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In this paper we propose a model that allows us to describe the kinetics of phonon systems with 
anharmonic three-phonon interactions. Using this kinetic model, we carry out a numerical 
investigation of the system's time history as it approaches equilibrium when an initial phonon 
distribution is specified that is substantially out of equilibrium. We compare our results with the 
usual self-similar (i.e., scaling) approximate solutions for such systems, and also determine the 
limits of applicability of the self-similar approximation. 

INTRODUCTION 

One of the most interesting and important problems in 
the physics of phonons is how a system of nonequilibrium 
phonons relaxes in the course of establishing an equilibrium 
temperature for the crystal. It is by no means unusual to 
encounter situations in which the state of the phonon system 
of a solid is far from equilibrium or, in other words, the 
distribution function for the phonons departs significantly 
from the Planck distribution. This situation occurs, for ex- 
ample, during the relaxation of the electron subsystem of a 
solid when the latter is excited by an intense laser pulse. Such 
an excitation leads to the generation of high-frequency 
acoustic phonons over a wide frequency range, with energies 
that are comparable to the frequency of a Debye phonon 0,. 
In this case the initial distribution of acoustic phonons will 
have a maximum that, as a rule, occurs at a rather high fre- 
quency, i.e., on the order of half the frequency of the lowest 
optical branch. Since the interaction of the various elec- 
tronic excitations (free current carriers, excitons, etc. ) with 
this nonequilibrium system of phonons will differ from their 
interaction with thermalized phonons, in order to describe 
these processes correctly it is necessary to take into account 
the evolution of the phonon system as it relaxes toward an 
equilibrium distribution with finite temperature. 

A number of experimental investigations, in particular 
Refs. 1 and 2, have tracked the early stages of this relaxation 
process under weak excitation of the phonon system when 
the spontaneous decay of the phonons dominates. As was 
shown theoretically in Ref. 3, under these conditions there 
exists an approximate solution to the system of kinetic equa- 
tions that describes the behavior of the phonons: the so- 
called self-similar (or "scaling") solution. The question of 
whether or not such a self-similar solution can evolve from a 
given initial phonon distribution remains open. Further- 
more, there exist only qualitative estimates for the time peri- 
od during which the system can be described by such a solu- 
t i ~ n ; ~  this is because a complete description of the relaxation 
process, including the final stage during which the phonon 
temperature is established, must take into account both pro- 
cesses that lead to decay of the high-frequency acoustic 
phonons and processes that lead to their amplification. Ana- 
lytic calculations that would lead to such a description do 
not appear to be possible. 

In this connection there is considerable interest in de- 
vising numerical experiments, based on models of the relaxa- 
tion processes in a system of phonons, that would allow us to 
follow the evolution of the phonon distribution with time for 
various initial conditions. This type of experiment was in 

fact carried out by the authors of Ref. 5 within the simplified 
"generation" scheme first discussed in Refs. 6 and 7 (in 
which the continuous phonon spectrum was replaced by a 
set of levels R, , 0, /2, RD /2', etc. ) and in Ref. 8 for an 
equidistant subdivision of the spectrum and explicit inclu- 
sion of processes of decay and scattering by impurities. Here 
we will use a variant of the equidistant-spacing model that 
best corresponds to a true continuum, and will take into ac- 
count all three-phonon processes, i.e., leading both to decay 
and amplification;9 this implies that in our model the system 
can undergo thermalization as t-.  w . 

In this paper we will present the results of calculations 
that were carried out for the case of low initial crystal tem- 
perature To and high levels of excitation, where the finite 
temperature T that characterizes the total energy of the sys- 
tem greatly exceeds the initial temperature and reaches val- 
ues comparable to 0,. We show that for T( RD the system 
of nonequilibrium phonons can evolve into the state de- 
scribed by the self-similar solution at'a certain stage of the 
relaxation, and obtain bounds on the existence of the latter, 
whereas for T z  RD the amplification of phonons turns out 
to be important at the very beginning of the relaxation pro- 
cess9 and the solution has no self-similar stage at all. 

