u, C, B, U)=(bl-u) (b2-u) (bs-u). 

Then 

The general solution of (8)  takes the form3 

We have introduced here the functions 

P=P (n) , (n, k, A'), V=v+Vl (n, k, A2), where a = (b, - b, )/2 is the amplitude of the oscillations; 
m = (b, - b, )/(b, - 6, ) is the modulus of the elliptic 
function (O<m < 1 1. 

The phase velocity U and the wave number k are ex- 
pressed in terms of the introduced variables a, m, and b, by 
the equations 

U=v+U, (n, k, A'). (5 

They will be expressed in detail below. 
The system ( 1 )-(5) has a lucid physical meaning. The 

first two equations are the Euler equations of the hydrodyna- 
mics of an ideal liquid [P(n)  is the usual pressure]. They 
contain the additional terms dA '/ax and dg2/dx that deter- 
mine the influence of the excited oscillations on the density 
and velocity of the hydrodynamic flow. The terms A 'dv/dx 
and g2dn/dx in the energy-transport equation ( 3 )  for the 
nonlinear waves indicate the influence exerted on the oscilla- 
tions by changes of the hydrodynamic-flow parameters. Fin- 
ally, Eq. (4)  is the conservation law for the number of waves, 
and is always satisfied if the oscillations are adiabatic and 
single-phase. 

In the linear limit g2-A ,-a2-0 (where a is the am- 
plitude of the linear oscillations), Ubecomes the usual phase 
velocity and V becomes the group velocity V ,  of the linear 
waves. The hydrodynamic equations (1)  and (2 )  coincide 
then automatically with the Euler equations, and Eq. (3)  
goes over into the oscillation-energy transport equation 
known from the linear theory: 

where K(m)  is a complete elliptic integral of the first kind. 
Let us write down for the K-dV equation the first three 

conservation laws which we need to obtain the modulation 
system: 

Averaging Eq. (13) over the period of the stationary wave 
( lo),  we get 

b. K-dV modulation equation 

We consider the procedure for obtaining modulation 
equations in hydrodynamic form, using the K-dV equations 
as the example. Although the K-dV equation is integrable, it 
is expedient to consider first just this example, since the 
equations obtained in this case are simple enough but con- 
tain many features of more complicated systems. The impor- 
tant difference from the general hydrodynamic case is that 
the K-dV modulation system consists of three equations, in 
accord with the differential order of the initial equation. 

Thus, the K-dV equation 

whereA = ( 'E;i - ii2)/2 is the energy density oftheoscilla- 
tions. Averaging of the second integral yields 

We express the variables C, U, and 2 in terms of a, rn, and 
q=E with the aid of (9)-( 11 1. According to ( lo ) ,  
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where,u(m) = E(m)/K(m), and E(m)  is a complete ellip- 3~ a au au 8 9  -+- (pu)=O, - + u - + - - 0 ,  tic integral of the second kind. We have then for 6 ,  , 6, , and dt dx at ax  ax 
b3 a2cp - = eQ-p. 

2a 2a 2a 6 x2 
b + ( I - ) ,  bZ=q + - ( I - m - p ) ,  b,-q - - p. 

m m 
Here p is the ion density, u the ion hydrodynamic velocitjl, 

( 9, and p the electric potential; all the variables are made nondi- 
From ( 1 1 ) we obtain mensional by normalization to their characteristic values. 

Equation (9)  yields 

Finally, 

The conservation laws of the system (26) are 

a p  8 - + - (pa) -0, 
at ax  

a a - (pu) + - (pu2+e'-cpy2/2) -0, 
at ax (27) 

a a 
- (pu2/2-eq+cpeo+(p,2/2) + - (paa/2+pucp-cprp.,) -0. a t  ax 

- 4a2 Averaging the integrals of (27) over the period of the sta- 
u2=q2 + 7 (m-1+2(2-m) p-3p2). 

3m (22) tionary wave1' and introducing the variables n =p, u = i i ,  k, 
and A = pu - Pii we arrive at the system ( 1 )-(5) with 

Then P ( n  ) = n, in which the dependence of the coefficients on the 

2a2 sought variables is determined in parametric form by the 
A2 = - (m-l+2(2-m) p-3p2). 

3m2 (23) equations 

Subtracting from ( 17) the product of ( 16) by ii we have, 82-'12u~cp-i12ELln p=ln (af-'- l)  - f  +12/2, 
taking (20)-(23) into account, an equation for A *: 

U=v+f+i, (28) a~~ a - + - ( V A Z )  +az% = 0, f- i- i  ( f + t + ~ )  + I n ( ~ f - ~ - l )  + 1 - f + ~ ~ / 2  
at ax ax V=U+~+*  - 

f+t-f-1-' 
7 

where 
where 

It is convenient to choose in place of the third averaged con- 
servation law the wave-number conservation law, which is a 
consequence of the three averaged equations ( 13 )-( 15 ) and 
is always valid under quasistationary conditions. 

