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A one-electron diatomic molecule with identical nuclei is examined in the Born-Oppenheimer 
approximation. The well-known method for separating variables in the Schrodinger equation for 
this problem is used. A new mathematical representation of a solution of this problem is proposed. 
The characteristics of the solution are calculated by an iterative method. Closed expressions 
describing the electron energy as a function of the distance R between nuclei are constructed in 
this manner in a first approximation. Exact values of the energy are found in the limiting cases in 
which R vanishes or increases without bound. These relations can thus be thought of as 
interpolations. The second-approximation correction to the energy is derived for the ground state 
and the first excited state. A numerical comparison is made of the results of the present paper and 
the exact solution of the problem. 

The quantum-mechanical description of a one-electron 
diatomic molecule (e.g., the molecular hydrogen ion H: ) is 
based on the Born-Oppenheimer approximation or the two- 
center in which bound states of the electron are 
examined in the field of two fixed positive charges separated 
by a distance R. A distinctive and obvious feature of this 
problem is that the wave functions and energies of the elec- 
tron depend on the distance R;  the dependence is of such a 
nature that in the two limiting cases R = 0 (the combined 
atom) and an infinitely increasing separation (separate nu- 
clei) one obtains the wave functions and energy spectrum of 
the hydrogen atom or of a hydrogen-like atom. Strict corre- 
spondence rules hold between the electron states in each of 
these limits. These rules are based on general principles, so 
they can be determined without solving the Schrodinger 
equation of the two-center problem and without determin- 
ing the wave functions and energies of the electron for inter- 
mediate values of R (Refs. 2 and 5 ) .  

These comments suggest that it might be possible to 
construct an approximate solution of the two-center prob- 
lem which would become the exact solution in each of these 
limiting cases. It turns out that this idea can be implemented 
to a certain extent; a description of an approximate solution 
of this sort is the basic content of the present paper. 

A brief preliminary report of the results of this study 
was published r e~en t ly .~  

1. LIMITING STATES OF A TWO-CENTER SYSTEM AND 
CORRESPONDENCE RULES BETWEEN THEM 

Variables are separated in the Schrodinger equation for 
the two-center p r~blem' .~  by transforming to the so-called 
coordinates of a prolate ellipsoid of revolution: 

In the limit as R vanishes, the coordinates in ( 1 )-(3) 
become spherical coordinates: 

I 
r ,  q z c o s 8 ,  RK1. 2 

(4)  

In the opposite limit in which R increases without bound, we 
obtain parabolic coordinates: 

The subscripts 1 and 2 correspond to the choice of the focus 
of the parabolic coordinate system at the first and second 
centers, respectively. 

Taking these limiting properties of coordinates ( 1)- 
(3)  into account, we will discuss the hydrogen-like "com- 
bined" atom in spherical coordinates, while we will discuss 
the hydrogen atom in the limit of "separated" nuclei in pzra- 
bolic coordinates. As is known,' the variables can be sepa- 
rated in the Schrodinger equation for the hydrogen atom or 
for a hydrogen-like atom in either case. 

For convenience in the discussion below, we will gather 
here for reference the known expressions for the wave func- 
tions and energies of the bound states in both coordinate 
systems. All the expressions, here and below in this paper, 
will be written for the molecular hydrogen ion H? (or D,+ ). 
The transformation to the more general case presents no dif- 
ficulties, but we do not need to go through it. 

The bound states of the combined atom ( H e + )  in 
spherical coordinates are characterized by the quantum 
numbers n, I, rn, and the wave functions and energies of the 
states are described by2,' 

X ( r )  =e-rd2r,,'~,"!:i, (r , )  , r=4r/n, ( 7 )  

Y ( C O S  8) -9," (cos 8) , (8)  

9, Of 9G2n. (3)  
(10) 

Here r, and r, are the distances from the electron to the first where L :'t,'_ , (r, ) is a generalized Laguerre polynomial, 
and second centers, respectively, and g, is the angular posi- and Y;"(cos 8) is the associated Legendre function of type 
tion around the axis passing through the centers. I. 
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The bound states of the hydrogen atom in parabolic 
coordinates are characterized by the numbers N, K, m; the 
corresponding relations for the wave functions and energies 
are2,5 

m/a m X (h) =e-'"'%N LN-K-m-l ( A N )  1 AN=A/N, 

The choice of sign in ( 13) determines the parity of the state. 
The coordinates pl and p2 can be expressed in terms of 77 
with the help of (5).  