DESCRIPTION OFTHE MODEL 

In order to describe all the relaxation processes of a 
system of nonequilibrium phonons up to the time when a 
finite equilibrium temperature Tis established in the system, 
we have carried out numerical calculations of the kinetics 
associated with changes in the occupation numbers of phon- 
ons with various frequencies. In our reference physical mod- 
el we consider phonons belonging to two modes with an iso- 
tropic Debye spectrum. The dispersion of the longitudinal 
I-phonons is taken to be R = u, Ikl, that of the transverse t- 
phonons 0 = u, Ikl (this latter mode is assumed to be dou- 
bly degenerate in view of the two polarizations of the t-phon- 
ons). Here u, and u, are the longitudinal and transverse 
sound velocities, respectively. For convenience in the nu- 
merical calculations we set u, equal to one, while u,  is mea- 
sured in units of u, and is labelled s, and is chosen so that 
s = u , /u ,  > 1. The frequency of the highest Debye phonon is 
also assumed to equal unity, i.e., R, = 1; we assume that 
this frequency is the same for both phonon branches, and use 
it to provide the scale for energy. In this model we also as- 
sume that time is scaled by the lifetime of the Debye phonon. 

We will take into account all the normal three-phonon 
processes that are possible in such a system and that satisfy 
the law of conservation of energy and momentum, i.e., we 
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will not discuss umklapp processes. This approximation is 
reasonable for T( 1. We will also assume that the processes 
of mutual conversion of 1- and t-mode phonons at impurities 
are rapid in comparison to the anharmonic processes that 
control the behavior of the system. This allows us to equate 
the phonon occupation number functions n, (fl,t) and 
n, (R,t) for the longitudinal and transverse branches respec- 
tively (which are in general different functions), and to deal 
only with a single function n (fl,t). This assumption is valid, 
for example, in semiconductors at low temperatures where 
scattering by impurities dominates over phonon-phonon in- 
teractions. 

Thus, our interest will center on the time dependence of 
the occupation number n(fl,t) of phonons of various fre- 
quencies f l  for a spatial homogeneous nonequilibrium initial 
distribution n(R,O) = n,(R). We study the process by 
which the nonequilibrium function n,(fl) at t = 0 is trans- 
formed as t+ w into the equilibrium function nT ( f l )  corre- 
sponding to a Planck distribution with a finite temperature 
T, where the latter is specified by the total energy of the 
initial phonon distribution n,(R). 

In order to solve numerically the kinetic equations that 
determine the behavior of our physical model of the phonon 
system, we need to specify the continuous function of fre- 
quency n (0 , t )  on a grid with a certain finite step size. This 
operation is equivalent to replacing the continuous phonon 
spectrum by a set of levels that are equidistant in frequency: 
Ri = i/N, 1 ( l i ~ N ,  where i is the index of the level and N is 
the number of levels under discussion. In calculations that 
follow we have set N = 128. Here our calculations differ sig- 
nificantly from those of Ref. 5 based on the generation mod- 
el, since these authors artificially limited the three-phonon 
processes to decays that involved halving the initial phonon 
energy, a procedure that significantly distorts the entire en- 
ergy relaxation picture. In particular, we will see in what 
follows that those processes in which a phonon decays into 
two other phonons with nearly equal energies make up a 
comparatively small fraction of all the decay processes. 