The K-dV modulation system takes ultimately the 
form 

The variables Vand Uare expressed here in parametric form 
in termsofA ', q, and k by Eqs. (12), (20), (23),  and (24). 

c. Nonllnear Ion-sound waves In a nonlsothermal plasma 

As an example of a system whose with non-Riemannian 
modulation equations we consider the equations describing 
nonlinear flow in a two-temperature (T ,  B Ti) 

The variables a and f l  are connected with n, k, and A 
by the expressions 

As before, the wave-number conservation law, which is the 
consequence of the four averaged conservation laws (27), 
has been introduced in place of the fourth averaged law. 

d. Nonlinear dynamlco of a cold magnetized plasma 
(magnetic sound) 

Nonlinear hydrodynamic motions of a cold rarefied 
plasma across a magnetic field are described by the system4v9 

Here p and u are the dimensionless hydrodynamic density 
and velocity, and B is the magnetic field intensity. 

The conservation laws for the system (3 1) are4 
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These equations, averaged over the period of the stationary 
wave,4 lead to the system (1 )-(5) for the variables n, v, A 2, 
and k. In this case 

Here 

The variables a, 0, and y are connected with the sought n, 
A  2 ,  and k by the equations 

tions accompanying hydrodynamic flows in a dispersive me- 
dium. 

The transition to the system (36) and (37) was made 
under the assumption that dn/dx and du/dx are small. In a 
situation close to phase conjugation, however, this assump- 
tion is violated and the terms A 'du/dx and g2dn/dx should 
be taken into account in Eq. (3)  for A ', which takes the form 

It follows from (38) that in the region of a compression wave 
(dn/dx < 0, < 0 )  an increase takes place in the oscilla- 
tion amplitude and can be interpreted as instability develop- 
ment with a growth rate proportional to the moduli of the 
density and velocity gradients. Development of this instabil- 
ity produces in the nonlinear stage a nondissipative shock 
wave (NSW) described by the complete system ( 1 )-(5). It 
should be noted that the stability of the toppling hydrody- 
namic profile is determined by the sign of the sum 

In the case of a hydrodynamic simple wave defined by con- 
stancy of one of the Riemann invariants,' the density and 
velocity gradients are of the same sign, so that phase conju- 
gation of such a wave in a dispersive medium always leads to 
instability development. In the general hydrodynamic situa- 
tion, however, when dn/dx and dv/dx are independent, 
phase conjugation of the compression wave need not be ac- 
companied by a growth of the amplitude of the linear oscilla- 
tions. We present in conclusion expressions for 
6 = (dg2/dA 2),  = ,  in the case of ion-sound (see the Ap- 
pendix) and magnetosonic waves, obtained from the small- 
amplitude expansions of g2(A ',n,k) [see (28)-(30), (33)-  
(3511: 

b. Small modulation system 

3. NONLINEAR GENERATION OF MODULATED WAVES 

a. Linear wavesabove a hydrodynamic background 

In the limit of infinitesimally small amplitudes ( A  - 0, 
%' -A) the thermodynamic equations ( 1) and (2 )  are de- 
coupled and the modulation system takes the form 

Here w, = kUo = wo (k,n,v) is the linear dispersion rela- 
tion, and Vo = dwo/dk is the linear group velocity. It is 
important that the changed hydrodynamic variables enter in 
the equation for the wave quantities A and k; the equations 
for n and u, on the other hand, are solved independently. For 
constant n and v we have from ( 37) the usual system for a 
linear wave packet in a homogeneous medium. Equations 
(36) and (37) describe thus infinitesimal-amplitude oscilla- 

To describe nonlinear generation of NSW we must con- 
sider the region of sufficiently small (but finite) amplitudes 
(i.e., small A and g 2 ) .  If generation is against a homoge- 
neous hydrodynamic background, the hydrodynamic vari- 
ables can be eliminated from (1)-(4) and the system itself 
can be replaced by two simpler equations whose solutions 
can be easily investigated analytically. These equations, 
which describe universally the behavior of weakly nonlinear 
modulated waves, will be called hereafter a small modula- 
tion system (SMS). Systems of this type are encountered in 
problems dealing with evolution of a nonlinear wave packet 
whose amplitude and frequency profiles are specified at 
t = 0 (see, e.g., Refs. 11-13), and were investigated under 
the assumption that k has a small scatter about a constant 
value k, . 

