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The properties of nonlinear interaction of nonresonant and resonant waves in a plasma are 
investigated by quantum electrodynamical methods. The nature of the interaction mechanism of 
interaction between the particles and the waves, on which the effect under consideration is based, 
is elucidated. 

1. INTRODUCTION 

The "plasma-maser effect" is the name given in the li- 
terature' to the nonlinear interaction of resonant waves ( w ,  
q ) ,  for which Cherenkov resonance 

with certain particles of the plasma is possible (the case is 
usually considered in which some low-frequency plasma os- 
cillations correspond to the resonant waves, for example, ion 
sound), and to the nonlinear interaction of nonresonant 
waves (R,k),  for which conditions such as Cherenkov reso- 
nance are forbidden: 

and also the condition of resonant scattering with a resonant 
mode: 

(nonresonant waves usually include high-frequency 
waves-Langmuir or electromagnetic). A number of re- 
searches have been devoted to different aspects of such non- 
linear interaction (see, for example, Refs. 2-1 1 ) . 

In the "canonical" statement of the problem of the plas- 
ma maser, a plasma is considered in which there is some 
(essentially epithermal) level of resonant oscillations: the 
object of study has been the evolution of a nonresonant test 
wave under such conditions. The prospect, based on the con- 
sidered phenomenon of amplification of high-frequency 
nonresonant waves at the expense of the energy of low-fre- 
quency resonant oscillations, i.e., the effective conversion of 
the energy of the plasma oscillations upward in frequency, is 
very attractive. 

It was shown in Ref 12. that the growth rate of the am- 
plification of the nonresonant waves y (or the damping de- 
crement) under the considered conditions is determined not 
only by the imaginary part of the corresponding nonlinear 
dielectric constant E:: [the imaginary part of the linear di- 
electric constant is Im;, = 0 by virtue of the condition ( 2 )  1,  
but also by an existing additional contribution, of the same 
order, of the generated quasilinear interaction of the plasma 
particles with the resonant oscillations; this contribution is 
proportional to d&,/dt and is connected with the time de- 
pendence of the quantity E;, . Detailed investigationI2 
shows that the combined account of the two phenomena un- 
der these conditions-the direct nonlinear interaction and 
the effect of a nonstationary medium-leads in the final 
analysis to conservation of the number of quanta of nonre- 
sonant waves as an adiabatic invariant. 

In the more general statement of the problem, we con- 

sider this same nonlinear interaction in the presence of any 
sort of other effects (in the terminology of Refs. 12, 13-an 
open system with external sources). Under these conditions, 
the number of quanta of nonresonant waves Nk cannot be 
conserved,I3 and the growth rate 

turns out to be independent of the energy density of the reso- 
nant waves and proportional to the density of such 
sources,13 which include the Coulomb collision of particles 
in the plasma, the presence of a certain "effective frictional 
force" in the kinetic equation, and so on (see Refs. 12, 13). 
Here the amplification (damping) of the nonresonant waves 
is produced only by an external source and does not depend 
on the characteristics of the resonant turbulence. 

The quantity Nk also ceases to be conserved upon appli- 
cation of an external magnetic field He,, to the plasma.I4 

An interesting feature of the given nonlinear interaction 
is also the fact15 that the inverse effect-the simultaneous 
effect of the nonresonant and resonant waves on the distribu- 
tion QP of the plasma particles-differs from zero (under 
the same conditions for which Nk is conserved). 

The present investigation has the aim of clarifying the 
nature of the mechanism of interaction of particles and 
waves that lies at the base of the studied effect. It is necessary 
to give answers to the following questions: 1 ) why do other 
influences (for example, the Coulomb collisions and so on) 
guarantee the differing from zero of the quantity y, while the 
interaction with resonant waves (i.e., actually, the consider- 
ation of the quasilinear interaction as external relative to the 
nonresonant waves of the source in Refs. 12 and 13 ) does not 
lead to a change in Nk, and also why the growth rate y differs 
from zero in the presence of a regular external magnetic field 
and is equal to zero in its absence; 2)  why, dNk/dt = 0 but 
d@,/dt # O  under the conditions of one and the same non- 
linear interaction. The most natural answer to these ques- 
tions involves investigating the given effect with the help of 
the methods of quantum electrodynamics. 