Thus, the mathematical model that underlies our nu- 
merical calculations assumes that the phonon spectra are a 
set of S-spheres in k-space with radii 

for the longitudinal and transverse phonon branches respec- 
tively. In order that this choice correspond to the Debye 
spectrum of the original physical model the density of states 
for these levels is chosen in the following way: 

where the mode type a can be I or t, andp, = l/s, p,  = 2. 
In this mathematical model, the kinetic equation that 

takes into account three-phonon anharmonic processes 
leading to transitions i s j  + k between the levels (where i, j, 
k are the level indices) gives rise to a nonlinear system of N 
equations whose mth equation has the form 

R-nr 

The expression in brackets is the difference between the 
numbers of phonons of frequency m/N created and annihi- 
lated per unit time. The first sum in Eq. (3)  takes into ac- 
count processes whereby phonons of frequency m/N (the 
mth levels) decay to phonons with frequency j/N and 
(m - j)/N, ( 1 q '<m - I ) ,  along with processes in which 
the latter are amplified, leading to the creation of phonons of 
frequency m/N. The factor 1/2 eliminates the repetition of 
terms in the first sum. The second sum takes into account the 
processes of amplification of phonons of frequency m/N by 
the remaining phonons, and also the decay of phonons of 
higher frequencies leading to the creation of phonons of fre- 
quency m/N. 

It is not difficult to see from Eq. (3)  what the physical 
meaning of the transition constant RjSj+,  is. Thus, for 
n, = 1, n, = n, = 0 the number of decays per unit time of 
phonons of frequency i/N to phonons with frequencies j/N 
and k /Nis directly proportional to RiZj + , . Taking into ac- 
count that the density of'states at level i is proportional to i2, 
the quotient R,,, + , /i2 will be proportional to the probabili- 
ty of decay of a phonon of frequency i/N into phonons with 
frequencies j/N and k /N per unit time. In order to calculate 
RiZj+, we need to sum over the contributions of all three 
types of processes that satisfy the laws of conservation of 
energy and momentum: 

As an example we present a calculation of 
W, ( i s j  + k)  for the first process, i.e., y = 1. The expres- 
sions for the two remaining processes are analogous insofar 
as it is accurate to interchange the indices I and t. For 
W, ( i s j  + k)  we have 

x I M l ~ + t ( k < ~  kit kk) l 2  6 (ki-kj-kk) Si.(j+k). ( 6 )  ijk 

Here SiJ is the Kronecker delta symbol, while M,,, + , 
(ki,k,, k, ) are the matrix elements of the corresponding 
three-phonon process. We have assumed that the latter are 
proportional to the product of the magnitudes of the phonon 
wave vectors that participate in the process. " For example, 
for the first of these processes 

The integral in Eq. ( 6 )  is calculated analytically, which 
by taking into account Eq. (7)  leads to the following expres- 
sionfor W,(i*j+ k) :  

[r, (i)ri(j)rt(k) 1 3  
Wl(i*j+k) = ~ ~ 2 ~ + ~ p ~ p ~ p t  

ijk 

Finally, the normalization constant R in the denomina- 
tor of Eq. (3)  is chosen so that the unit of time is the lifetime 
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of a Debye phonon (a, = 1 ) . From the expression for the 
lifetime of a phonon of frequency i/N due to these decay 
processes, 

z,-' (i) = 
1 i -  i > l ,  

(pr+pt)iZR 2 j=, 
(9)  

it follows that for r, (N) = 1 we must set 

Incidentally, we note that the dependence of the lifetime Eq. 
(9)  on the frequency of the ith phonon follows the well- 
knownlaw 7 D - a - 5 ,  sincer,(i)-i-'. 

The numerical calculations were carried out using the 
fourth-order Runge-Kutta method with error control at 
each step. An IBM AT personal computer used. 

DECAY CHARACTERISTICS 

Let us now discuss how the probability for decay of a 
phonon of frequency i/Ninto two phonons with frequencies 
j/N and k / N  depends on the ratio of these latter phonon 
frequencies. Figure la shows the dependence of Ris j  + , on 
the ratio j/i (the upper curve), and also its component 
W, ( i s j  + k) for the three decay processes Eq. (4).  It is 
clear that although the decay process involving strict halv- 
ing of the phonon energy has the largest decay probability, 
the probabilities for decay into two phonons with different 
frequencies are also rather substantial. The cutoffs of the 
functions in Fig. la are due to the law of conservation of 
momentum [the 0-function in Eq. (8)  1; the sharpness of 
these cutoffs is a consequence of our assumption of an iso- 
tropic dispersion for the phonons. 