In the present problem of nonlinear generation, in con- 
trast to evolutional problems, the assumption that the wave 
is quasimonochromatic no longer holds. Indeed, the linear 
group velocity of oscillations of infinitesimal amplitude 
should coincide with the geometric velocity of the NSW 
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front on which these oscillations are generated, i.e., 
wl, (k, ) = x; ( t ) ,  where w = w, (k )  is the linear dispersion 
equation, k ,  is the wave number at the generation point, and 
x = x, ( t )  is the law of motion of this point. Understandably, 
x, ( t )  is, generally speaking, an arbitrary function defined by 
the initial hydrodynamic profile, so that x i  ( t )  and corre- 
spondingly k, can vary significantly in the course of genera- 
tion. In addition, the nonlinear correction to the group ve- 
locity, which makes a negligible contribution to the solution 
of the packet-evolution problem,13 turns out to be substan- 
tial in generation problems, and must therefore be taken into 
account in the amplitude-transport equation. Allowance for 
the hydrodynamic variables in an SMS calls for introducing 
the concept of an effective dispersion equation. 

We investigate thus a modulation system in the small- 
amplitude limit (we retain in the equations terms that guar- 
antee the first nonvanishing order in the solution): 
A - a2 < 1. We consider for simplicity the procedure of ob- 
taining SMS using as an example the modulation K-dV sys- 
tem (25) (another example, ion-sound waves in a plasma, is 
discussed in the Appendix). 

Using the expansions of elliptic integrals for m < 1 (Ref. 
14), we obtain forp = E(m)/K(m)  

For the wave number k we have 

The expansions for the phase (20) and group (24) velocities 
take then the form 

The amplitude a is connected with the oscillation energy 
density A ' by the relation (23) ,  which takes for small a the 
form 

The modulation system (25) can thus be represented in the 
small-amplitude limit in the form 

dk d - + - (a, (k, 11) +oz(k)A2) 
d t  dx 

where 

Using 
rate to 
sion 

(44), we can integrate the first equation of (42) accu- 
O(A 2). We seek its solution in the form of the expan- 

where 7, = const. 
Substituting (45) in the first equation of (42) and using 

(44), we get 

Thus, excluding the hydrodynamic variable from the system 
(42), we arrive at a closed system of two equations: 

Here w = w, (k)  + Z2 (k)A is the effective nonlinear dis- 
persion relation and V, (k )  is the effective nonlinear correc- 
tion to the group velocity. On our case of the K-dV equation 

We emphasize that v2 (k )  #Z; (k) .  
Clearly, this procedure of eliminating hydrodynamic 

variables can be used also in a general dispersion-hydrody- 
namics case (see the Appendix), so that the above analysis 
based in the K-dV equation does not make less general Eqs. 
(47), which are valid in the low-amplitude limit for any dis- 
persive hydrodynamics. 

The system (47) written with accuracy that ensures a 
first nonvanishing order in the solution, and equivalent with 
this accuracy to the complete modulation system, takes the 
form 

. - -  , 
a Aa d A2 dk - + (ao' (k) +2AaV2 (k) ) - + COO" (k) A" = 0. 
at ax dx 

The term 2A 2v2 (k)dA 2/dx was retained in the second 
equation, since in the general solution, as will be shown be- 
low, A - )x - x, ) '12, where x, is the coordinate of the gener- 
ation point, and the contribution of the indicated term to the 
solution is of the same order as the term that follows. 

We shall call (49) and its modifications a "small modu- 
lation system." Note that a system of similar type, in a sim- 
plified model form, was considered in Ref. 13 as a direct 
generalization of the equations of motion of a linear packet 
to include the nonlinear case. It must also be emphasized 
that in the considered case of small amplitudes we have 
A -a, where a is the exact amplitude of the oscillation. The 
covariational variable A is more convenient in dispersive- 
hydrodynamics problems, and its connection with the am- 
plitude is easily determined in each specific case [for the K- 
dV equation this is Eq. (41 ) 1 .  Introducing in (49) the new 
variables 

It can be seen that in the leading order w=o,'(k), Z=A21c(w) 1 ,  c(w)=ooU(k) az(k) ,  (50) 
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we arrive at the following SMS modification: 

where 

If we now replace the independent variable x  by z ,  such that 
dz = dx - f ( w ) d t ,  then the SMS ( 5 1 )  takes the form of the 
system of Euler-hydrodynamics equations with y = 2. It 
must be remembered, however, that the SMS describes a 
wave structure and the variables I and w are in no way con- 
nected with the hydrodynamic density and velocity. 

The parameter u is indicative of the SMS structure. If 
u = 1, the system is hyperbolic. For u = - 1 the system is 
elliptic and its hydrodynamic modification corresponds to 
hydrodynamics with negative pressure P = I  ' / 2 .  Problems 
with NSW generation always correspond to the hyperbolic 
case, so that the condition u = 1 can be regarded as the con- 
dition for nonlinear generation of modulated waves. Note 
that in problems dealing with evolution of a weakly nonlin- 
ear wave packet this is the condition of stability of a wave to 
perturbations propagating along the wave's direction of mo- 
tion. 

