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The fluctuation diamagnetism in a tetragonal normal metal exhibits anisotropic behavior near the 
superconducting transition with nontrivial pairing, even when the magnetic field lies in the basal 
plane. This anisotropy is not present if the superconducting state is described by a single complex 
order parameter; only the nonlinear response is anisotropic. The linear diamagnetic susceptibility 
is isotropic because for all degenerate superconducting phases, the fluctuations contributing to 
diamagnetism are the same above the critical temperature T, . 

Recently much attention has been paid to the properties 
of anistropic superconductors with nontrivial pairing. This 
nontrivial pairing occurs for certain types of heavy-fermion 
superconductors'-3 and in several organic superconductors 
(Bechgaard salts) .,p5 The d-type pairing is not ruled out for 
high-temperature superconductors. If the symmetry break- 
ing during superconducting transition takes place according 
to one of the multidimensional representations of the dis- 
crete symmetry groups of the normal phase, the anistropy of 
the upper critical field can have a very specific character.'.' 
For example, in tetragonal superconductors, for which the 
order parameter is transformed according to the two-dimen- 
sional representation of the D,, group, anisotropy of the 
upper critical field is possible when the field is oriented in 
basal plane of the crystalline structure.' Observation of this 
kind of anisotropy would help in identifying superconduc- 
tivity of this type, because in other cases (corresponding to 
the one-dimensional representation of D,, ) the upper criti- 
cal field in a tetragonal superconductor is isotropic in the 
plane and orthogonal to the 4th-order symmetry axis. 

The question arises whether this kind of anisotropic be- 
havior in the basal plane of a tetragonal metal occurs not 
only for the superconducting state ( T < Tc ), but for the nor- 
mal phase ( T> Tc ) as well due to fluctuations. In the pres- 
ent paper the anisotropy of the fluctuational diamagnetism 
in the normal phase of a tetragonal metal near Tc is consid- 
ered. Since the anisotropy in question is connected with the 
specific character of the symmetry-breaking, it is natural to 
expect it to be weaker above Tc than below T, . In fact contri- 
butions from all the degenerate superconducting phases are 
present in the normal metal. However, below the critical 
temperature the symmetry is broken, so only one phase is 
present. The immediate consequence of this, found in what 
follows, is the isotropy of the linear fluctuational diamagne- 
tic response in the basal plane of the tetragonal metal for 
T >  T, . At the same time we show that the nonlinear contri- 
bution to the fluctuational diamagnetic response is aniso- 
tropic. In particular, the magnetic field lying in the basal 
plane and the field-induced magnetic moment generally 
have a nonzero angle betwen them, if the nonlinear contribu- 
tions are taken into account. This takes place only for tetra- 
gonal metals for which the superconductivity below T, is 
due to an order parameter with two complex components. 
Nonlinear effects in fluctuational diamagnetism have been 
subjected to extensive experimental s t u d i e ~ . ~  This is why the 
results listed below make possible a new technique for the 

experimental identification of this type of superconductivi- 
ty. 

The corresponding Ginzburg-Landau functional in the 
Gaussian approximation has the following form: 
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w i t h a = a ( T -  T c ) , q =  ( ~ ~ , q ) , d ~ q = d q / d x ~  - (2ie/ 
c)Ak q .  The z-direction is along the tetragonal axis of the 
crystal and the x and y coordinates are directed along other 
crystal axes. For simplicity we take mi = m;' = m ,, m; 
= m;' = m, (the equality m; = my is valid up to terms of 

order T f  /Tf-).  In that case the choice of the variables 7, 
and the new coordinates x + = (y + x ) / G  [Analogously 
A , = (Ay f A, )/I,%) 1. The Gaussian fluctuations of the 
quantities 7+ ,  7- are found to be independent: 

where 

and 8,  = d /ax, - (2ie/c)A, . The expression for 
AF- (7- ) is obtained from Eq. ( 2 )  by replacing the quanti- 
ties 7, and + $m3 by 7- and fm,, respectively. To be 
stable, a homogeneous superconducting state must satisfy 
12m31 >m, ,  m1,, >0.  

