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The inelastic scattering of light by density fluctuations of a two-dimensional electron gas 
involving a large transfer of energy when retardation effects become important is investigated. 
Along with the plasma peak in the scattering cross section, there is a wing due to the decay of the 
incident photon into two photons. Like the plasma contribution to the scattering, the predicted 
wing is significantly enhanced under conditions of resonance with the interband transition. 

In an electron plasma there exist two types of Raman 
scattering of light:" single-particle scattering with a fre- 
quency shift of the order of kv,, where k is the momentum 
transfer and v, is the Fermi velocity (it is a question of de- 
generate electrons) and scattering due to collective effects. 
The latter are connected with the density fluctuations of the 
electron gas, and the corresponding frequency shift is equal 
to the plasmon frequency w, . 

In an isotropic three-dimensional plasma longitudinal 
and transverse waves separate completely, wherefore an ac- 
count of retardation effects gives only small corrections to 
the scattering cross section-of the order of v,/c for the 
single-particle mechanism, and w,/ck for the collective one 
( C  is the speed of light in the medium). 

Spatial inhomogeneity or anisotropy of the plasma 
leads to a coupling of the longitudinal and transverse waves. 
In the present communication we will show that for a two- 
dimensional electron plasma there arises an additional con- 
tribution to the inelastic light scattering in the region of large 
energy transfers w, where w)ckll, and kli is the momentum 
transfer in the plane of the system. In this frequency region w 
the light-induced excitations in the plasma are no longer 
quasistatic. 

In an isotropic three-dimensional plasma there are 
purely transverse electromagnetic waves with frequency 
w = (0; + (ck) *) and also plasmons. During inelastic 
light scattering excitation of a plasmon is possible, but exci- 
tation of a transverse wave is kinematically forbidden. 

A new interesting situation arises during scattering in a 
two-dimensional plasma. In this case only the parallel com- 
ponent of the momentum is conserved. The scattering spec- 
trum of two-dimensional electrons, as will be shown below, 
contains besides the peak at the plasmon frequency a wide 
wing at w>,ckIl, corresponding to the decay of the incident 
photon w, = ck, into a scattered photon w2 = ck, and a 
third photon with frequency w and wave vector (kll ,k,),  
k, = (wZ/c2 - k if ) It can be easily seen that such a pro- 
cess is kinematically possible. (For example, in a planar 
waveguide of width a the dispersion of the photon has the 
form 

ma. The most effective coupling of the photons with the plas- 
mons is determined by the condition ckil -a, (kll  ), where 

is the two-dimensional plasma frequency; N, and m, are the 
electron density and effective electron mass; and e is the 
background dielectric constant. This condition determines 
the characteristic values kll  - k t ,  and the corresponding 
width of the decay spectrum is given by 

Obviously, this width competes with collisional broadening - l /r ,  where r is the relaxation time of the electrons. The 
effect which we are considering here is important when the 
inequality ck ' > l / ~  is fulfilled, which is equivalent to the 
condition 2n-uO/e > c, where a, is the conductivity of the 
two-dimensional gas (ao = e2N, r/m, ) . 

To calculate the cross section we investigate the equilib- 
rium fluctuations of the density p, of the two-dimensional 
electron plasma. It is possible to calculate the density-den- 
sity correlator in terms of a generalized susceptibility 
a, l l  (a) according to the fluctuation-dissipation theorem:'v2 

where n (w) is the Bose distribution. 
The generalized susceptibility is found as the response 

function to a perturbation of the form 

where e is the charge of the electron, f is the generalized force 
(in the present case a scalar field), r = (x,z), x is the posi- 
tion vector in the plane of the system, z is the perpendicular 
coordinate, and the electrons are located at z = 0. The den- 
sity perturbation in the Fourier representation with respect 
to the time t and the position vector x is then 

The material equations give the connection between the cur- 
rent density and the field: 

and the corresponding curve is convex down, i.e., the spec- 
j (kl;, a )  = ~ [ E ( ~ I I ,  o)+ik~;f~(k, ,  , w ) ] 6 ( z )  , 

trum is decay-like. - where a is the conductivity, E(kl l  , a )  is the induced electric 
Let us estimate the characteristic width of the photon field parallel to the plasma layer at z = 0, which is found 

decay spectrum for interaction with a two-dimensional plas- from the Maxwell equations for the potentials q, and A. In 

876 Sov. Phys. JETP 71 (5), November 1990 0038-5646/90/110876-04$03.00 @ 1991 American Institute of Physics 876 



these equations the charge and current densities are propor- 
tional to S(z) . Satisfying the corresponding boundary 
matching conditions, we find (at z = 0)  

where c = C , / E " ~  and c, is the speed of light in a vacuum. 
Using the continuity equation, we obtain the response 

function in the limit w # kll v,, which corresponds to a "cold" 
plasma: 

It is now clear that in the absence of a three-dimensional 
case, where the generalized susceptibility as a function of w 
has only a simple pole at the plasma frequency, in the situa- 
tion under consideration in addition to the plasma pole there 
is also a branch cut, beginning at w = ckll,  where R = 0. The 
additional contribution to the Raman scattering cross sec- 
tion, which was mentioned in the Introduction, is due spe- 
cifically to this branch cut. 