The system ( 5  1 ) has the Riemann form 

ar, a r ,  - + V* ( r )  - = 0,  
at a x 

where the Riemannian coordinates r + and characteristic 
velocities V +  are expressed in terms of the initial variables I 
and w by the equations 

The invariants and velocities are presented here with accura- 
cy 0 ( I 1 ' ' ) ,  which permits the solutions to be investigated in 
the form of simple waves. The SMS term connected with the 
nonlinear correction to the group velocity makes a contribu- 
tion to ( 5 2 )  on the order of O ( I )  and is thus immaterial in 
the investigation of simple waves. It does, however, make a 
nontrivial contribution to the general SMS solution. The 
lines r * = const are two families of SMS characteristics; the 
families coincide at I = 0. 

Let us consider nonlinear generation of a modulated 
SMS wave. Let the motion of the point where the wave is 
generated be given by x  = x, ( t ) .  As applied to the NSW 
theory, x, ( t )  is the law of motion of the NSW front on which 
the generation takes place. The following conditions are 
then satisfied on the curve x  = x, ( t ) :  

1-0, w=x; ( t ) .  ( 5 4 )  

The first of these conditions is that the amplitude vanish 
on the investigated boundary. The second condition means 
that the signal group velocity on the curve x  = x, ( t )  coin- 
cide with the geometric velocity of the generation point, and 
is equivalent to equality of the boundary to a multiple char- 
acteristic at I = 0 (Fig. 1 ). In the hydrodynamic analog of 
( 5  1 ) we encounter thus the original boundary-value prob- 
lem of finding the gas flow in which the density vanishes on a 
specified curve x, ( t  ) . 

FIG. 1. SMS characteristics near the boundary x, ( t ) .  

c. SMS solutions 

We consider first self-similar SMS solutions that satisfy 
the conditions ( 5 4 )  on the boundary. Such solutions de- 
scribe generation of a simple centered NSW realizable as a 
result of decay of an initial discontinuity. A problem of this 
type was considered for Riemannian systems in Refs. 3, 10, 
and 1 1. The solution of the modulation equations depends in 
this case only on T = x / t ,  and the SMS ( 5 2 ) ,  ( 5 3 )  is trans- 
formed into a system of ordinary differential equations. Its 
nontrivial solution is obvious: one of the invariants is a con- 
stant, and for the other we have V = T. 

To be specific, we consider the case of negative disper- 
sion. It follows then from the NSW structure that the invar- 
iant to be assumed constant must be the one ensuring an 
increase of the group velocity with increasing distance from 
the generation point, i.e., r = ro = const. Thus, the connec- 
tion between w and I  in the wave is given by 

Next, V +  = T.  We then obtain with the aid of ( 5 3 )  and ( 5 5 )  
simple equations that describe the behavior of I  and w near 
the generation point: 

The conditions ( 5 4 )  take in the self-similar case the form 

where rg is the self-similar generation coordinate and is as- 
sumed known. It follows then from ( 5 7 )  that ro = 7,. 

The determination of the behavior of the quantities A 
and k  which are of physical interest reduces to a simple recal- 
culation of Eqs. ( 5 6 )  with the aid of the normalization ( 5 0 ) .  
Generalizing the results to the case of positive inversion, we 
get ultimately 

where 

where k,  is the root of the equation wh ( k ,  ) = rg. 
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The dependences of the self-similar coordinate of the 
generation point on the initial values of the hydrodynamic 
variables are given in Refs. 3 and 9. We emphasize that the 
generation mechanism considered is in principle nonlinear, 
as evidenced by the factor 23, ( k ,  ) in expression ( 5 8 )  for 
C ( T ,  1. 

We present the C ( r , ) ,  k ,  ( T ,  ), and w l ( k o  ) depen- 
dences for a K-dV equation and for systems ( 2 6 )  and ( 3  1 ) 
that describe ion-sound and magnetosonic waves in a plas- 
ma. 

For the K-dV equation ( 4 3 )  

For ion-sound waves (see the Appendix and also Ref. 10) 

ko=[no  ( T O ' )  " no ( l+koZ/no)1 /2  ' 

Here T: = T ,  - v,, no and vo are the constant values of the 
hydrodynamic variables at the generation point. 

Finally, self-similar wave generation of waves in a cold 
magnetized plasma is given by 

zn;" 
Gs. = - (TO*) 

where 

We consider now SMS solutions that are not simple 
waves and describe the general process of nonlinear wave 
generation resulting from phase conjugation of arbitrary 
monotonic hydrodynamic profiles (Figs. 2a and 2b). 