It should be noted that the study of the plasma maser 
effect in Refs. 4-15 was based on classical kinetic theory. In 
the present work it was judged appropriate to consider the 
plasma maser from the point of view of quantum electrody- 
namics, which allows a better understanding of the physical 
nature of the investigated phenomenon. 

2. GENERAL RELATIONS AND STATEMENT OFTHE 
PROBLEM 

We shall consider a system consisting of electrons and 
of photons interacting with them. The operator of the field 
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function of the electron-positron field qba is given by the 
expression 

1 ipr-iept 
*a ( 1 7  r) = ,z (apouPb ae 

PO 
ie  t ipr + b&u(-;, -,, ,e P - ), (4)  

where a is the spinor index running through the values 1,2, 
3,4 (this is often omitted below); aenumerates the polariza- 
tion states and takes on the values +1/2; 
E~ = (p2 + m2) 'I2; a is the annihilation operator of the elec- 
tron; b + is the positron creation operator; the amplitudes 
up,, are normalized by thecondition Ej,: 'uj,: ' = + 2m; we 
set the normalized volume Vequal to unity; in what follows, 
n = ~ = i .  

The operator 

corresponds to the quantized field Ap, interaction with 
which relates to the possibility of emission and absorption of 
a photon by an electron. (In this equation, a three-dimen- 
sional transverse gauge is used; the index a relates to the 
different polarization states of the photon and takes on the 
values f 1; c and c + are the photon annihilation and cre- 
ation operators; the unit polarization vector ek, satisfies the 
conditions k.eka = 0 and /ek, I = 1. ) 

In addition to the quantized field A p ,  which corre- 
sponds to nonresonant electromagnetic waves, we shall con- 
sider the classical (non-quantized) field e, p, which describes 
resonant longitudinal waves: 

The resonant field e, could also be regarded as quan- 
tized-this is not important for what follows. Our choice- 
nonresonant quantized transverse fields and resonant longi- 
tudinal nonquantized fields-is made for simplicity in the 
subsequent exposition, and also so as not to focus attention 
on the quantization of the longitudinal plasma waves for 
which, naturally, a detailed consideration of the electrody- 
namics of the medium (plasma) would be necessary, while 
investigation under the conditions described above could in 
practice lead to a much simpler basis for the electrodynamics 
of the vacuum (see below). 

In previous works1-l5 on the problem of the plasma ma- 
ser, the dielectric constant &,,, was first found with the help 
of the usual procedure of the solution of the kinetic equation, 
and then the growth rate y was determined (for transverse 
electromagnetic waves) from the formula 

Under the conditions of a nonstationary medium," the con- 
tributions mentioned above, which are proportional to 
&/at, also appear in the numerator of (7)-see Ref. 12. 

In the present approach, we shall not calculate the func- 
tion E ~ , ,  but shall find directly the change in the number of 
quanta of nonresonant waves dNka (t)/dt. The time depen- 
dence ofthe quantity Nk, (t)  (the operator of which is given 
by the expression N,, = cka + cka ) is determined by the rela- 

tion 

Nk, ( t )  =( . . . JS+(t)cr,+craS(t)  1 . . . ) (8) 

and should in principle take into account the two contribu- 
tions to dN,, (t)/dt mentioned above-both that connected 
with the nonlinear interaction and that due to the nonsta- 
tionarity of the medium. The averaging in (8)  is carried out 
over the state 1 ...), which contains a certain quantity of elec- 
trons and photons in various states; the Smatrix is a chrono- 
logical exponential of the Lagrangian of interaction of the 
system: 

t 

where :...: is the symbol for normal ordering. 
Before proceeding to the calculation of the law of evolu- 