The correspondence between states (6)-(9) and ( 1 1 )- 
(14) in the case of a symmetric two-center system can be 
determined on the basis of the conservation of the number of 
zeros of a wave function along each coordinate as the param- 
eter R is ~ a r i e d . ~ . ~  We will call the numbers which determine 
the number of zeros of the wave function along some coordi- 
nate or other the "node quantum numbers," and we will 
denote them by n6,  n,, n,, as in Ref. 2. These numbers re- 
main the same for a given state of a symmetric two-center 
system at all values of R, from zero to infinity, but for the 
limiting states (6)-(9) and ( 11 )-( 14) they can be deter- 
mined easily by working from the well-known properties of 
the trigonometric functions, the Laguerre polynomials, and 
the associated Legendre functions which appear in the ex- 
pressions for the wave functions. We thus find from (6)-(9) 
and (11)-(14) 

According to these relations, the quantum numbers n, I, and 
m of the combined atom determine the quantum numbers N, 
K, and m, so they can be used to label the states of the two- 
center system at arbitrary R (Ref. 8).  

2. EXACT SOLUTION 

The solution proposed here for the two-center problem 
is closely related to known exact solutions of this prob- 
lem,9.'0 so we will briefly review the basic characteristics of 
those solutions here. A more detailed account can be found 
in Refs. 1 and 3, among other places. 

If we transform to coordinates ( 1)-(3) in the Schro- 
dinger equation for a one-electron diatomic molecule in the 
Born-Oppenheimer approximation, and if we substitute the 
product 

XIr ( E ,  q ,  v) - X ( g )  Y ( q )  e*'n'w, m=O, I, 2, . . . . (19) 

into this equation as a wave function, we find the following 
differential equations for the functions X ( 5 )  and Y ( q )  in 
our case of identical unit nuclear charges: 

Here Cis the constant of the separation of variables, and E is 
the energy of the electron. 

The results of this study were found through an analysis 
of Eq. (20). Equation (21) is the same as the equation for 
angular spheroidal functions in the coordinates of an oblate 
ellipsoid of revolution; information about its solutions can 
be found in Refs. 3 and 1 1. For the problem at hand, we are of 
course interested in that solution of Eq. (21) which is the 
same as (8 )  in the limit R = 0. That solution is related to the 
definition of the separation constant C as a function of the 
parameterp in (22) and the integers I and m: 

These integers are the same as the corresponding quantum 
numbers in (10) of the combined atom. From the math- 
ematical standpoint, the number I is the index of a branch of 
a multivalued function. Definition (23) has the following 
limits:" 

lim C(1, m ,  p)  =l ( l f  I ) ,  
P+O 

lim C ( l l  m 7 p )  = 2 K f r n + l ,  
P-m 2~ 

The number K on the right side of (25) is the same as the 
"parabolic" quantum number in ( 15). 

An exact physically meaningful solution of Eq. (20) 
was derived9.I0 back in the early 1930s in two equivalent 
representations. In each case, the unknown function was 
first put in the form 

X ( s )  a e-u2sm/2 (s+4p) "l/'u (s) , (26) 

Here and below, we will use the variable s instead of g, be- 
cause in the limit R = 0 it becomes the same as the variable 
r,, in ( 7 ) ,  while as R increases without bound it becomes the 
variable A, in ( 12). 

The following expansion of the function u ( s )  in (26) is 
the most convenient one for practical cal~ulations:'~ 

Another representation9 of u (s), 
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u ( s )  N ajnlmM ( s )  , 

is more convenient for finding the asymptotic behavior of 
X(s) at R > 1 (Ref. 2), since the Laguerre polynomials in 
(29) are of the same type (in terms of the superscript) as in 
(12). 

The parameter u in (28) is related to R and E by 

The coefficients a;'" in (28) and (29) satisfy equivalent 
three-term relations. These three-term relations generate a 
transcendental equation which establishes the relationship 
among a, p, C, and m. Along with (23), it thus determines 
the behavior of the parameter u as a function of the param- 
eterp and of the three integers n,  I, and m, which are the same 
as the quantum numbers of the combined atom in ( 10) : 

o=u(n ,  1,  nz, p ) .  (32) 

This functional dependence, along with (30) and (31 ), de- 
termines E as a function of R either parametrically through 
the parameterp or directly, if the latter is eliminated with the 
help of (22). It is important to note, however, that the tran- 
scendental equation which we just mentioned does not deter- 
mine the functional dependence (32) explicitly. In practice, 
this functional dependence can be found either numerically, 
in the form of or in the form of asymptotic expan- 
sions for  mall'^.'^ or largeZ values of R. This comment also 
applies to the determination of the coefficients a;'" in (28) 
and (29). 