The initial hydrodynamic profile is shown in Fig. 2 
dashed. The arrow indicates the direction of motion of the 
generation point. The SMS describes a region near this 
point, which moves in both cases from the very beginning 
against a homogeneous hydrodynamic background. To ob- 
tain SMS solutions that are not simple waves ( d ( I ;  w ) / d ( x ;  
t )  + O ) ,  it is convenient to use a hodograph transformation 
which linearizes the initial equations. The SMS takes on the 
Zw hodograph plane the form 

The conditions ( 5 4 )  are transformed into 

FIG. 2 .  Nonlinear generation in phase conjugation of a monotonic hydro- 
dynamic profile: a-positive dispersion, &negative dispersion. 

for z=0: x=xo(w),  t= to(w) ,  ( 6 4 )  

wherex, ( w )  and to ( w )  specify parametrically the equation, 
assumed known, of the boundary xo = x, ( to  ). The function 
to ( w )  is obtained by inverting the equalities 
w = x ~ ( t o ) , x 0 ( w )  = x , ( t o ( w ) ) .  Using thecondition that1 
be small, we seek the solution of the system ( 5 3 )  in the form 
of the expansions 

Substituting ( 6 5 )  in ( 6 3 ) ,  we obtain 

t i ( w )  = l l z f  ( w )  to' ( w )  +'lztof' (w), 
( 6 6 )  

x i ( W ) = 1 / 2 W f ( W ) t o ' ( ~ )  + ' / z ~ t o ' ' ( ~ ) - t o ' ( ~ ) .  

Returning to the initial independent variables, we have 

1 xgN' ( t )  
w=xgl( t)  + - ( x -xg ( t )  1 ( x / ( t ) f  (2; ( t ) )  - -) . 2 xg ( t )  

( 6 8 )  

We emphasize that the functionf, which is connected with 
the nonlinear correction to the group velocity, does not enter 
into the formula for I. It follows from ( 6 7 )  that in media 
with negative dispersion [ x  > x, ( t )  ] we have x i  ( t )  <O,  since 
I is always positive. In media with positive dispersion we 
obtain similarly x ; ( t )  >O.  Thus, x ; ( t )  and xi  ( t )  are of the 
same sign, i.e., the generation-point motion is accelerated in 
phase conjugation of monotonic hydrodynamic profiles. 

In terms of the wave variables k and A, the solution of 
( 6 7 )  and ( 6 8 )  takes the form 

A=C ( t )  Ix-xg(t) I ", ( 6 9 )  

where 

c ( t )  = lx," ( t ) /  (ao" (k , )  (ko) ) I ", oo' ( k o )  =x,' ( t )  . 

The formula for k 

is obtained from w; ( k )  = w ( x , t )  with the aid of ( 6 8 ) .  
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An important difference between this solution and the 
self-similar equations (58) and (59) is that the amplitude 
has here a square-root increase with distance from the gener- 
ation point, whereas in the decay of the initial burst the de- 
pendence of the amplitude on the distance to the generation 
point was linear. The wave number decreases linearly in both 
cases. Note that uniqueness of the obtained solution is en- 
sured by the fact that the singular point I = 0, w = x, ( t )  on 
the hodograph plane is of the saddle type. The solution ob- 
tained is thus a segment of the separatrix joining the singular 
points on the leading and trailing edges. This case differs in 
principle from the case, analyzed in Ref. 5, of quasisimple 
waves in which the generation points on the hodograph 
plane was a node from which an infinite number of trajector- 
ies emerges. A local construction of the solution is impossi- 
ble here, and to calculate the separatrix trajectory one must 
resort to the conditions on the soliton front. 

4. STRUCTURE OF SOLITON FRONT 

a. Soliton waves 

Before investigating the structure of the soliton front of 
NSW, we consider the evolution of the system of noninter- 
acting solitons formed as a result of evolution of a localized 
large-scale perturbation. These structures were named soli- 
ton waves5 and are described by a solution ofthe modulation 
system as k-0. The quasistationarity condition 

where Us is the soliton velocity in the wave, has in this case 
the meaning of a conservation law for the number of solitons. 
If the soliton motion takes place on a homogeneous hydro- 
dynamic backround (n = const, v = const) the evolution of 
the soliton-wave velocity profile is described by the Hopf 
equation 

Soliton motion on a variable hydrodynamic profile, 
however, is accompanied by nonlinear interaction of the so- 
litons with the hydrodynamic flows, and the equations de- 
scribing the soliton wave become more complicated. This 
situation is realized, for example, as a result of evolution of 
two hydrodynamic perturbations that differ in scale (Fig. 
3a). Clearly, the perturbation A decays rapidly into solitons 
that will move over the slowly evolving profile B (Fig. 3b). 