tion of the quantity (8),  it is necessary to make a number of 
observations that provide the basis for the very possibility of 
such calculation procedures. First, we note that for the given 
interaction Im in (7)  turns out to be connected only with 
a nonlinear response of third order in the field (i.e., it is 
determined only by the direct interaction of the modes) in 
the standard iteration scheme of solution of the kinetic equa- 
tion; so far as the additional "polarization" contribution is 
concerned, a contribution connected with products of re- 
sponses of second order, it is identically equal to zero for the 
given type of interaction (as was already assumed in Ref. 1 
and rigorously proved in Ref. 12 ) . 

Second, the calculation procedure just mentioned is in 
fact the calculation of the numerator of ( 7 )  (with account 
also of the effects produced by the nonstationarity), expand- 
ed in a series in the constant e2 of electromagnetic interac- 
tion. Generally speaking, the denominator of (8)  is also rep- 
resented by some series in e2; but for the study of the effect at 
hand (and not the corrections to it), it suffices to seek only 
the expansion of the numerator of (7) [with the necessary 
degree of accuracy-to terms a e4, since the term a e2 in Im 
E,, is absent according to Ref. 1, assuming the denominator 
of (7)  to be equal to the expression 2R + O(e2)]. 

Finally, we note that the use of the formulas of the 
quantum electrodynamics of a vacuum causes us in actuality 
toset Rk = lkl in ( 5 ) ,  andnot R, = (k2+w;)"2as ina  
plasma. For the present calculation this is not very signifi- 
cant in principle; the technique developed below for consi- 
deration of the evolution of the nonresonant waves does not 
permit us to find the difference of the dependence of the 
energy density of the waves W(t) on the law of change of 
N,, ( t ) ,  since this difference is connected with the depen- 
dence Rk = Rk ( t ) ,  which we have ignored. 

3. NATURE OFTHE CONSERVATION OF THE NUMBER OF 
QUANTA 

Thus, further investigation of the function N,, ( t )  [Eq. 
(8)  ] be based on the relations (8)-( 11 ) . [The correctness of 
such a method is not difficult to verify by the example of the 
calculation of simple quantities-Landau damping and the 
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quasilinear integral; it can be established that the calculation 
of these quantities by means of the S matrix (9)  leads to 
correct general relativistic quantum expressions.] 

Differentiating (8),  we find the following, with the nec- 
essary accuracy: 

- j d t ,  j d t ,  j d t , { P  ( t , ) P  ( 1 , )  IP (f). N k a I P  (t3) 

Of the four Lagrangians entering into each component of 
(12), two should correspond to 2, and two to - YA . It is 
not difficult to see that 2, commutes with the operator of 
the number of quanta, Nka, as a consequence of which we 
must set 2 )  = 2 (t); the contributions with 
2 ( t )  = 2, are automatically cancelled. 

The classical correlation function of the resonant fields 
p, must now be replaced by the procedure of averaging 
over the random phases of the field p,, (cf. Refs. 1-15): 

In the method that we have used for the calculation of 
the nonivariant quantity dNka (t)/dt, the integration of the 
Lagrangian over the time in ( 12), after explicit substitution 
of the expressions (4)-(6),  produces in the denominator 
expressions of the type f ilk f E, f E/, - ,. , and so on. The 
classical conditions ( 1 )-(3) are replaced by the general 

[which in what follows we shall also designate as ( 1 )-(3) 1 .  
To find the (real) quantity dNk, (t)/dt we must take the 
imaginary part of at least one of such factors in the denomi- 
nator; this imaginary part is 

where the sign of the infinitely small contribution + i 0 in 
the exponential of the corresponding Lagrangian is deter- 
mined by the causality principle-integration over the time 
from t = - cc in (9) ,  ( 12) must have meaning. [We always 
consider the Cherenkov conditions ( 1 ) - (3 ) ;  in ( 12), gener- 
ally speaking, in addition to Cherenkov resonances of the 
type c, - , - E ,  + w = 0, pair-creation resonances can also 
arise, E, - , + E, - w = 0 and so on, which are not of inter- 
est to us at the present time.] 