3. SOLUTION OFTHE INTERPOLATION TYPE 

In this paper we propose and analyze a new representa- 
tion of the function u (s) in (26). This representation is 

ce 

u ( s )  " (S+4P)' c i~; . ; i+ '  ( s )  = ( S + ~ P ) ~ U  ( s )  . 
j-0 

(33) 

The Laguerre polynomials in this expansion are of the same 
type in terms of the superscript as those in (7) ,  so represen- 
tation (33) is in a sense symmetric with respect to represen- 
tation (29). There is the hope that this representation will be 
convenient for an approximate description of the solution of 
the two-center problem at small values of R. As the discus- 
sion below demonstrates, this hope is justified. 

Unfortunately, three-term relations cannot be found 
for the coefficients c, in (33). To determine them and also 
the dependence of E on R,  we accordingly use an iterative 
method developed for the purpose. We first substitute (26) 
and (27) with u(s) from (33) into Eq. (20). We thereby 
transform it into the following equation for the function 
u ( s ) :  

where 

a(')= lim o=n-m-l=nt+n,, 
8-0  

We now multiply Eq. (34) by e-"sZ1+ 'L tl+ ' (s),  v = 0, 1, 
2, ... and integrate it overs from zero to infinity. Then substi- 
tuting the sum over Laguerre polynomials from (33) in 
place of v(s) in the integrand on the left side, and using the 
orthogonality relations for these polynomials, we find the 
following system of equations: 

We will solve this system of equations, i.e., determine a and 
c, as functions of the parameterp and the quantum numbers 
n,  I, and m, by an iterative method. We set 

cr=o(0)+cr(')+u(Z)+ . . . , 

In the first step of the iterative process, we thus substitute 
~ 2 1 +  1 (s) for V(S) on the right side of (37). Using next the 
orthogonality relations and introducing some new notation 
for the integrals, 

=s 
d 

L:"' ( s )  ,J L;+' ( s ) ,  

v14p d~e-~s ' '+ '  F ~ , 2 ' + '  ( s )  L , : I + ~  ( s )  , 
(v+21+1) 1 ', s+4p 

e 
v14p 

- J dse-aszl+' ~ y 2 ' + l  ( s )  L:;+~ ( s )  , 
(v+21+1)1 (s+4p)' (40) 

we find the equations 
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e - - f l  (nr, ng, 21+1,4~) 
4 P 

(nl-v)cY("=2(x-nq)+(2x+m+l) f' (v, nt, 21+1,4p) 

e - - f i  (v, nt, 21+1,4p) + x  (x+m) 
4~ 

(ng-v)c,"' -- (2x+m+l) f' (v, no, 21+1,4p) 

These equations determine the solution of Eqs. (37) in a first 
approximation. 

At this point the parameter x is still arbitrary. We will 
erase this arbitrariness by a method which will bejustified by 
the result. We substitute a'" + a'" for a in (36), and we 
equate the entire expression to zero. In place of (41 ) we then 
find two equations, for x and a"' +a"'. Eliminating 
a"' + a'", we find a quadratic equation in x: 

The positive solution of this equation is 

The values of x  calculated from this expression can then be 
used to calculate a"' + a( ' ) ,  from 

The latter relation was derived from (41) by equating E to 
zero. The functions f ', f ,  ,f, in (44)-(46) are taken with the 
same arguments as in (41 ) . Equations (45) and (46), along 
with (30) and ( 3  1 ) , determine the dependence of the elec- 
tron energy E on R, parametrically through the parameterp, 
in the first approximation of our iterative method. 

We can show that the limiting values of the energy cal- 
culated in this manner are exact. For this purpose we first 
find the limiting values of the functions f ', f ,  , f ,  with the help 

of (38 )-(40). We obviously have 

As the parameter p increases without bound, we find, mak- 
ing use of the orthogonality relations, 

lim f' (v, nt,21+1, dp) ={ -I' vin" 
P+ Ce 0, vanE,  

lirn f i  (v, nt, 21+1,4p) = { 1, v=n), (49) 
P+ ed 0, vf nt, 

lim f, (v, nt, 21+1,4p) =O. 
9-c- 

Substituting these limiting values along with (24) and (25) 
into (45), we find the following values of x :  

x (n, I, m, 0) 4-m=n,, (51) 

Substituting (51) along with (47) into (46), we find exact 
relation (35). Substituting (52) along with (48)-(50) into 
(46), we find the limiting value 

lim ( U ( ~ ' + U ( " )  =2nt+2K+m+l=2N-m- 1. 
P - r W  

(53 

By virtue of (3  1 ) and ( 14), this limiting value is also the 
same as the exact value of a in this limit. 