Generally speaking, Eq. (8)  should contain different 
coefficients C,,, + , and C,,, + , . These coefficients charac- 
terize the ratio of the lifetimes associated with the I z t  + t 
and I s 1  + t decays. It follows from Eqs. (8)  and (9)  that 

The functions in Fig. la, as well as all the results of the 
calculations which follow, were obtained for 

- Cl t t  + - Clt l  + , = 1. Estimates of the ratio of the lifetimes 
associated with these decays for specific materials can be 
found in Ref. 11. The longitudinal mode velocity in these 
calculations was taken to be s = 1.5, which gives a lifetime 

ratio of ~ 0 . 1 4 8  according to Eq. (8).  It is clear that the 
results of our general model agree reasonably well with Ref. 
11. Ass increases, the cutoffs clamp the decay probability at 
about one-half, and the lifetime ratio Eq. ( 11 ) decreases, 
while ass  decreases we observe the opposite behavior. Note 
that a test calculation of functions of the type shown in Fig. 
l a  for a specific choice of parameters corresponding to CaF, 
gives values close to those obtained in Ref. 8. 

In order to verify the generality of the model, i.e., to 
determine to what extent the results and derivations ob- 
tained in this paper can be applied to the study of various 
materials, we investigated the stability of the solution with 
respect to variation of the physical parameters of the model. 
In particular, we varied the form of the probability functions 
associated with the decay of a phonon into two others, i.e., 
the coefficient R,,, + , as a function ofj/i for fixed i. 

It is not difficult to transform the factor in Eq. (8),  
which is a smooth varying function of i, j, k, into the follow- 
ing form: 

[ r l  t i )  rt ( j )  rt ( k )  I 
= i 6 ( ( j / i )  ( I  - ( j / i ) ) j 2 .  

ijk 

Then the decay functions used in the calculations have the 
form 

In addition to the function with a= 2, we also carried out 
calculations for p = 1 and p = 4 without including the 0- 
function. Figure lb  shows all three decay probability func- 
tions: the function given in Eq. (8)  as well as two approxi- 
mations using the smooth functions given above for B = 1 
and 0 = 4 It is clear that there are not qualitative differ- 
ences in the behavior of these three functions. 

EVOLUTION OF THE NONEQUlLlBRlUM PHONON 
DISTRIBUTION 

The results of calculations for an initial phonon distri- 
bution of "6-function" from [i.e., ni (0)  = 0, i#N] serve to 
illustrate our model. The excitation energy corresponds to a 
finite temperature of T = 0.04. For convenience the results 
are presented in the form of a "modal" temperature (i.e., the 
temperature of each mode): 

Q 
T (Q, t )  = T o  ( t )  . 

l n [ l + l / n ( Q ,  t )  ] 

[For the case of an equilibrium distribution n(fl , t)  the tem- 
perature satisfies T(f2,t) = const = T.] Figure 2 shows the 

FIG. 1.  Decay characteristics for three-phonon processes: 
(a)-dependence of the decay probability Ri*j+ of a 
phonon of frequency i/N into two phonons with frequen- 
cies j / N  and k / N  as a function of the ratio j/i (the upper 
curve, E), along with its component W, ( i s j  + k )  for the 
three allowed processes (see text); (b)-decay characteris- 
tics of phonons when the decay function is approximated by 
the smooth function [ (  j/i) (I - ( j / i ) ) ] ?  I-fi = 1, 2- 
fi = 4, 34alculated decay probability for fi = 2 (corre- 
sponds to curve B of Fig. la ) .  
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FIG. 2. Results of calculations for 6-type initial 
conditions [n, (0)  = 0, i# N] for the phonon dis- 
tribution. The excitation energy corresponds to a 
finite temperature T = 0.04; a-time dependence 
of the phonon modal temperature T,, for various 
values of frequency R = 1 (1  ), 1/2 (2) ,  1/4 (3), 
1/8 ( 4 ) ,  1/16 (5 ) ,  1/32 (6).  1/64 (7),  1/128 ( 8 ) ,  
( i  = 128, 64, ..., 1 respectively ); &frequency de- 
pendence of the modal temperature at various 
times t = 1 ( I ) ,  10 (2 ) ,  10' (3) ,  10' ( 4 ) ,  lo4 (5) ,  
I@ (6) .  