Explicit substitution of the expressions (4)  and (5)  in 
( 10) can establish the fact that the commutator [ 2, ,Nk, ] 
is very similar in its structure to the Lagrangian 2, ; the 
only important difference is that in the Lagrangian YA the 
terms containing the photon annihilation operator c and the 
creation operator c + appear with the same signs, while in 
the expression [2, ,Nka ] they appear with opposite signs. 
This fact leads to the result that [upon satisfaction of the 
conditions ( 1)-(3)!], any two contributions to ( 12) of the 
type ... YA. . . [YA,Nka] . . .  and . . . [2 , ,Nk,] . . .2 ,  ,... 
which are obtained from one another by the substitution 
9, ft [YA ,Nka 1, accurately cancel one another, i.e, their 

sum is equal to zero. Roughly speaking, this takes place be- 
cause the (resonant) Lagrangians which stand to the left of 
the first 2, or to the right of the second 2, enter into both 
components in one and the same of the two matrices (8 )  and 
consequently have the same sign of the imaginary contribu- 
tion i 0 to each denominator arising in the integration over 
time; the Lagrangians between the two 2, are nonresonant 
by virtue of the conditions (2)  and (3) ,  although they be- 
long in the first component to S + and in the second, to S, 
and therefore they should contain denominators with infi- 
nitely small contributions of opposite sign. [These condi- 
tions are based on the form of the Lagrangian of electromag- 
netic interaction ( 10) 1. 

We thus find that dNka (t)/dt = 0. However, our dis- 
cussions are still not completely valid, since both S matrices 
in (8)  should transform the initial state of the system into 
another one that is also allowable; however, the general 
expression (8)  also contains this same number of such con- 
tributions as 2,2, Y4", .Nk, . y , ,  for example, when the 
second S matrix describes the forbidden [by the law of con- 
servation of 4-momentum and by the nonresonance condi- 
tion (2)  ] process of radiation of a photon by a free electron 
(or also the forbidden process of transformation of the pho- 
ton into an electron-positron pair, etc. ). Such contributions, 
obviously need to be excluded from ( 12). However, we can 
show that the general sum of such exclusions of "nonphysi- 
cal" contributions is also equal to zero. Actually, for any 
method of pairing of the creation and annihilation operators 
in the Lagrangians entering into ( 12), the sum of the expres- 
sions + w + E, + E, for all four 2 is equal to zero; this 
leads to the result that the sum of the two excluded expres- 
sions, for example, 

1 t ,  1, 

J d t ,  d t ,  J d t ,  P . ( t , )=P~( t z )P . ( t t )  N k a . P A ( t )  

and 

1 1, t 

1 d t ,  j d t 2 = P , ( t z ) P ~ ( t i ) P . ( t )  N k ,  j P * ( c ) d r L j  

is exactly equal to zero. These expressions differ in the choice 
of the factor in which there is no integration over time. Here, 
it is again important that the expression ilk + E,-, - E,, 
which arises upon integration of Y4", over time is nonreson- 
ant. 

We have thus obtained a result that generalizes the con- 
clusion of Ref. 12: in the interaction of nonresonant waves 
with resonant fields and particles, the number of quanta of 
nonresonant waves is conserved: dNka (t)/dt = 0. For this 
conclusion, two circumstances used above are essential: I. 
[Y,,Nk,] = 0; 11. "absolute" nonresonant character of 
Y A ,  i.e., non-fulfillment of all resonance conditions that 
can contain the quantities (Rk,k)  corresponding to 2, 
[the hindrances (2)  and (3)  1. 