Equations (45) and (46) therefore determine the exact 
limiting values of the parameter a and thus, according to 
(3  1 ), those of the electron energy E. For this reason, these 
relations may be thought of as interpolation relations. The 
results calculated from (45) and (46) for the ground state 
and for the first three excited states of the molecular hydro- 
gen ion H: are shown in Table I and also in Figs. 1 and 2. 
These results give an idea of the accuracy of this interpola- 
tion. 

Let us discuss certain aspects of calculations from (45) 
and (46). We first note that the separation constant C in 
(23) is assumed to be a known function of I, m, andp; corre- 
sponding values of this constant can be found in the tables of 
Refs. 12 and 13. Alternatively, they can be calculated from 
the formulas given in a handbook. I '  The volume of calcula- 
tions remaining to be carried out is determined by the func- 
tions f ', f, , f, (with Y = ng ), and it should increase with 
increasing ng, as can be seen from the definitions of these 
functions in (38)-(40). It is useful in this connection to 
divide the entire set of states nlm into classes characterized 
by the node quantum number ng in ( 16) : nd = 0, nd = 1, etc. 
In particular, for the first two of these classes of this series, 
the functions f '  and f, + f,, which appear in (45) and (46), 
take the following form, which is convenient for calcula- 
tions: 
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TABLE I. Energies of the lsu* ground state. 

Notation: E,,-Exact solution; E,-asymptotic expansion at small R (Ref. 15); E I"-interpo- 
lation solution, first approximation; E j2'-interpolation solution, second approximation. 

*From Ref. 13. 
**From Ref. 14; the other data in this column are from Ref. 12. 

The functions g, ( 4 p ) ,  k = 0 ,  1 ,  2 ,..., are determined from 

where U ( a ,  b, z )  is the second solution of the confluent hy- 
pergeometric equation." The expansion of this function in 
powers of z contains lnz at integer values of the parameter b, 
so we conclude from ( 4 6 )  and ( 3  1 )  that the dependence of 
the electron energy on R will contain singularities of the 
R 1nR type with integer values of 6 at small values of R. In 
particular, the first term of this type for the ground state is 
R lnR, in agreement with a result from Ref. 15 .  Note also 
that there is a representation of function (56) in terms of a 
continuous fraction which is convenient for calculations." 

In a first approximation, the coefficients c, of expansion 
( 3 3 )  are calculated from (42) and ( 4 3 ) ,  where E should be 
set equal to zero. For x and the functions f ', f, , and f,, we 
should use expressions ( 4 5 )  and ( 3 8 ) - ( 4 0 ) ,  respectively. 
The partitioning of the states nlm into classes on the basis of 
the node quantum number nc in ( 16) is still meaningful. The 
volume of calculations increases with nc. In the simplest 
case, nc = 0, we find the following integral representation 
for ct' ' from (43 ) : 

FIG. 1. Energy of the lsu, ground state of the two-center system with 
identical unit charges at the centers as a function ofthe distance R between 
the centers. Solid line-exact solution constructed from the tables of Ref. 
12; points-results calculated from the expressions given in the text prop- 
er for the interpolation solution. 0 )  First approximation; .) second ap- 
proximation; A) asymptotic expansion from Ref. 15. 

FIG. 2. The same as in Fig. 1, for the first three excited states. 1-2pu,; 
A-first approximation; A-second approximation; curve 2-2pr, ; 0- 
first approximation; 3-2sug; 0-first approximation; solid line 4- 
ground state. 

870 Sov. Phys. JETP 71 (5), November 1990 E. P. Vol'skil 870 



where U(a,  b, 4p) is, as in ( 5 6 ) ,  the second solution of the 
confluent hypergeometric equation. 

With increasing index v, the integral in ( 5 8 )  obviously 
decreases; it does so more rapidly, the greater the value of 4p. 
For successive calculations of the quantities G tk), Y = 1, 
2, ..., the following relations are useful: 

k !  
G1 (4p)  = - [kil- (k+l+4p) (I-g,) ] 

4~ 
= (k-1) ! [ (k+lS-4p) (1-gh-,) -k], ( 5 9 )  

The ratio of integrals can be expressed and calculated in 
terms of a continuous fraction," and g, in ( 5 9 )  is the same 
as in ( 5 6 ) .  