From Eqs. ( 1)  and ( 7 )  we obtain the density correla- 
tor: 

+ ov+wp2 (02/(~kl l )2-1) 'h sign o 
04+ { O V + O ~ ~ [ O ~ /  (ckll) 2 - I ~ K  sign 0 ) "  0 (a2- ( ~ k ~ ~ ) ~ ) ]  

(8 

Herev= 1 / ~ ,  e ( x )  = 1 forx>O,and8(x)  =Oforx<O. 
The first term in the expression for F corresponds to 

plasmons with retardation taken into account. In the colli- 
sionless approximation (v+O) it changes over into 
S(w2 - flp2),  where 

is the dispersion law of two-dimensional plasmons. 
The second component, which is different from zero for 

w)ckll is due to the photons which are in thermal equilibri- 
um with the system of electrons. We explain this in the fol- 
lowing way. From the Green's function of the photon in the 
dielectric (with dielectric constant E )  we can obtain an 
expression for the field correlator~:~ 

Let a gas of two-dimensional electrons with conductiv- 
ity a be present in a dielectric at z = 0. In the region of weak 
coupling between the plasma waves and the electromagnetic 
waves w, (ckll (i.e., without account of self-consistent ef- 

fects) it is possible then to find the current correlator 
( jl, = aEl ) and then from the continuity equation obtain 
the density correlator: 

Here for simplicity a does not take account of collisions: 
a =  ie2N,/m,w. Integrating Eq. (9)  over k,, we find the 
correlator (EI I IElv)  at z = 0 and we obtain 

x sign we (a" (ckIl) '), ( 1  1) 

which is exactly equal to the limit of Eq. (8 )  for v-0 and 
up (ckll in the region w>ckll . 

In the case of strong collisions (ao 4 c )  it is possible to 
neglect the terms in formula (8)  that contain radicals, after 
which the Bfunctions "join together," and all that remains, 
as expected, is the plasma contribution. 

The light scattering cross section, as is known,3s4 is de- 
termined by the density-density correlator. Therefore for the 
case of a two-dimensional plasma we can at once write 

Here the indices 1 and 2 denote the incident and scattered 
waves, respectively, e l  is the projection of the polarization 
vector on the plane z = 0. Thus, besides the peak at the plas- 
ma frequency, the light scattering spectrum in the limit v-0 
contains a wide wing beginning at w = ckl  and the described 
photon decay. 

Let us analyze expression ( 12) in the collisionless limit 
(v-0).  First let us consider the kinematics of light scatter- 
ing by a two-dimensional system in backscattering geometry 
for the Stokes region of the spectrum (w > 0).  

At the fixed angles pl  and p, respectively for the wave 
vectors of the incident and scattered light relative to the nor- 
mal to the plane of the two-dimensional plasma (we assume 
that k, and k, and the normal lie in one plane) kll is a func- 
tion of w. According to the laws of conservation of parallel 
momentum and energy we have 

This expression must be substituted into Eq. ( 12) in order to 
obtain the scattering cross section as a function of w. Decay 
of the photon w, is allowed for w>w,, where w, is found 
from the equation w, = ckll (w, ) : 

sin cp,-sin cp2 
cpl2cp2, 

I-sin cp2 ' 
sin cp2-sin cpl 

r cpiGcp2. 
I +  sin cp2 

Thus, the region of values of w where photon decay is 
allowed occupies the interval w,<w<w,; the condition 
w>ckIl (w ) is of course satisfied here. 

The condition of small energy transfer w, < a l ,  which is 
traditional for the presently available experiments, is real- 
ized at angles close to specular ( I sin(pl - p2 ) I < 1 ). The 
scattering cross section in this case behaves at large frequen- 
cies (w - w, ) like w - I ,  but near the threshold it grows ac- 
cording to the law [ (w - w, ) 1'2 + const 1. 
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The ratio of the total intensities of scattering by the 
photons I,, and the plasmons I,, is obtained from Eq. ( 12). 
At not too close angles p, and p2 (when w, (q) < cq), where 
q-k, lsinp, - sinp, 1 is the characteristic momentum 
transfer, we have 

In the opposite limit (w, (q) > cq) the intensity of the wing is 
greater than the intensity of the plasma peak: 

Note that this case requires for its realization quite large 
dimensions L of the interaction region of the light beam with 
the electrons. Thus, for GaAs-GaAlAs structures at 
N, = 3.10" cm - 2  it is necessary that L > 1 cm [then the 
obvious condition qL > 1 coincides with the condition 
w,(q) >cq1. 