Now, having clarified the nature of the conservation of 
the number of quanta in the plasma-maser effect, we can 
answer the questions posed at the beginning of the paper. 
That is, the absence of the two circumstances I and I1 men- 
tioned above (or even of one of them) leads to the result that 
in open systems (see Refs. 12, 13) external sources can lead 
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to a value of dNka (t)/dt that differs from zero. For such 
external sources, the high-frequency electromagnetic radi- 
ation is not "absolutely" nonresonant (in contrast to the 
case of the interaction with resonant fields considered 
above). Thus, for example, for collision damping (brems- 
strahlung), the "basis" diagram of the process is absorption 
(emission) of a photon by an electron and exchange of a 
virtual quantum with any other particle (similar to the pro- 
cess of plasma maser, such a "basis" diagram is the scatter- 
ing of resonant waves into nonresonant). But in this case, the 
photon frequency f lk  is not absolutely arbitrary but is con- 
nected by the relation S1, + &,. + Ef - E~ - E, = 0, where 
Eicn and Eiu, are the initial (final) energies of the radiating 
electron and the particle with which it collides, while in the 
"canonical" statement of the plasma-maser problem the pa- 
rameters of the nonresonant wave are not at all connected 
with the parameters of the resonant wave-see Eqs. (2 )  and 
( 3 ) .  This is certainly a violation of condition I; furthermore, 
condition I is also violated in bremsstrahlung, since ex- 
change of a virtual quantum of the same kind as that of the 
radiated quantum is possible between the colliding particles. 

It is also clear why the growth rate of the plasma maser 
differs from zero in an external field-the "basis" is now not 
the scattering diagram but a diagram containing lines corre- 
sponding to the external field in addition to the lines of reso- 
nant and nonresonant waves. As a consequence, the appear- 
ance of conditions connecting nk with a,, and the 
parameters of the external field [which does not violate (2),  
( 3 )  1, i.e., the appearance of a resonant denominator in inte- 
gration of 2, over time in (12). In addition, our discus- 
sions of the external field are only illustrative, since the par- 
ticles are bound even in a weak external magnetic field, and 
perturbation theory must directly be constructed in a repre- 
sentation that takes into accurate account the external field 
and the change in the E, dependency produced by it. 

Finally, we shall show why, in the inverse plasma-maser 
effect the change in the particle distribution function differs 
from zero: d@, (t)/dt #0, while in the direct process the 
number ofquanta does not change dNka (t)/dt = 0; i.e., why 
the nonresonant waves in the plasma maser, without being 
themselves changed, play the role of an unusual catalyst of 
additional (relative to the quasilinear) exchange of energy 
between the particles of the plasma and the resonant waves. 
Condition 11, of course, applies equally both to the direct and 
the inverse effects; however, condition I for the inverse effect 
is violated. Actually, in the calculation of d@,, (t)/dt, in 
place of Nka = cka + cka we should investigate the time evo- 

lution of the values of the operator of the number of electrons 
a,, = a,, +a,,, which does not commute either with 9, 
or with Y, (in contrast to Nka ). 

4. CONCLUSION 

Thus, we have clarified above the nature of the nonlin- 
ear interaction of waves and particles in the plasma maser. 
The result of Ref. 12 that the number of quanta of nonere- 
sonant waves is adiabatically conserved in such an interac- 
tion has been generalized further (spontaneous processes 
such as the exchange effect, etc., were not taken into account 
in Ref. 12). It is shown why the amplification (damping) of 
the waves becomes possible, due to account of the interac- 
tion of external sources and under conditions of interaction 
in an external field. Also, the reason is given for the change in 
the distribution function of electrons in the case of no change - 
in the number of quanta of the nonresonant waves. A rigor- 
ous consideration in the quantum case (and a comparison 
with the classical results of Refs. 12-15) of the simultaneous 
interaction of resonant and resonant turbulence on the parti- 
cle distribution, and also the analysis of the conditions under 
which amplification of high-frequency radiation in the plas- 
ma maser in an external field is possible (and also in the 
presence of external sources, sources of energy, particles, 
momentum and so on) will be the object of a separate investi- 
gation. 
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