The limiting properties of the coefficients ct" at small 
and large values ofp, for arbitrary quantum numbers n, I, m, 
can easily be derived from ( 4 2 )  and ( 4 3 )  with the help of 
(47)-(50) .  The results are 

(I7 - lim cv -0, vZnE,  
B+G 

21+1-m 
lim 2) = - , v<nt, lim c!"=o, v>nt. 
~ + m  nt-v P-- 

( 6 2 )  

4. SECOND-APPROXIMATION CORRECTION TO THE 
ELECTRON ENERGY 

Going back to Eqs. ( 3 7 ) ,  we now set 
uzu(O) + a'" + d2', and we replace v(s) in the integrand 
on the right side by the sum of the zeroth and first approxi- 
mations for this function: 

v ( s )  ;.do) ( s )  +dl' ( s )  =L::::" ( s )  + z c? a:'+' ( s ) .  ( 6 3 )  

Using ( 3 6 ) ,  we also set 

The definition of lc by means of ( 4 5 )  then remains in force. 
As a result, after certain transformations, we find the 

following expression for the second-approximation correc- 
tion to a: - 

If ng = 0, the second term in the second sum vanishes. Using 
(47)-(50) ,  ( 6 1 ) ,  and ( 6 2 ) ,  we find 

lim a(2)=lim a(2)=0. 
P-rO P+W 

( 6 6 )  

The second-approximation correction thus does not change 
the interpolation nature of the functional dependences on 
the energy derived earlier. This assertion will apparently re- 
main valid for subsequent corrections. 

The calculations of d2' in this study were carried out 
only for the ground and first excited states, for which we 
have ng = 0. Expression ( 6 5 )  takes a simpler form in this 
case: 

*O 

The functions g, (4p)  and G :"' (4p) ,  k = 0,  1 ,  2  ,..., on the 
right side of this expression are determined by integral rela- 
tions ( 5 6 )  and (58). The coefficients c:" in ( 6 7 )  can be 
written as follows with the help of ( 5 7 )  and ( 5 8 )  : 

Now using the asymptotic representation" of the function 
U(a, b, z )  at large values of the parameter a, we find the 
following estimates of the coefficients c;" for large values of 
the index Y: 

FIG. 3. Wave function of the lsu, ground state of the two-center system 
with identical unit charges at the centers as a function of the coordinates 
[see ( 27 ) l  (exact solution). 1-R = 0.2; 2-R = 2.0. 
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FIG. 4. The same as in Fig. 3, for the 2pu,, state. I-R = 0.2; 2-R = 2.0; 
3-ground state, R = 2.0. 

This behavior of c!," at large values of v causes the sums on 
the right side of (67) to converge for all states with nE = 0. 
We have not studied the convergence of the sums in (65) in 
the general case. 

The results calculated for the second-approximation 
correction to the energy with the help of (67) are shown in 
Figs. 1 and 2 and Table I for the lsu, and 2puu states. 

5. DISCUSSION OF RESULTS 

The most interesting results of this paper, in my opin- 
ion, are relations (45) and (46), which were derived in the 
first step of the iterative solution of Eqs. (37). The electron 
energies calculated from these formulas for the ground state, 
shown in Table I and Fig. 1, agree considerably better than 
the asymptotic expansion of Ref. 15 with the exact solution, 
even in the region R < 0.5. Over the entire range of R the 
deviation from the exact solution is less than 3%, as can be 
seen from this table. An accuracy of the same order of mag- 
nitude is achieved even in the first approximation for the 
2p7, and 2x7, states (Fig. 2).  

Relations (45) and (46) are considerably less success- 
ful in the case of the 2puu state (Fig. 2).  Corresponding 
calculations carried out for the 2du, state suggest that the 
accuracy of the first approximation is always considerably 
worse for states with a nonzero node quantum number 
n, = I - m. Calculations ofX(s) carried out in this study on 
the basis of exact expressions (26) and (28 ) , with the coeffi- 

cients a:'" from the tables of Ref. 12, show that the func- 
tional dependence X(s) does not change qualitatively with R 
for the states with n, = 0 (Fig. 3 ) .  For the states with 
n, = 1,2, ..., in contrast, the electron density is redistributed 
noticeably (Fig. 4).  It may be that thedifference between the 
accuracy levels of the first approximation (and, evidently, 
those of all subsequent approximations) for these two types 
of states stems from specifically this circumstance. 

As can be seen from Table I and Figs. 1 and 2, the sec- 
ond-approximation correction improves the accuracy of the 
results considerably. For the ground state, the maximum 
deviation from the exact solution decreases to -0.5%. Esti- 
mates of the type in (69) can apparently be found for higher 
approximations also, so in principle they could be calculat- 
ed. If this is the case, solution (26), (33) might be thought of 
as yet another representation of the exact solution of the 
symmetric two-center problem. 

I am deeply grateful to L. P. Pitaevskii and the partici- 
pants of a theoretical seminar at the Institute of Solid State 
Physics, Academy of Sciences of the USSR, for a discussion 
of these results. 
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