behavior of this modal temperature for phonons with fre- 
quencies 1, 1/2 ,..., 1/128 ( i  = 128, 64, ..., 1 respectively). 
We see that first the modal temperatures of phonons with 
frequencies 1 and 1/2 become equal; soon after, the tempera- 
tures of those with 1, 1/2 and 1/4 become equal, etc. For this 
case the maximum of the phonon distribution shifts in a step- 
wise way into the region of low frequencies. The evolution of 
the phonon distribution can be followed more clearly if we 
plot the modal temperatures as a function of phonon fre- 
quency at different times (Fig. 2b). Here we see the gradual 
diffusion of the thermalized interval into the region of lower 
frequencies; the rate of this shift slows significantly as the 
frequencies decrease. As t- a, the system reaches equilibri- 
um at a temperature T,, = T = 0.04 for all a. 
THE ESTABLISHMENT AND BOUNDARIES FOR EXISTENCE 
OFTHE SELF-SIMILAR SOLUTION 

The possibilities of this model have not been exhausted 
by the description given above. In particular, we will now 
investigate the question of self-similarity. A theoretical anal- 
ysis of the kinetic equations that describe the behavior of a 
system of phonons in the early stages of its evolution was 
given in Ref. 3. In studying the linearized version of a system 
of equations similar to Eq. (3)  for a spatially homogeneous 
excitation. Kazakovtsev and Levinson found a self-similar 
solution for n (a , t )  of the form 

where A is a constant that depends on the overall energy of 
the system andf,, ( 7 )  is a certain universal function which 
does not even depend on the injected energy. In their further 
work4 they obtained order-of-magnitude estimates of the 
time interval within which solutions of the form (13) can 
exist; solutions for the real occupation numbers ceased to be 
of this form as processes involving phonon amplification 
were switched on, which occurred when some characteristic 
n(R,t) attained the value unity. However, the simple fact 
that a self-similar solution exists still does not answer the 
question of whether or not a specific initial condition, which 
will not itself be self-similar as a rule, can eventually evolve 
toward such a solution. Because our model allows us to ob- 
tain the explicit time dependence of the occupation numbers 
and does take into account phonon amplification processes, 
it is possible to use it to answer both of these questions, i.e., to 

study how an initial condition evolves towards a solution of 
the form (13) and to determine the time interval within 
which a real solution remains self-similar. 

In order to answer these questions, we must calculate 
the function f(7) using our model in order to obtain the 
functions n(a , t ) :  

n (Q,  t )  Q3/t'/', q=Qt"' 
f(d= (14) 

r 

The customary normalization, which corresponds to conser- 
vation of energy, has the form 

and allows us to eliminate the coefficient A. The function 
analogous to ( 14) for a system of linearized kinetic equa- 
tions corresponding to the set (3)  ceases to depend on time 
fort> 10, which allows us to identify it with the scaling func- 
tionLC (1) and to conclude that the solution of the linear- 
ized system has achieved self-similarity. Figure 3 shows the 
scaling function obtained in this fashion for various profiles 
of the decay probability (Fig. lb).  It is clear that the differ- 
ences between the various scaling functions are considerably 
smaller than the differences in the decay probability. 

FIG. 3. Form of the scaling function for the various phonon decay charac- 
teristics shown in Fig. la. The labelling ofthese curves corresponds to that 
in Fig. 1 b. 
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FIG. 4. Form of the function f (7)  at various instants of time t. The label- 
ling of the CUNeS corresponds to the labelling in Fig. 2b. 