Let us consider a modulation system of general form in 
the limit as k-0. Understandably, the oscillation energy 
density A ' should also vanish in this case. However, the 
quantity 

which is proportional to the energy of one oscillation-the 
soliton, remains finite as k-0 in the limit of interest to us. In 
fact, analysis of the asymptotic equations for A ' in various 
specific cases [see (23), (30), (35)] shows that A2-k in 
the soliton limit (m -+ 1 ). The value of g2, just as in the case 
of small amplitude, is then proportional to A 2,  so that it is 
convenient to write it in the form 

where f(0, n, f )  = O(1). 
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FIG. 3. Formation of soliton wave against the background of an evolving 
hydrodynamic flow: a-initial hydrodynamic profile, b--soliton wave. 

Then, introducing in place of A the variable f, we ef- 
fect in the system ( 1 )-(5) a transition to a soliton wave, 
k-0. For the solitons the phase velocity is equal here to the 
group velocity, so that we must put V = U in the equations. 
As a result we obtain a general equation for a soliton wave 
moving over a variable hydrodynamic background: 

where Us = v + U, (0, n, f )  and the behavior of n and v, just 
as in the linear limit, is determined by the usual hydrody- 
namic equations (36). It can be seen that at n = const and 
u = const Eq. (74) goes over into the Hopf equation (7 1 ) for 
u,. 

Let us analyze soliton K-dV waves with the aid of the 
described technique. The transition k-0 in the modulation 
equations (25) leads, after a trivial change of variables, to 
the following system for the soliton wave: 

where 

Since (75) is a hyperbolic system of second order, it can be 
represented in Riemannian form. Introducing the variable 
r = 7 + f 2'3 we arrive at the system1) 

the solution of which is 
t 

where v0 (x) and ro ( x )  are the initial profiles of the func- 
tions ~ ( x ,  t )  and r(x, t ) .  

Examination of soliton waves in more general cases of 
dispersion hydrodynamics with the aid of Eqs. (74) and 
(36) also leads to a second-order system if it is assumed that 
the soliton evolution takes place on a background of a hydro- 
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dynamic simple wave in which u = u(n). This makes it pos- where F(p) is a definite-sign analytic function in the region 
sible to reduce the system to a Riemann form independently b, <p,<b, . 
of the properties of the complete modulation system, and It follows from the representation (80) that as 
obtain solutions similar to (77) after integrating it by the b2 -b, = b the integral (79) has a logarithmic singularity. 
method of characteristics. Indeed, expanding the function F ( p )  in a series near p, = b: 

b. Soliton front of NSW F(cp) = F ( b ) + F ' ( b )  (cp-b) fllzF" ( b )  (rp-b)'+. . . , 
We confine ourselves in the analysis of a soliton-front we have for k the expansion 

structure to the case of soliton motion against a uniform 
hydrodynamic background. The equations (70) and (71) of k =  
the soliton wave have in this case a single characteristic 

"l ). 
ln (16/ml) (81) 

dx/dt = Us. The degeneracy is due to the fact that no ac- 
count is taken in the system of the soliton interaction. In the 
NSW theory the characteristics converge only directly on 
the soliton boundary x, ( t )  (Ref. 3 ). The system (70), (71 ) 
can therefore not describe the behavior of a group of waves 
that are close to solitary near x, ( t )  (we shall call them here- 
after weakly interacting solitons). 

The dispersion relation for noninteracting solitons is 
w = kUs. Tolift thedegeneracy in thesystem (70), (71) it is 
necessary to take account in the dispersion equation of the 
next higher terms in the expansion of U = o/k  for small k 
[when solitons are considered it is convenient to call U(k) 
the dispersion equation, inasmuch as in the soliton limit as 
k -0 the frequency o also vanishes, whereas the phase veloc- 
ity remains finite]. This will correspond in fact to allowance 
for soliton interaction in the wave. 

Let us consider in general form stationary waves in dis- 
persion hydrodynamics. The equation of the stationary wave 
can always be reduced to the form 

We assume for simplicity that the number of constants defin- 
ing the stationary wave is equal to two (here U and k) .  The 
function - Q(p)  forms the potential well shown in Fig. 4a. 
The oscillations take place in the region between the roots b, 
and b2 of the function Q(p,). The soliton wave corresponds 
to a case when the roots 6, and 6, merge (Fig. 4b). The case 
corresponding to the considered situation of weakly inter- 
acting solitons is that of close roots b, and b, (Fig. 4c). 

The wave number k is determined by the relation4 

The function Q(q )  can be represented in the form 

We have introduced here the parameter m, customarily 
used to describe the amplitude of a stationary wave. In prob- 
lems where Q(p )  is an exact cubic parabola (K-dV, NSE) 
we have m, = 1 - m, where m is the elliptic-function pa- 
rameter. 

