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The case in which nonlinear beam refraction is caused primarily by the relativistic oscillation of 
the electron mass in an rf field is analyzed. The plasma density increases in time-varying self- 
focusing of short pulses with large transverse dimensions in the running-focus region. 

Self-focusing of laser light in an isotropic plasma is E='lz (e.+ieg) E ( z ,  r ,  t )  ei"ot-'kZ + C.C. 9 (4) 

usually accompanied by a decrease in the particle density.'-' 
It is shown below that there are self-focusing situations in 
which the particle density increases in regions where the ra- 
diation energy is localized. 

Let us consider the self-focusing of short pulses of elec- 
tromagnetic radiation as a result of a slightly relativistic 
n~nlinearity.~ This process can be explained as follows: In 
the slightly relativistic case, and with small perturbations of 
the electron density, the refractive index for a circularly po- 
larized pump wave can be written in the form 

where No = ( 1 - w;,/wi ) is the linear part of the refrac- 
tive index, and the nonlinear increment SN is given by 

Here w,, is the electron plasma frequency, wo is the frequen- 
cy of the rf pump wave, and Sn, is the perturbation of the 
electron density (this perturbation is small in comparison 
with the unperturbed density: Sn, 9 n o ) .  In the slightly rela- 
tivistic case, the relative increase in the electron mass is 

8m, 1 00. - = - - < I  
m, 2 c2 

(v,, is the electron velocity in the rf field of the pump wave, 
me is the rest mass of the electron, and c is the velocity of 
light). 

If self-focusing is to occur, SN must be positive. 
In the nonrelativistic case, in which the change in the 

electron mass can be completely ignored (Sm, = O), the 
necessary condition for self-focusing is Sn, < 0. It follows 
from (2)  that self-focusing in an unmagnetized collisionless 
plasma may be accompanied by compression of the plasma; 
i.e., Sn, may be greater than zero. This case is possible if the 
electromagnetic waves have relativistic intensity, with 

i.e., if the relative increase in the electron mass outweighs the 
relative density perturbation. 

During the steady-state propagation of electromagnetic 
pulses, this type of self-focusing does not occur.5 It turns out 
that in the case of a time-varying self-focusing of spatially 
wide and short pulses the plasma density can increase near a 
running focus. 

1. Let us assume that a circularly polarized rf electro- 
magnetic wave is propagating along the z axis in a collision- 
less plasma: 

where ex and e, are unit vectors along the corresponding 
axes, and r = ( x 2  + y 2 )  is the transverse coordinate. We 
assume that the plasma is transparent: w: $wj,. 

For such frequencies, the contribution to the dynamics 
of the rf field from the low-frequency magnetic field which is 
generated can be ignored in comparison with the relativistic 
e f f e ~ t . ~  In describing the space-time dependence of the com- 
plex amplitude E(z, r, t ) ,  we assume that the ponderomotive 
and relativistic nonlinearities are small and take them into 
account in the first nonvanishing approximation. 

To study the time-varying self-focusing of electromag- 
netic beams we need to solve an equation for the amplitude E 
along with an equation for Sn,. The analytic solutions have 
many shortcomings, even for a cubic nonlinearity .'-I0 Let us 
attempt to study the effect in which we are interested here in 
the simplest (aberrationless) approximation, ignoring the 
inverse effect of the perturbation of the electron density on 
the amplitude of the rf field: 

We introduce the variables 

Assuming that the field amplitude in (4)  varies slowly, 
ignoring terms on the order of wi,/wi, and using ( 5 ) ,  we 
find the following equation for the amplitude E: 

Time enters this equation through the parameter T. 

To pursue the analysis we choose a solution of Eq. ( 7 )  
in the geometric-optics approximation (k,a $1, where a is 
the beam width) with a parabolic intensity profile and a 
Gaussian time profile. We assume that the longitudinal part 
of the field in (4) ,  which stems from the nonlinear term in 
( 7 ) ,  makes a small contribution, on the order of (koa) - ', 
and can be ignored. If the beam intensity is far higher than 
the critical intensity, a solution of Eq. (7)  can be written in 
the form7 

1 = 1 ~ f - ~ ( i - r ~ / 4 a ~ f )  exp ( - - ~ ~ / 2 a ~ ~ ) ,  (8)  

where f is a dimensionless beam width which satisfies the 
boundary conditions 
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The quantity r, characterizes the pulse length. The self-fo- 
cusing length, determined by the condition f = 0, varies in 
time, following the changes in the pulse. At the focus, f = 0, 
Eq. (7)  becomes of course meaningless, since we find I- .  w 
at this point. We choose accordingly the difference 
1 - C2/R to be so small that inequality (5)  is not violated. 

2. Starting from the hydrodynamic equation and taking 
into account the average rf-pressure force, we can construct 
an equation for the perturbations of the electron and ion 
densities, Sn, and Sn, respectively. Introducing the new 
variables in (6),  and ignoring the weak dependence on the 
coordinate {, we find the following equations for Sn, and 
Sn, : 

Let us assume that the time scale and the length scale 
(in the transverse dimension) of the localization of the rf 
field are on the order of 7, and a respectively [cf. (8)  1. We 
can then assume 

I(E, r, T)=Z(E, rla, zlzo). (14) 

For the calculations below it is convenient to introduce the 
dimensionless variables 

p=rla, z'=zlzo, (15) 

in which the derivatives in (12) can be assumed to be of 
equal order of magnitude. 