FIG. 6. Time dependence of the function S( t )  for a 8-type initial phonon 
distribution for the various phonon decay characteristics shown in Fig. 
Ib. The labelling of the curves corresponds to the labelling of Fig. Ib, and 
T = 0.04. 

Figure 4 shows the results of calculating the function 
f(q)  at various instants of time by solving the full nonlinear 
system of equations (3 ). In this case the overall phonon en- 
ergy was chosen so that the final (equilibrium) temperature 
is T =  0.04. The figure shows clearly that during the time 
interval r = 10 to 10.0 the shape of the function f (g  ) becomes 
stable and closely resembles the self-similar functionf,, ( 7 )  
(Fig. 3). However, during other time intervals f (q )  differs 
considerably fromf,, (7) and is time-dependent (Fig. 4).  

TRANSITION OFTHE SOLUTION TO THE SYSTEM OF 
KINETIC EQUATIONSTOSELF-SIMILAR FORM 

We conclude that the solution of system (3)  has 
reached the self-similar form when the functions f (g )  and 
f, (7 )  coincide. Let us define a quantitative measure of how 

FIG. 5. Time dependence of the mismatch function S( t )  during the initial 
stages of the relaxation for three initial phonon distributions n(R,O) (see 
inset) of the form: I-a Gaussian distribution with a maximum at R = 1 
and a half-width at half-height of 0.156; 2-a "half-step" distribution 
[n(R,O) = 0, R <  1/2; n(R,O) = const#O, 1/2 < R <  I];  and 3-a8-dis- 
tribution [ni  (0) = 0, i # N ]  . The finite temperature for all these distribu- 
tions was T = 0.04; S = 0 corresponds to complete coincidence of the 
functions f (v)  andf,, (v) ,  S = 2 implies the functions are not correlated. 

they differ as follows: 

We will illustrate the transition of the solution of self- 
similar form for the following three different initial distribu- 
tions n(R,O) (see the inset to Fig. 5): 1-a Gaussian distri- 
bution with a maximum at R = 1 and a half-width of 0.156; 
2-half of a step function [i.e., n(R,O) = 0 for R < 1/2, and 
n (R,0) = const#O for 1/2 < R  < 1 ); and 3-the delta dis- 
tribution described above. The finite temperature of all these 
distributions was T = 0.04. It is clear that the broader initial 
distributions resemble f,, ( g )  more and therefore the self- 
similar solution is established more rapidly. It is also clear 
from Fig. 5 that until t=: 10, the distribution function n(Q,t) 
corresponds to the scaling function f,, (7) independent of 
the type of initial distribution. 

In addition, we investigated the question of the stability 
of the solution with respect to various decay laws. In Fig. 6 
we show the behavior of S( t )  for the 8-type initial distribu- 
tion. T = 0.04, for various profiles of the decay probability 
(Fig. lb).  The difference in S ( t )  for these three laws is even 
smaller than the differences in the corresponding scaling 
functionf,, ( 7 )  (Fig. 3). 

Thus, we can conclude that the solution to the system 
(3)  will approach the self-similar solution for various initial 
conditions and decay laws. 

FIG. 7. Time dependence of the functions S ( t )  for 8-type initial phonon 
distributions various values of the final temperature: T = 0.02 ( I ) ,  0.03 
( 2 ) ,  0.04 (3), 0.05 ( 4 ) ,  0.07 ( 5 ) ,  and 0.1 (6). 
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FIG. 8. Time dependence of the function S ( t )  for &type initial phonon 
distributions plotted against the coordinate tTVor  various values of the 
final temperature T. The labelling of the curves corresponds to the label- 
ling of Fig. 7. The arrow denotes that value t T S  = 6X l o 4  (see text). 