In the mirror channel (p, = p2 = p) scattering by a 
plasmon is kinematically forbidden, but decay of a photon is 
allowed, starting with zero energy transfer, since a, = 0. 
The cross section at p, = p, is described by the expression 
[see Eq. (8)  1 

o , 2ne2N, 
Sa [ n ( w )  +I]------ ( I )  = - cos cp. 

02+012 ' EmeC 
( 1 5 )  

Thus, in the collisionless limit, which we are consider- 
ing here, the scattering line width w' is determined only by 
photon decay." 

The quantity a'-wi/ckll in the more realistic case 
w, <ckll is small (w' 4 w, ). In the region of small energy 
transfer collisional single-particle scattering is a competing 
mechanism. The width of the corresponding spectral inter- 
val is of the order of Y, and if the condition 2~ra,/&$c is 
satisfied we obtain w' $ Y. 

The condition 237u0/& > c (the two-dimensional con- 
ductivity is greater than the speed of light), as is well 
k n ~ w n , ~ . ~  defines a regime in which relaxation processes in 
the two-dimensional plasma can no longer be considered as 
quasistatic, i.e., it is necessary to take retardation effects into 
account (vortex fields, etc. ). 

Thus, in the region of frequencies w much smaller than 
the plasmon frequency, the effect considered here is accessi- 
ble for observation even in the mirror channel in the case of 
samples with sufficiently high electron mobility. 

To increase the scattering cross section, resonance am- 
plification is used, in which the frequency of the exciting 
light is near the width of the forbidden band. Let us consider 
as an example the resonance with the spin-orbit decoupled 
band w, z E g  = Eo + A,. The dispersion law of the elec- 
trons now differs from the standard p2/2m, since it is neces- 
sary to take into account the two energy bands. It is well 
known (see, e.g., Ref. 7 )  that in this case the scattering is 
determined not by the density fluctuations, but by fluctu- 
ations of the quantities which are the coefficients in the ex- 
pansion of the light-matter interaction Hamiltonian in pow- 
ers of the vector potential of the light wave. In the resonance 
case under consideration the question is one of fluctuations 
of the quantity8 

where 

The Kane model was used to obtain this formula: PC, is the 
interband matrix element of the momentum; the indices C 
and V label the conduction band and the valence band 
Eo + A,, respectively; and mo is the mass of the free elec- 
tron. 

In order to avoid cumbersome calculations, let us re- 
strict the discussion to the simplest case: k,  v, < A (p, ), 

where the resonance detuning A (p) = E, + p2/2p - w, , 
and p is the reduced mass of the electron and the hole. This 
condition corresponds to the region outside the so-called 
"strong" resonance (see Ref. 8).  In addition, we assume that 
w, egckll, which is the case in the usual Raman-scattering 
experiments (the momentum transfer is not too small). 
Then it is possible to neglect self-consistent effects in the 
calculation of the intensity of the high-frequency wing 
w>ckll. Using the usual approach to find the correction to 
the density matrix of the electrons interacting with the free 
electromagnetic field, it is possible to express the quantity 
(N( t )N + (0)),  in terms of the field correlator (9) .  As a 
result we obtain the scattering cross section in the collision- 
less approximation: 

where the amplification factor is 
R(w, = IPcv2~/3moA(pF). 

To summarize, in the present article we have predicted 
a new (to our knowledge) mechanism of inelastic light scat- 
tering by free electrons, consisting of the decay of the initial 
photon into two. The effect is specific for spatially inhomo- 
geneous systems (one of the limiting cases is a two-dimen- 
sional electron gas), in which the electromagnetic field in 
the plasma cannot be separated into longitudinal and trans- 
verse modes. Under these conditions retardation effects be- 
come important, and they lead in particular to the appear- 
ance of an additional contribution to the Raman scattering 
in the region of relatively large energy deficits w>/ckll . In this 
case, the above-implemented "cold" plasma condition 
w 9 kll v, is satisfied, but in the situation with resonant am- 
plification the formulas which we have obtained correspond 
to the quite typical experimental situation of not too small 
detunings A$ k, v,. Of course, it would be best to try to de- 
tect the effect found here in samples with high conductivity 
(a, $c).  Then the electron plasma can be assumed to be 
collisionless. Note, however, that an account of collisions, as 
can be seen from the general formula (8 ) ,  does not qualita- 
tively change the results. 

We are grateful to M. V. ~ n t i n  for helpful remarks. and 
to E. G. Batyev and I. P. Ipatova for discussions of the work. 

I '  In this paper we will ignore spin effects. 
The authors are grateful to V. I. Fal'ko for having pointed out in the 
review that the quantity w' also gives the relativistic limit for the line 
width of the cyclotron resonance in a two-dimensional gas. 
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