The phase velocity Ualways enters in simple and explic- 
it manner in the equations for a stationary wave, and is there- 
fore an analytic function of the roots of the Q(q)  curve. In 
the case of close roots 6, and 6, the expansion of Unear U, is 
therefore in powers of the parameter m, : 

U=U,+f (U. )  rnl+O(rnI2). (82) 

Using (81 ) and recognizing that in the considered case the 
parameter of the stationary wave can be expressed in terms 
of U and k, we obtain a dispersion relation for weakly inter- 
acting solitons: 

where 

G ( U 8 ) = ~ ( b ( u , ) ) .  

In dispersion hydrodynamics, an expansion of general 
form for the phase velocity contains hydrodynamic variables 
and terms proportional to k, but for small k the hydrodyna- 
mics can be excluded from the modulation system and the 
effective dispersion takes the form ( 83 ) . 

We consider now the procedure for integrating the hy- 
drodynamic equations and obtaining a system describing the 
evolution of weakly interacting solitons, using as an example 
the K-dV modulation equations. The dispersion-hydrodyn- 
amics systems go over into a K-dV equation in the case of 
weak nonlinearity, and therefore the expansions for the 
quantities in a wave of arbitrary amplitude will be analogous 
to the corresponding K-dV expansions. This is important, 
since the expansions for small k are non-analytic. We shall 
use the hydrodynamic form of the modulation equations, 

FIG. 4. Potential curve indicative of stationary waves. 
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and therefore the procedure of excluding the hydrodynamic 
variables should have a universal character and can be used 
for arbitrary dispersion systems. 

Let us use the K-dV modulation equations (25) ob- 
tained in Sec. 2b and let us replace A *in them by the variable 
< = A 2/k, which is more convenient for the investigation of 
a soliton front. In terms of the variables 7, k, and < the K-dV 
modulation system takes the form 

The U(7, k, f )  and V(7, k, f )  dependences are specified by 
the parametric equations (12), (20), (23), and (24). Using 
the expansions of complete elliptic integrals for m,  4 1 (Ref. 
14), we get for small k the expansions: 

( ( n ( 2 a l 3 ) " ' ) )  
+ O  kexp  - 

k 

We have retained here for convenience the amplitude a as an 
intermediate parameter. It is connected with the variable 
by the relation 

Using the wave-number conservation law and expanding 
(85)-(87)' we can integrate the first equation of the system 
(84) at the required accuracy. We seek its solution in the 
form of an expansion near a constant value of the hydrody- 
namic variables, which can be assumed to be zero without 
loss of generality, as can be readily verified by a suitable 
choice of the reference frame. As a result we get 

2 (Ga) '" (6a)  '" 
r l ' n  k+- 8n k e l p ( -  k 

Substituting (88) in (85) we obtain an effective dispersion 
relation of form ( 83 ) . Here 

2a 
u , = -  

1 
3 ' G ( U , )  =nU,'", f (U,) = 5 U s .  (89) 

We emphasize that expressions (89) were obtained for a 
K-dV equation. They will naturally be different for other 
systems. 

The expansion (88) permits the hydrodynamic variable 
to be eliminated from thesystem (84). As a result, the mod- 
ulation system describing the motion of weakly interacting 
solitons (we call it for brevity the soliton system) takes the 
form 

ak d ( k u )  - + ----- = 
at ax 0, 

In the derivation of (90) it is convenient to obtain first a 
system for the variables k and Us, and only then use (83) 
and (89) to change to the variables k and U. The coefficient 
g (  U) preceding the exponential term in the second equation 
of (90) makes no contribution in the first nonvanishing or- 
der of the solution, which is obtained with logarithmic accu- 
racy, so that there is no need for its specific form. What is 
important is that g (  U) > 0. This ensures a hyperbolic soliton 
system. 

Equations (90) are of hydrodynamic form with an ex- 
ponential dependence of the pressure on the density. The 
role of density is played here by the wave number (soliton 
density); the equation of state is 

We emphasize that the soliton-system solutions in first non- 
vanishing order are determined only by the form of the func- 
tion G(  U) . 

The modulation system (90) can be represented at the 
accuracy required in the Riemann form 

dr* dr* - + V* ( r )  - = 0, a t ax 

where 

The lines r * = const are two families of characteristic that 
become equal at k = 0. 