DISRUPTION OF THE SELF-SIMILAR SOLUTION 

Figure 7 illustrates the disruption of the self-similar so- 
lution and the dependence on total system energy of the time 
within which the latter exists: the behavior of S ( t )  for var- 
ious excitation energies, i.e., values of the temperature T, is 
shown for the solution described above (see Fig. 2)  corre- 
sponding to an initial 6-distribution. It is clear that for 
T ~ 0 . 1  the transition of the solution n(fl,t) to the self-simi- 
lar form is practically independent of the system energy. 
However, in qualitative agreement with Ref. 3, we find that 
the time within which the self-similar approximation exists 
(i.e., the time of activation of the amplification processes) 
depends strongly on this energy. 

According to our calculations (see Fig. 3),  a phonon 
distribution that satisfies the scaling solution has a maxi- 
mum energy density at a frequency 

P ,, ( t )  =0,64t-"6. (16) 

On the other hand, it is well-known that the maximum of the 
energy density for an equilibrium distribution with tempera- 
ture T is 

The self-similar solution is a good approximation for 
fi,, ( t ) ) f iT,  or, in other words, when the energy of the 
phonon subsystem is primarily concentrated in phonons 
whose frequency exceeds the characteristic frequency of the 
equilibrium distribution with temperature T. The scaling ap- 
proximation begins to break down as fi,, ( t )  approaches fi, 
in the process of relaxation; this is connected with the 
growth in importance of the role of amplification processes 
for these phonons. Setting Eqs. ( 16) and ( 17) equal, we can 
obtain an estimate for the time it takes this disruption to 
occur; we find t z 6 X  T-'. Actually, if we plot the 
functionS(t) for various temperatures (see Fig. 7) as a func- 
tion of tT5, then it is clear that these functions coincide al- 
most completely in the right-hand portion of Fig. 8, which 
reflects the similarity in the nature of the disruption of the 
scaling solution at various temperatures. Thus, our calcula- 
tions have confirmed that the time in which the scaling func- 
tion exists is proportional to T 5 .  The arrow in Fig. 8 points 
to the value of tT5 obtained from Eqs. ( 16) and ( 17). It is 
clear that this estimate is in reasonable agreement with the 
results of the calculations. 

Let us also note (and this is clear from comparing Figs. 
lb, Fig. 3 and Fig. 6) that the role of the nonlinear terms in 
disrupting the self-similar approximation is almost indepen- 
dent of the form of the decay characteristics of the phonons. 

CONCLUSIONS 

Thus, we have arrived at the following picture of the 
evolution of a system of nonequilibrium phonons which at 
t = 0 is excited at a comparatively low level T < 0.1 such that 
high-frequency phonons are predominantly excited. In the 
initial stage of relaxation (O<t< 10) there is a transition of 
the phonon distribution to self-similar form. For time t> 10 
the system achieves this self-similar distribution indepen- 
dent of the initial conditions and the form of the decay char- 
acteristics of the phonons. The time within which the 
phonon distribution remains self-similar depends on the lev- 
el of excitation of the system and is proportional to T- 5 .  

During this stage the relaxation of the phonon system is 
dominated by decay processes for those phonons with fre- 
quencies close to the maximum of its energy distribution. 
During later stages of the relaxation the scaling approxima- 
tion is violated; this is associated with the growing role of 
those phonon amplification processes that lead to the estab- 
lishment of an equilibrium distribution with a well-defined 
temperature in the system. 

For higher levels of excitation ( T >  0.1 ) the role of am- 
plification processes is important even in the initial stages of 
relaxation. In this case self-similar distribution of phonons 
in principle need not be established at all, and the relaxation 
process can lead directly to the establishment of an equilibri- 
um temperature without a stage corresponding to the scaling 
approximation. This situation was discussed in Ref. 9. 

The results of our calculations show that both the ap- 
proach of the phonon distribution to self-similar form and 
the departure from this form depend only weakly on the 
specific characteristics of the phonon decay. This makes it 
possible to apply this model to describe phonon kinetics over 
a wide range of materials. 
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