We consider short pulses, with 

v ~ t o 2 / a 2 ~  I. (16) 

We assume 

It follows immediately from ( 12) that the electron den- 
sity perturbation Sn, is positive. 

Using the distribution of the rf field in (8), assuming 
condition ( 16), and using ( 12) we find the following expres- 
sion for the value of Sn, on the axis (at r = 0) : 

The ion density thus also increases in the field localiza- 
tion region, and its space-time evolution follows that of the 
pulse intensity. 

3. Let us consider the case in which the pulse length 
satisfies the condition 

We then find from ( 13) the following equation for the 
perturbation of the electron density: 

Under the conditions considered below, the second 
term on the left side of this equation is small in comparison 
with the first. We will nevertheless retain it, to avoid the 
appearance of terms proportional to r and  in order to find a 
correct description of the z profile of the density. Specifical- 
ly, the density perturbation must vanish in the limit z -  W .  

From Eq. ( 13) we find the following expression for the 
perturbation of the ion density: 

A solution of Eq. (22) which vanishes as t- - w can 
be written in the form 

X j dr' 
0 ( c ~  (T-t') - 1 r-r' 1 ) 
[cd2 (~-t')'- I r-r1 1 2 ] ' b  

, t } (24) 

where 

is the unit step function. Analysis of this expression shows 
that the electron density perturbation is localized if the in- 
tensity I is localized. Specifically, the step function 8(x) in 
the integrand means that the perturbation Sn, is localized in 
the transverse direction outside the pulse localization re- 
gion, at r<c,r. To study thez profile of the perturbation Sn,, 
it is convenient to use an equation for the Green's function 
corresponding to Eq. (22). It can be shown directly on the 
basis of (25) that behind the pulse ( z  < v,t), and far from it, 
the relation 

holds, and the density perturbation falls off as (c,r/a) - 3. 

To pursue the analysis we rewrite expression (24) in the 
form 

Consequently, under the condition no 2 m i v , 2  

2n - S 

(19) 
x { I  + dcp J dS M (r+ic. (S2-x2) I", r-s)) , 

the perturbation of the electron density will be positive: 
2 n o  0 0  

Sn, > 0. For the perturbation of the ion density we find the (26) 

following expression from ( 12) and ( 13) where i is a unit vector [ i=  (cosp, sinp, 0 )  1. It follows from 
6n, I cz m, 
-=--- I>O.  (20) (26) that there is no density perturbation ahead of the pulse: 
no 2 v; mi I Z  - ugt I $ vgr0, Z >  vgt. The leading edge of the perturba- 
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tion reproduces the profile of the intensity I. Using ( 14), and 
switching to dimensionless variables ( 15) in the integrand, 
we find that the second negative term in (26) may be smaller 
than the first under the condition 

The meaning here is that the particle density increases, i.e., 
Sn, > 0, in the pulse localization region. 

The general conclusions drawn above can be illustrated 
by substituting expression (8)  into (24). The integration 
over the transverse coordinate is carried out to the boundary 
of the pulse, at r = 2af [see ( 10) 1. To simplify the analysis 
we assume 

In the region 

- = < T / T ~ <  ( 1  - tZIR2) ' b a / ~ s ~ O  

we find the following expression for the z profile of the per- 
turbation (at r = 0): 

where a = ln(R /l). 
At the maximum of the pulse (7 = 0)  we find the fol-. 

lowing expression for the density perturbation: 

Under condition (27) we thus find Sn, I,=, > 0. 
Near the leading edge, lz - v,t I % vgr0, z> u,t the 

density perturbation has the same profile as the pulse: 

Behind the pulse, outside the region in which this pulse is 
localized, and also outside region (29), 

the density perturbation falls off in a power-law fashion: 

[cf. (25)l .  
The parameter values which the plasma and the electro- 

magnetic pulse would have to assume to satisfy conditions 
( 16), ( 17), (21 ), and (27) are easily attainable with existing 

experimental apparatus. For electron densities in the inter- 
val n, =: 10'8-10'9 cm ' ,  for a laser pulse length T=: lo'* s, 
and for a pulse width a=: 10- ' cm, these conditions hold, 
and an increase in the particle density can be expected in the 
region in which a self-focusing pulse is localized. 

4. We can draw the following physical picture of the 
plasma-compression effect described above. 

The fast time dependence of the pulse amplitude [see 
(8)  1 has the result that the ponderomotive force "plows" 
plasma particles along the signal propagation direction, as 
was shown in Ref. 1 1. As was also shown there, this plowing 
of particles is possible only in the "supersonic" regime if 
there is a relativistic nonlinearity. This condition is analo- 
gous to the requirement that the pulse length 7, (discussed 
above) be small. 

Using (6)  and (8),  we easily see that the ratio of the 
transverse and longitudinal components of the ponderomo- 
tive force is equal to a parameter which plays an important 
role in the plasma compression according to the results of 
this paper: 

[We ignored the weak dependence on the coordinate 6 in 
deriving (34) .] For wide beams, for which this parameter is 
small, the rate at which the particles are plowed in the longi- 
tudinal direction will be greater than the rate at which the 
particles are scattered in the transverse direction, so the par- 
ticle density near the focus will increase. 
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