The effective functional (2)  assumes the usual form 
corresponding to an isotropic superconductor, after the 
transformations 
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This enables us to write down the expression for the contri- 
bution of F+ to the free energy using the well known result 
for isotropic superconductors (see, e.g., Ref. 9). 

F --V'------ +- IeITB+z j d p i n { n T [ ( n + L ) - ) B +  
2n2c ,,=a -m 2 m'c 

where 

and the magnetic field is assumed to lie in the basal plane. 
The expression for F- is obtained from (4) by substituting 
B+ into B-. 

The fluctuation contribution F = F+ + F- to the free 
energy due to the magnetic field component in the xy plane 
depends in general on the direction of the field in this plane. 
However, the anisotropy of F is found to be much weaker 
than that of F+ and F- separately and drops out entirely to 
second order in the field. Taking into account the fourth- 
order terms one has 

where 

2'"eTT, I m, I x=-v 
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and 8 is the angle through which the magnetic field is in- 
clined toward the axis. Note that 
Bo=:1.69Hc,1(p=O)where H,,'(p=O) is the upper 
critical field near T, for direction parallel to thex and y axes. 

Using Eq. (4)  for F+ and the analogous expression for 
F- one can obtain, following Ref. 10, the general expression 
for the field-induced magnetic moment M, in which nonlin- 

ear dependence of this quantity on the field is taken into 
account. We cite here only the result for relatively weak 
fields B(Bo in which the lowest nonlinear corrections are 
accounted for:2 

mi2BZ 
XIY (B) =xYX(B) =-x - sin 28. 2m5zBa2 

The angle 0, between the magnetic moment and the x 
direction is related to the inclination 8 of the magnetic field 
by 

mi2B2 
tanOM=(l-- cos 28) tan 8 .  

The magnitude of the magnetic moment is thus described by 
the expression, 

Thus we conclude that in tetragonal superconductors 
with nontrivial pairing the anistoropy of the fluctuational 
diamagnetism emerges even in the case when the applied 
field lies in the basal plane. This anisotropy is described by 
expressions ( lo)-( 12). 

"The isotropy ofthe linear diamagnetic response in the basal plane follows 
just from the fact that the second-rank tensorx,, in the linear approxima- 
tion goes over to S, ( i  j = x,y)  in the linear approximation. 

"Nonlinear corrections of the same form arise also from fourth-order 
gradient terms. These nonlocal terms make a contribution to the diamag- 
netic response which is smaller than the one we have considered by a 
factor of order (H,, ( T ) / H , ,  ( 0 )  1'. Close to T, the quantity (H,, ( T ) /  
H,, ( 0 )  )' is negligible. The quantity H,, ( T )  is associated with a tem- 
perature T <  T, for which the quantity IT - T, I is the same as that con- 
sidered here for T >  T, . 

'R. G. Stewart, Rev. Mod. Phys. 56, 755 (1984).  
'G. E. Volovik and L. P. Gor'kov, Zh. Eksp. Teor. Fiz. 88, 1412 ( 1985) 
[Sov. Phys. JETP 61, 843 ( 1985) 1. 

'Z. Fisk, D. W. Hess, C. J. Pethick et al., Sci. 239, 33 (1988).  
4A. A. Abricosov, J. Low Temp. Phys. 53,413 (1983).  
%. P. Gor'kov and D. Jerome, J. de Phys. Lett. 46,643 (1985).  
'L. P. Gor'kov, Pis'ma v ZhETF 40, 351 (1984) [JETP Lett. 40, 1155 
(1984) l .  

'L. J. Burlachkov, Zh. Eksp. Teor. Fiz. 89, 1382 (1985) [Sov. Phys. 
JETP 62,800 ( 1 9 8 5 ) l .  

'W. J. Skocpol and M. Tinkham, Rep. Progr. Phys. 38, 1049 (1975).  
9E. M .  Lifshits and L. P. Pitaevskii, Statistical Physics, Part2 (Pergamon, 
Oxford, 1980). 

"'R. E. Prange, Phys. Rev. B 1,2349 ( 1970). 

Translated by P. B. Lerner 

826 Sov. Phys. JETP 71 (4), October 1990 Yu. S. Barash and A. V. Galaktionov 826 