We formulate now the problem of the NSW soliton 
front. Let the law of motion of the soliton boundary x, ( t )  be 
given. The conditions 

k=O, U=X,' ( t )  , (94) 

are satisfied then on the curve x = x, ( t )  and are analogous 
to the conditions at the nonlinear generation point (54) on 
the opposite NSW front. The picture of the coalescence of 
the characteristics on x = x, ( t)  is also similar to the one 
shown in Fig. 1, but the coalescence is governed by a differ- 
ent law. 

c. Solutlons of sollton system 

Just as before, we consider first self-similar solutions of 
the system (92) and (93), defined by a constant value of one 
of the invariants and by the equality V = T, where V is the 
characteristic velocity corresponding to the second invar- 
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iant and T = x/t is the self-similar variable. If the dispersion 
in the system is negative, we must, starting from the NSW 
structure, set constant the invariant ensuring the decrease of 
group velocity with increase of the wave number. The self- 
similar solution of the system (77) takes thus the form 

Using (93) and (94) we get, with logarithmic accuracy, 

We have carried out here a generalization to the case of posi- 
tive dispersion; T, is the self-similar coordinate of the NSW 
soliton boundary. It can be seen that the phase velocity of the 
waves that are close to solitary are determined near the NSW 
soliton boundary only by its self-similar coordinate. It 
should be noted that the accuracy of the soliton system is not 
enough to guarantee a numerical coefficient for the small 
term (7, - T)/ ln( 1/1 T, - T I  ) in (97). However, substitut- 
ing (96) and (97) in the exact wave-number conservation 
law we easily verify that this coefficient is in fact unity. 

Consider now those system-(90) solutions which are 
not simple waves (d(  k; U)/d(x; t)  # 0). Just as in the case of 
generation, it is convenient here to use the hodograph trans- 
formation (k; U) + ( x ;  t) and seek the solutions of the lin- 
earized equations in series form: 

where xo ( U) and to ( U) specify parametrically the soliton- 
boundary motion: xo = x, (to ). The sought solution is 

u=xsr ( t )  +x," ( t )  (x, (t) -3) q(t), 

h=xat (t) . q(t)=- 
G ( h )  ' 

The uniqueness of the solution, just as in the generation 
problem for SMS, is ensured by the saddle-like character of 
the point k = 0, U=  x: ( t )  (Ref. 5).  Clearly, the system 
(90) describes not only the K-dV case, for which it has been 
derived, but is valid also in other problems of dispersive hy- 
drodynamics. Indeed, the behavior of the considered solu- 
tions of the soliton system is determined by the factor 
exp( - 2G( U)/k)/k in the second equation. The form of 
this factor is universal, since the expansions of U, V, and 5. 
should in general be to the same powers of k and 
exp( - G(U)/k) as in (85)-(87). This follows from the 
cubic behavior of the Q(p) curve near the soliton boundary. 
The solution of the soliton system for different dispersive- 
hydrodynamic systems is determined in first nonvanishing 
order only by the G(U) dependence, which takes for the 
equations considered in this paper the form 

G,,,, (U) =nn,"(U2-I) "IU, (101 

G ,.,, (U) =2nn,'"(U2-n.)'h/U, (102) 

where n, is the density to the right of the NSW, and v, = 0. 

APPENDIX. DERIVATION OF SMS FOR NONLINEAR ION- 
SOUND WAVES IN ATWO-TEMPERATURE PLASMA 

Modulated nonlinear ion-sound waves are described by 
the system ( 1 )-(5) with coefficients determined by (28)- 
(30). In the case of small amplitudes we have the expan- 
sions1° 

w=kU=oO(k, 12, v)+A20a(k, n) ,  

where 
(k. n, v) =kv+ Wa ( l c ,  n), Wo(k, n)=k(i+k2/n)-'", 

For g2 we have 

The nonlinear group velocity can be represented in the form 

To find the quadratic corrections to the group velocity it is 
necessary to expand the numerator in Eq. (28) for the group 
velocity, accurate to O(A 4 ) .  In the case of ion-sound waves 
this leads to extremely cumbersome equations, and therefore 
do not present here the expression for V, (k, n ) . 

With (A1 )-(A3) taken into account, the system ( 1 )- 
(5)  takes in the small-amplitude limit the form 

ak d - + -(oo(k, n, v)+A20a(k, n)) =O. (444) 
at ax 

We emphasize that all the coefficients are expressed in terms 
of k, n, v, and A in a simple and lucid manner. 

According to Sec. 2a, we seek the solutions of the first 
two equations in the series form 

where no = const and vo = const. 
Substituting (A5) in the hydrodynamic equations 

(A4) of the system and using the third equation in zeroth 
order [see (44) 1, we obtain 

no (3 Woldn) .-no- (aWoldk)n-n, 
n, = - 

I -  (aWo/ak)2n=n, 
1 
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Eliminating with the aid of (A5) and (A6) the hydrody- 
namic variables from (A4) we arrive at an SMS that con- 
tains the effective dispersion relation 

o (k, A 2 )  =m0(k,  no, v o )  + A 2 G  (k, no), 

where 

"The system (76) can be obtained directly from the Riemann system of 
Ref. 3, in which we must put r, = r, =rand r ,  =?. 
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